-
1
-
-
0347113516
-
-
University Press, Princeton, NJ, USA
-
R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, USA, 1957.
-
(1957)
Dynamic Programming, Princeton
-
-
Bellman, R.E.1
-
2
-
-
47649102470
-
-
Chapter 1: Feature Selection for Genomic and Proteomic Data Mining, JohnWiley & Sons, Hoboken, NJ, USA
-
S. Y. Kung andM.W.Mak, Machine Learning in Bioinformatics, Chapter 1: Feature Selection for Genomic and Proteomic Data Mining, JohnWiley & Sons, Hoboken, NJ, USA, 2009.
-
(2009)
Machine Learning in Bioinformatics
-
-
Kung, S.Y.1
Mak, M.W.2
-
3
-
-
0003585297
-
-
Morgan Kaufmann Publishers, San Francisco, Calif, USA
-
J. Han, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco, Calif, USA, 2005.
-
(2005)
Data Mining: Concepts and Techniques
-
-
Han, J.1
-
4
-
-
0031144150
-
Data quality in context
-
D. M. Strong, Y.W. Lee, and R. Y. Wang, "Data quality in context, " Communications of the ACM, vol. 40, no. 5, pp. 103-110, 1997.
-
(1997)
Communications of the ACM
, vol.40
, Issue.5
, pp. 103-110
-
-
Strong, D.M.1
Lee, Y.W.2
Wang, R.Y.3
-
5
-
-
19544372918
-
Class noise vs. Attribute noise: A quantitative study of their impacts
-
X. Zhu and X.Wu, "Class noise vs. attribute noise: a quantitative study of their impacts, " Artificial Intelligence Review, vol. 22, no. 3, pp. 177-210, 2004.
-
(2004)
Artificial Intelligence Review
, vol.22
, Issue.3
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
-
6
-
-
84861648384
-
Global burden of cancers attributable to infections in2008: A reviewandsynthetic analysis
-
C. de Martel, J. Ferlay, S. Franceschi et al., "Global burden of cancers attributable to infections in2008: a reviewandsynthetic analysis, " The Lancet Oncology, vol. 13, no. 6, pp. 607-615, 2012.
-
(2012)
The Lancet Oncology
, vol.13
, Issue.6
, pp. 607-615
-
-
De Martel, C.1
Ferlay, J.2
Franceschi, S.3
-
7
-
-
0026453958
-
Training a 3-node neural network is NP-complete
-
A. L. Blum and R. L. Rivest, "Training a 3-node neural network is NP-complete, " Neural Networks, vol. 5, no. 1, pp. 117-127, 1992.
-
(1992)
Neural Networks
, vol.5
, Issue.1
, pp. 117-127
-
-
Blum, A.L.1
Rivest, R.L.2
-
9
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics, " Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
10
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning, " Artificial Intelligence, vol. 97, no. 1-2, pp. 245-271, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
11
-
-
0010739663
-
Filters, wrappers and a boosting-based hybrid for feature selection
-
Morgan Kaufmann Publishers, San Francisco, Calif, USA
-
S. Das, "Filters, wrappers and a boosting-based hybrid for feature selection, " in Proceedings of the 18th International Conference on Machine Learning (ICML '01), pp. 74-81, Morgan Kaufmann Publishers, San Francisco, Calif, USA, 2001.
-
(2001)
Proceedings of the 18th International Conference on Machine Learning (ICML ' 01)
, pp. 74-81
-
-
Das, S.1
-
12
-
-
0003076895
-
Feature selection for high-dimensional genomic microarray data
-
Morgan Kaufmann
-
E. P. Xing, M. I. Jordan, and R. M. Karp, "Feature selection for high-dimensional genomic microarray data, " in Proceedings of the 18th International Conference onMachine Learning, pp. 601-608, Morgan Kaufmann, 2001.
-
(2001)
Proceedings of the 18th International Conference OnMachine Learning
, pp. 601-608
-
-
Xing, E.P.1
Jordan, M.I.2
Karp, R.M.3
-
13
-
-
0036372855
-
New feature subset selection procedures for classification of expression profiles
-
T. Band I. Jonassen, "New feature subset selection procedures for classification of expression profiles, " Genome biology, vol. 3, no. 4, 2002.
-
(2002)
Genome Biology
, vol.3
, Issue.4
-
-
Band, T.1
Jonassen, I.2
-
14
-
-
33745092378
-
Correction: Multiclass classification of microarray data with repeated measurements: Application to cancer
-
K. Yeung and R. Bumgarner, "Correction: multiclass classification of microarray data with repeated measurements: application to cancer, " Genome Biology, vol. 6, no. 13, p. 405, 2005.
-
(2005)
Genome Biology
, vol.6
, Issue.13
, pp. 405
-
-
Yeung, K.1
Bumgarner, R.2
-
15
-
-
84960463485
-
Minimum redundancy feature selection from microarray gene expression data
-
IEEE Computer Society, Washington, DC, USA, August
-
C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene expression data, " in Proceedings of the IEEE Bioinformatics Conference (CSB '03), pp. 523-528, IEEE Computer Society, Washington, DC, USA, August 2003.
-
(2003)
Proceedings of the IEEE Bioinformatics Conference (CSB '03)
, pp. 523-528
-
-
Ding, C.1
Peng, H.2
-
16
-
-
25444528240
-
An entropy-based gene selection method for cancer classification using microarray data
-
article 76
-
X. Liu, A. Krishnan, and A. Mondry, "An entropy-based gene selection method for cancer classification using microarray data, " BMC Bioinformatics, vol. 6, article 76, 2005.
-
(2005)
BMC Bioinformatics
, vol.6
-
-
Liu, X.1
Krishnan, A.2
Mondry, A.3
-
17
-
-
85065703189
-
Correlation-based feature selection for discrete and nu-meric class machine learning
-
Morgan Kaufmann, San Francisco, Calif, USA
-
M. A.Hall, "Correlation-based feature selection for discrete and nu-meric class machine learning, " in Proceedings of the 17th International Conference on Machine Learning (ICML '00), pp. 359-366, Morgan Kaufmann, San Francisco, Calif, USA, 2000.
-
(2000)
Proceedings of the 17th International Conference on Machine Learning (ICML ' 00)
, pp. 359-366
-
-
Hall, M.A.1
-
18
-
-
12444320350
-
Gene selection from microarray data for cancer classification-A machine learning approach
-
Y. Wang, I. V. Tetko, M. A. Hall et al., "Gene selection from microarray data for cancer classification-a machine learning approach, " Computational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.
-
(2005)
Computational Biology and Chemistry
, vol.29
, Issue.1
, pp. 37-46
-
-
Wang, Y.1
Tetko, I.V.2
Hall, M.A.3
-
20
-
-
17444436178
-
Biological detection of low radiation doses by combining results of two microarray analysis methods
-
article e12
-
G. Mercier, N. Berthault, J. Mary et al., "Biological detection of low radiation doses by combining results of two microarray analysis methods, " Nucleic Acids Research, vol. 32, no. 1, article e12, 2004.
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.1
-
-
Mercier, G.1
Berthault, N.2
Mary, J.3
-
21
-
-
14044270137
-
Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data
-
IEEE Computer Society, August
-
Y. Wang and F. Makedon, "Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data, " in Proceedings of IEEE Computational Systems Bioinformatics Conference (CSB '04), pp. 497-498, IEEE Computer Society, August 2004.
-
(2004)
Proceedings of IEEE Computational Systems Bioinformatics Conference (CSB '04)
, pp. 497-498
-
-
Wang, Y.1
Makedon, F.2
-
22
-
-
3042679216
-
Multivariate selection of genetic markers in diagnostic classification
-
G. Weber, S. Vinterbo, and L. Ohno-Machado, "Multivariate selection of genetic markers in diagnostic classification, " Artificial Intelligence in Medicine, vol. 31, no. 2, pp. 155-167, 2004.
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, Issue.2
, pp. 155-167
-
-
Weber, G.1
Vinterbo, S.2
Ohno-Machado, L.3
-
23
-
-
0028547556
-
Floating search methods in feature selection
-
P. Pudil, J. Novovicov, and J. Kittler, "Floating search methods in feature selection, " Pattern Recognition Letters, vol. 15, no. 11, pp. 1119-1125, 1994.
-
(1994)
Pattern Recognition Letters
, vol.15
, Issue.11
, pp. 1119-1125
-
-
Pudil, P.1
Novovicov, J.2
Kittler, J.3
-
25
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O.Chapelle, V. Vapnik, O.Bousquet, andS.Mukherjee, "Choosing multiple parameters for support vector machines, " Machine Learning, vol. 46, no. 1-3, pp. 131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
26
-
-
77949506233
-
Feature selection and classification of MAQC-II breast cancer and multiplemyelomamicroarray gene expression data
-
Article ID e8250
-
Q.Liu, A.H. Sung, Z. Chen, J.Liu, X.Huang, andY. Deng, "Feature selection and classification of MAQC-II breast cancer and multiplemyelomamicroarray gene expression data, " PLoSONE, vol. 4, no. 12, Article ID e8250, 2009.
-
(2009)
PLoSONE
, vol.4
, Issue.12
-
-
Liu, Q.1
Sung, A.H.2
Chen, Z.3
Liu, J.4
Huang, X.5
Deng, Y.6
-
27
-
-
33645157313
-
Gene selection algorithms for microarray data based on least squares support vector machine
-
article 95
-
E. K. Tang, P. N. Suganthan, and X. Yao, "Gene selection algorithms for microarray data based on least squares support vector machine, " BMC Bioinformatics, vol. 7, article 95, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
28
-
-
84892610864
-
Analyzing kernel matrices for the identification of differentially expressed genes
-
Article ID e81683
-
X.-L. Xia, H. Xing, and X. Liu, "Analyzing kernel matrices for the identification of differentially expressed genes, " PLoS ONE, vol. 8, no. 12, Article ID e81683, 2013.
-
(2013)
PLoS ONE
, vol.8
, Issue.12
-
-
Xia, X.-L.1
Xing, H.2
Liu, X.3
-
29
-
-
0037076322
-
Selection bias in gene extraction on the basis of microarray gene-expression data
-
C. Ambroise and G. J. McLachlan, "Selection bias in gene extraction on the basis of microarray gene-expression data, " Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6562-6566, 2002.
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.10
, pp. 6562-6566
-
-
Ambroise, C.1
McLachlan, G.J.2
-
30
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines, " Machine Learning, vol. 46, no. 1-3, pp. 389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
31
-
-
84255194463
-
Gene selection and classification for cancer microarray data based on machine learning and similarity measures
-
article S1
-
Q. Liu, A. H. Sung, Z. Chen et al., "Gene selection and classification for cancer microarray data based on machine learning and similarity measures, " BMC Genomics, vol. 12, supplement 5, article S1, 2011.
-
(2011)
BMC Genomics
, vol.12
-
-
Liu, Q.1
Sung, A.H.2
Chen, Z.3
-
32
-
-
67650462985
-
Large-scale attribute selection using wrappers
-
April
-
M. Gtlein, E. Frank, M. Hall, and A. Karwath, "Large-scale attribute selection using wrappers, " in Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM '09), pp. 332-339, April 2009.
-
(2009)
Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining (CIDM '09)
, pp. 332-339
-
-
Gtlein, M.1
Frank, E.2
Hall, M.3
Karwath, A.4
-
33
-
-
25444528447
-
Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
-
article 148
-
T. Jirapech-Umpai and S. Aitken, "Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes, " BMC Bioinformatics, vol. 6, article 148, 2005.
-
(2005)
BMC Bioinformatics
, vol.6
-
-
Jirapech-Umpai, T.1
Aitken, S.2
-
34
-
-
78349264279
-
Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
-
article 567
-
C. Bartenhagen, H.-U. Klein, C. Ruckert, X. Jiang, and M. Dugas, "Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, " BMC Bioinformatics, vol. 11, no. 1, article 567, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
-
-
Bartenhagen, C.1
Klein, H.-U.2
Ruckert, C.3
Jiang, X.4
Dugas, M.5
-
35
-
-
33748416594
-
Incremental wrapper-based gene selection from microarray data for cancer classification
-
R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz, "Incremental wrapper-based gene selection from microarray data for cancer classification, " Pattern Recognition, vol. 39, no. 12, pp. 2383-2392, 2006.
-
(2006)
Pattern Recognition
, vol.39
, Issue.12
, pp. 2383-2392
-
-
Ruiz, R.1
Riquelme, J.C.2
Aguilar-Ruiz, J.S.3
-
36
-
-
57049136560
-
Gene selection for microarray data by a LDA-based genetic algorithm
-
Melbourne, Australia, October 15-17, 2008, M. Chetty, A. Ngom, and S. Ahmad, Eds., of Lecture Notes in Computer Science, Springer, Berlin, Germany, 2008
-
E. B. Huerta, B. Duval, and J.-K. Hao, "Gene selection for microarray data by a LDA-based genetic algorithm, " in Pattern Recognition in Bioinformatics: Proceedings of the 3rd IAPR International Conference, PRIB 2008, Melbourne, Australia, October 15-17, 2008, M. Chetty, A. Ngom, and S. Ahmad, Eds., vol. 5265 of Lecture Notes in Computer Science, pp. 250-261, Springer, Berlin, Germany, 2008.
-
Pattern Recognition in Bioinformatics: Proceedings of the 3rd IAPR International Conference, PRIB 2008
, vol.5265
, pp. 250-261
-
-
Huerta, E.B.1
Duval, B.2
Hao, J.-K.3
-
38
-
-
84863834971
-
GA-SVM wrapper approach for gene ranking and classification using expressions of very few genes
-
N. Revathy and R. Balasubramanian, "GA-SVM wrapper approach for gene ranking and classification using expressions of very few genes, " Journal of Theoretical and Applied Information Technology, vol. 40, no. 2, pp. 113-119, 2012.
-
(2012)
Journal of Theoretical and Applied Information Technology
, vol.40
, Issue.2
, pp. 113-119
-
-
Revathy, N.1
Balasubramanian, R.2
-
39
-
-
0015644825
-
A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
-
J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, " Journal of Cybernetics, vol. 3, no. 3, pp. 32-57, 1973.
-
(1973)
Journal of Cybernetics
, vol.3
, Issue.3
, pp. 32-57
-
-
Dunn, J.C.1
-
40
-
-
0004008854
-
-
Kluwer Academic Publishers, Norwell, Mass, USA
-
J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Kluwer Academic Publishers, Norwell, Mass, USA, 1981.
-
(1981)
Pattern Recognition with Fuzzy Objective Function Algorithms
-
-
Bezdek, J.C.1
-
41
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
article 3
-
R. Dz-Uriarte and S. Alvarez de Andrs, "Gene selection and classification of microarray data using random forest, " BMC Bioinformatics, vol. 7, article 3, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Dz-Uriarte, R.1
De Andrs, S.A.2
-
42
-
-
70349213372
-
Microarray classification using block diagonal linear discriminant analysis with embedded feature selection
-
April
-
L. Sheng, R. Pique-Regi, S. Asgharzadeh, and A. Ortega, "Microarray classification using block diagonal linear discriminant analysis with embedded feature selection, " in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '09), pp. 1757-1760, April 2009.
-
(2009)
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '09)
, pp. 1757-1760
-
-
Sheng, L.1
Pique-Regi, R.2
Asgharzadeh, S.3
Ortega, A.4
-
43
-
-
77958106713
-
Simultaneous feature selection and classification using kernel-penalized support vector machines
-
S. Maldonado, R. Weber, and J. Basak, "Simultaneous feature selection and classification using kernel-penalized support vector machines, " Information Sciences, vol. 181, no. 1, pp. 115-128, 2011.
-
(2011)
Information Sciences
, vol.181
, Issue.1
, pp. 115-128
-
-
Maldonado, S.1
Weber, R.2
Basak, J.3
-
44
-
-
33847192815
-
Feature selection for microarray data using least squares SVM and particle swarm optimization
-
IEEE, November
-
E. K. Tang, P. N. Suganthan, and X. Yao, "Feature selection for microarray data using least squares SVM and particle swarm optimization, " in Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '05), pp. 9-16, IEEE, November 2005.
-
(2005)
Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB '05)
, pp. 9-16
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
45
-
-
85030413794
-
Development of twostage SVM-RFE gene selection strategy for microarray expression data analysis
-
Y. Tang, Y.-Q. Zhang, and Z. Huang, "Development of twostage SVM-RFE gene selection strategy for microarray expression data analysis, " IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 365-381, 2007.
-
(2007)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.4
, Issue.3
, pp. 365-381
-
-
Tang, Y.1
Zhang, Y.-Q.2
Huang, Z.3
-
46
-
-
33646377650
-
Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
-
article 197
-
X. Zhang, X. Lu, Q. Shi et al., "Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data, " BMC Bioinformatics, vol. 7, article 197, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Zhang, X.1
Lu, X.2
Shi, Q.3
-
47
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
M. B. Eisen, P.T. Spellman, P. O. Brown, andD. Botstein, "Cluster analysis and display of genome-wide expression patterns, " Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 25, pp. 14863-14868, 1998.
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.25
, pp. 14863-14868
-
-
Eisen, M.B.1
Spellman, P.T.2
Brown, P.O.3
Botstein, D.4
-
48
-
-
33646137384
-
A systematic comparison and evaluation of biclusteringmethods for gene expression data
-
A. Preli, S. Bleuler, P. Zimmermann et al., "A systematic comparison and evaluation of biclusteringmethods for gene expression data, " Bioinformatics, vol. 22, no. 9, pp. 1122-1129, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.9
, pp. 1122-1129
-
-
Preli, A.1
Bleuler, S.2
Zimmermann, P.3
-
49
-
-
33746489367
-
An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
-
article 27
-
P. Jafari and F. Azuaje, "An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors, " BMC Medical Informatics and Decision Making, vol. 6, no. 1, article 27, 2006.
-
(2006)
BMC Medical Informatics and Decision Making
, vol.6
, Issue.1
-
-
Jafari, P.1
Azuaje, F.2
-
50
-
-
0004060921
-
Correlation-based feature selection for machine learning
-
M. A. Hall, "Correlation-based feature selection for machine learning, " Tech. Rep., 1998.
-
(1998)
Tech. Rep
-
-
Hall, M.A.1
-
51
-
-
7444220224
-
Feature selection by Bayesian networks
-
A. Y. Tawfik and S. D. Goodwin, Eds, of Lecture Notes in Computer Science Springer, Berlin, Germany
-
J.Hruschka, R. Estevam, E. R. Hruschka, and N. F. F. Ebecken, "Feature selection by Bayesian networks, " in Advances in Artificial Intelligence, A. Y. Tawfik and S. D. Goodwin, Eds., vol. 3060 of Lecture Notes in Computer Science, pp. 370-379, Springer, Berlin, Germany, 2004.
-
(2004)
Advances in Artificial Intelligence
, vol.3060
, pp. 370-379
-
-
Hruschka, J.1
Estevam, R.2
Hruschka, E.R.3
Ebecken, N.F.F.4
-
52
-
-
77649166995
-
An empirical Bayesian method for estimating biological networks from temporal microarray data
-
article 9
-
A. Rau, F. Jaffrzic, J.-L. Foulley, and R. W. Doerge, "An empirical Bayesian method for estimating biological networks from temporal microarray data, " Statistical Applications in Genetics and Molecular Biology, vol. 9, article 9, 2010.
-
(2010)
Statistical Applications in Genetics and Molecular Biology
, vol.9
-
-
Rau, A.1
Jaffrzic, F.2
Foulley, J.-L.3
Doerge, R.W.4
-
53
-
-
75149178749
-
Amulti-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data
-
article S5
-
P.Yang, B. B. Zhou, Z. Zhang, and A. Y. Zomaya, "Amulti-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data, " BMC Bioinformatics, vol. 11, supplement 1, article S5, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
-
-
Yang, P.1
Zhou, B.B.2
Zhang, Z.3
Zomaya, A.Y.4
-
54
-
-
0037245772
-
Genetic algorithms applied tomulti-class prediction for the analysis of gene expression data
-
C. H.Ooi and P. Tan, "Genetic algorithms applied tomulti-class prediction for the analysis of gene expression data, " Bioinformatics, vol. 19, no. 1, pp. 37-44, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.1
, pp. 37-44
-
-
Ooi, C.H.1
Tan, P.2
-
55
-
-
0011691468
-
Sequential search: A method for solving constrained optimization problems
-
H. Glass and L. Cooper, "Sequential search: a method for solving constrained optimization problems, " Journal of the ACM, vol. 12, no. 1, pp. 71-82, 1965.
-
(1965)
Journal of the ACM
, vol.12
, Issue.1
, pp. 71-82
-
-
Glass, H.1
Cooper, L.2
-
56
-
-
13244289883
-
Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
-
article 81
-
H. Jiang, Y. Deng, H.-S. Chen et al., "Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes, " BMC Bioinformatics, vol. 5, article 81, 2004.
-
(2004)
BMC Bioinformatics
, vol.5
-
-
Jiang, H.1
Deng, Y.2
Chen, H.-S.3
-
57
-
-
33947425580
-
Supervised group Lasso with applications to microarray data analysis
-
article 60
-
S. Ma, X. Song, and J. Huang, "Supervised group Lasso with applications to microarray data analysis, " BMC Bioinformatics, vol. 8, article 60, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Ma, S.1
Song, X.2
Huang, J.3
-
58
-
-
84887008925
-
Unsupervised fuzzy ensembles and their use in intrusion detection
-
April
-
P. F. Evangelista, P. Bonissone, M. J. Embrechts, and B. K. Szymanski, "Unsupervised fuzzy ensembles and their use in intrusion detection, " in Proceedings of the European Symposium on Artificial Neural Networks, pp. 345-350, April 2005.
-
(2005)
Proceedings of the European Symposium on Artificial Neural Networks
, pp. 345-350
-
-
Evangelista, P.F.1
Bonissone, P.2
Embrechts, M.J.3
Szymanski, B.K.4
-
59
-
-
46049100989
-
Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data
-
article 267
-
S. Jonnalagadda and R. Srinivasan, "Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data, "BMC Bioinformatics, vol. 9, article 267, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Jonnalagadda, S.1
Srinivasan, R.2
-
60
-
-
0036372382
-
Permutation-validated principal components analysis of microarray data
-
J. Landgrebe, W. Wurst, and G. Welzl, "Permutation-validated principal components analysis of microarray data, " Genome Biology, vol. 3, no. 4, 2002.
-
(2002)
Genome Biology
, vol.3
, Issue.4
-
-
Landgrebe, J.1
Wurst, W.2
Welzl, G.3
-
61
-
-
0036069214
-
Interactive exploration of microarray gene expression patterns in a reduced dimensional space
-
J.Misra, W. Schmitt, D.Hwang et al., "Interactive exploration of microarray gene expression patterns in a reduced dimensional space, " Genome Research, vol. 12, no. 7, pp. 1112-1120, 2002.
-
(2002)
Genome Research
, vol.12
, Issue.7
, pp. 1112-1120
-
-
Misra, J.1
Schmitt, W.2
Hwang, D.3
-
62
-
-
77955787591
-
Penalized principal component analysis of microarray data
-
F. Masulli, L. E. Peterson, and R. Tagliaferri, Eds of Lecture Notes in Computer Science Springer, Berlin, Germany
-
V. Nikulin and G. J. McLachlan, "Penalized principal component analysis of microarray data, " in Computational Intelligence Methods for Bioinformatics and Biostatistics, F. Masulli, L. E. Peterson, and R. Tagliaferri, Eds., vol. 6160 of Lecture Notes in Computer Science, pp. 82-96, Springer, Berlin, Germany, 2009.
-
(2009)
Computational Intelligence Methods for Bioinformatics and Biostatistics
, vol.6160
, pp. 82-96
-
-
Nikulin, V.1
McLachlan, G.J.2
-
63
-
-
0033657261
-
Principal components analysis to summarize microarray experiments: Application to sporulation time series
-
S. Raychaudhuri, J. M. Stuart, R. B. Altman, and R. B. Altman, "Principal components analysis to summarize microarray experiments: application to sporulation time series, " in Proceedings of the Pacific Symposium on Biocomputing, pp. 452-463, 2000.
-
(2000)
Proceedings of the Pacific Symposium on Biocomputing
, pp. 452-463
-
-
Raychaudhuri, S.1
Stuart, J.M.2
Altman, R.B.3
Altman, R.B.4
-
64
-
-
21244444543
-
Gene selection for microarray data analysis using principal component analysis
-
A.Wang and E. A. Gehan, "Gene selection for microarray data analysis using principal component analysis, " Statistics inMedicine, vol. 24, no. 13, pp. 2069-2087, 2005.
-
(2005)
Statistics InMedicine
, vol.24
, Issue.13
, pp. 2069-2087
-
-
Wang, A.1
Gehan, E.A.2
-
65
-
-
33645527646
-
Prediction by supervised principal components
-
E. Bair, T. Hastie, D. Paul, and R. Tibshirani, "Prediction by supervised principal components, " Journal of the American Statistical Association, vol. 101, no. 473, pp. 119-137, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 119-137
-
-
Bair, E.1
Hastie, T.2
Paul, D.3
Tibshirani, R.4
-
66
-
-
19344375744
-
Semi-supervised methods to predict patient survival from gene expression data
-
E. Bair and R. Tibshirani, "Semi-supervised methods to predict patient survival from gene expression data, " PLoS Biology, vol. 2, pp. 511-522, 2004.
-
(2004)
PLoS Biology
, vol.2
, pp. 511-522
-
-
Bair, E.1
Tibshirani, R.2
-
67
-
-
0034568109
-
Gene shaving as a method for identifying distinct sets of genes with similar expression patterns
-
T. Hastie, R. Tibshirani, M. B. Eisen et al., "'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns, " Genome Biology, vol. 1, no. 2, pp. 1-21, 2000.
-
(2000)
Genome Biology
, vol.1
, Issue.2
, pp. 1-21
-
-
Hastie, T.1
Tibshirani, R.2
Eisen, M.B.3
-
69
-
-
42549170683
-
Multidimensional scaling for large genomic data sets
-
article 179
-
J. Tzeng, H. Lu, and W.-H. Li, "Multidimensional scaling for large genomic data sets, " BMC Bioinformatics, vol. 9, article 179, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Tzeng, J.1
Lu, H.2
Li, W.-H.3
-
70
-
-
0001138328
-
Algorithm AS 136: A K-means clustering algorithm
-
J. A. Hartigan and M. A.Wong, "Algorithm AS 136: a K-means clustering algorithm, " Journal of the Royal Statistical Society Series C: Applied Statistics, vol. 28, no. 1, pp. 100-108, 1979.
-
(1979)
Journal of the Royal Statistical Society Series C: Applied Statistics
, vol.28
, Issue.1
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
71
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction, " Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
72
-
-
0037016775
-
The isomap algorithm and topological stability
-
M. Balasubramanian and E. L. Schwartz, "The isomap algorithm and topological stability, " Science, vol. 295, no. 5552, p. 7, 2002.
-
(2002)
Science
, vol.295
, Issue.5552
, pp. 7
-
-
Balasubramanian, M.1
Schwartz, E.L.2
-
73
-
-
80054968486
-
An effective double-bounded tree-connected Isomap algorithm for microarray data classification
-
C. Orsenigo and C. Vercellis, "An effective double-bounded tree-connected Isomap algorithm for microarray data classification, " Pattern Recognition Letters, vol. 33, no. 1, pp. 9-16, 2012.
-
(2012)
Pattern Recognition Letters
, vol.33
, Issue.1
, pp. 9-16
-
-
Orsenigo, C.1
Vercellis, C.2
-
74
-
-
25444512607
-
Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm
-
article 195
-
K. Dawson, R. L. Rodriguez, andW. Malyj, "Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm, " BMC Bioinformatics, vol. 6, article 195, 2005.
-
(2005)
BMC Bioinformatics
, vol.6
-
-
Dawson, K.1
Rodriguez, R.L.2
Malyj, W.3
-
76
-
-
81355144460
-
Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
-
article S3
-
M. Ehler, V. N. Rajapakse, B. R. Zeeberg et al., "Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development, " BMC Proceedings, vol. 5, no. 2, article S3, 2011.
-
(2011)
BMC Proceedings
, vol.5
, Issue.2
-
-
Ehler, M.1
Rajapakse, V.N.2
Zeeberg, B.R.3
-
77
-
-
84964492946
-
Analysis of DNA microarray data using self-organizing map and kernel based clustering
-
Singapore, November
-
M. Kotani, A. Sugiyama, and S. Ozawa, "Analysis of DNA microarray data using self-organizing map and kernel based clustering, " in Proceedings of the 9th International Conference on Neural Information Processing (ICONIP '02), vol. 2, pp. 755-759, Singapore, November 2002.
-
(2002)
Proceedings of the 9th International Conference on Neural Information Processing (ICONIP '02)
, vol.2
, pp. 755-759
-
-
Kotani, M.1
Sugiyama, A.2
Ozawa, S.3
-
78
-
-
27744594238
-
Gene expression data classification with kernel principal component analysis
-
Z. Liu, D. Chen, and H. Bensmail, "Gene expression data classification with kernel principal component analysis, " Journal of Biomedicine and Biotechnology, vol. 2005, no. 2, pp. 155-159, 2005.
-
(2005)
Journal of Biomedicine and Biotechnology
, vol.2005
, Issue.2
, pp. 155-159
-
-
Liu, Z.1
Chen, D.2
Bensmail, H.3
-
79
-
-
84925230881
-
Kernel-PCA data integration with enhanced interpretability
-
F. Reverter, E. Vegas, and J. M. Oller, "Kernel-PCA data integration with enhanced interpretability, " BMC Systems Biology, vol. 8, supplement 2, p. S6, 2014.
-
(2014)
BMC Systems Biology
, vol.8
, pp. S6
-
-
Reverter, F.1
Vegas, E.2
Oller, J.M.3
-
80
-
-
71549117586
-
Greedy kernel PCA for training data reduction and nonlinear feature extraction in classification
-
Yichang, China, October
-
X. Liu and C. Yang, "Greedy kernel PCA for training data reduction and nonlinear feature extraction in classification, " in MIPPR 2009: Automatic Target Recognition and Image Analysis, vol. 7495 of Proceedings of SPIE, Yichang, China, October 2009.
-
(2009)
MIPPR 2009: Automatic Target Recognition and Image Analysis, Vol 7495 of Proceedings of SPIE
, vol.7495
-
-
Liu, X.1
Yang, C.2
-
81
-
-
0012940569
-
Self-organized formation of topologically correct feature maps
-
MIT Press, Cambridge, Mass, USA
-
T. Kohonen, "Self-organized formation of topologically correct feature maps, " in Neurocomputing: Foundations of Research, pp. 509-521, MIT Press, Cambridge, Mass, USA, 1988.
-
(1988)
Neurocomputing: Foundations of Research
, pp. 509-521
-
-
Kohonen, T.1
-
82
-
-
84925878230
-
Using deep learning to enhance cancer diagnosis and classification
-
ICML
-
R. Fakoor, F. Ladhak, A.Nazi, and M.Huber, "Using deep learning to enhance cancer diagnosis and classification, " in Proceedings of the ICML Workshop on the Role of Machine Learning in Transforming Healthcare (WHEALTH '13), ICML, 2013.
-
(2013)
Proceedings of the ICML Workshop on the Role of Machine Learning in Transforming Healthcare (WHEALTH ' 13)
-
-
Fakoor, R.1
Ladhak, F.2
Nazi, A.3
Huber, M.4
-
83
-
-
0037789533
-
Analysis and visualization of gene expression data using self-organizing maps
-
S. Kaski, J. Nikkil, P. Trnen, E. Castrn, and G. Wong, "Analysis and visualization of gene expression data using self-organizing maps, " in Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '01), p. 24, 2001.
-
(2001)
Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '01)
, pp. 24
-
-
Kaski, S.1
Nikkil, J.2
Trnen, P.3
Castrn, E.4
Wong, G.5
-
84
-
-
78649334862
-
Independent component analysis: Mining microarray data for fundamental human gene expression modules
-
J.M. Engreitz, B. J. Daigle Jr., J. J. Marshall, and R. B. Altman, "Independent component analysis: mining microarray data for fundamental human gene expression modules, " Journal of Biomedical Informatics, vol. 43, no. 6, pp. 932-944, 2010.
-
(2010)
Journal of Biomedical Informatics
, vol.43
, Issue.6
, pp. 932-944
-
-
Engreitz, J.M.1
Daigle, B.J.2
Marshall, J.J.3
Altman, R.B.4
-
85
-
-
1542473171
-
Application of independent component analysis to microarrays
-
article R76
-
S.-I. Lee and S. Batzoglou, "Application of independent component analysis to microarrays, " Genome Biology, vol. 4, no. 11, article R76, 2003.
-
(2003)
Genome Biology
, vol.4
, Issue.11
-
-
Lee, S.-I.1
Batzoglou, S.2
-
86
-
-
0037381038
-
A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
-
L. J. Cao, K. S. Chua, W. K. Chong, H. P. Lee, andQ.M.Gu, "A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine, " Neurocomputing, vol. 55, no. 1-2, pp. 321-336, 2003.
-
(2003)
Neurocomputing
, vol.55
, Issue.1-2
, pp. 321-336
-
-
Cao, L.J.1
Chua, K.S.2
Chong, W.K.3
Lee, H.P.4
Gu, Q.M.5
-
87
-
-
21844455527
-
Learning module networks
-
E. Segal, D. Koller, N. Friedman, and T. Jaakkola, "Learning module networks, " Journal of Machine Learning Research, vol. 27, pp. 525-534, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.27
, pp. 525-534
-
-
Segal, E.1
Koller, D.2
Friedman, N.3
Jaakkola, T.4
-
88
-
-
13444283846
-
Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae
-
Y. Chen and D. Xu, "Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae, "Nucleic Acids Research, vol. 32, no. 21, pp. 6414-6424, 2004.
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.21
, pp. 6414-6424
-
-
Chen, Y.1
Xu, D.2
-
89
-
-
76849109688
-
Data-fusion in clustering microarray data: Balancing discovery and interpretability
-
R.Kustra andA. Zagdanski, "Data-fusion in clustering microarray data: balancing discovery and interpretability, " IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 7, no. 1, pp. 50-63, 2010.
-
(2010)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.7
, Issue.1
, pp. 50-63
-
-
Kustra, R.1
Zagdanski, A.2
-
91
-
-
3142749026
-
A knowledge-based clustering algorithm driven by gene ontology
-
J. Cheng, M. Cline, J. Martin et al., "A knowledge-based clustering algorithm driven by gene ontology, " Journal of Biopharmaceutical Statistics, vol. 14, no. 3, pp. 687-700, 2004.
-
(2004)
Journal of Biopharmaceutical Statistics
, vol.14
, Issue.3
, pp. 687-700
-
-
Cheng, J.1
Cline, M.2
Martin, J.3
-
92
-
-
59649124237
-
Integrating biological knowledge with gene expression profiles for survival prediction of cancer
-
X. Chen and L. Wang, "Integrating biological knowledge with gene expression profiles for survival prediction of cancer, " Journal of Computational Biology, vol. 16, no. 2, pp. 265-278, 2009.
-
(2009)
Journal of Computational Biology
, vol.16
, Issue.2
, pp. 265-278
-
-
Chen, X.1
Wang, L.2
-
93
-
-
33646895693
-
Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
-
D. Huang and W. Pan, "Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data, " Bioinformatics, vol. 22, no. 10, pp. 1259-1268, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.10
, pp. 1259-1268
-
-
Huang, D.1
Pan, W.2
-
94
-
-
33645289673
-
Incorporating gene functions as priors inmodel-based clustering of microarray gene expression data
-
W. Pan, "Incorporating gene functions as priors inmodel-based clustering of microarray gene expression data, " Bioinformatics, vol. 22, no. 7, pp. 795-801, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 795-801
-
-
Pan, W.1
-
95
-
-
35348891430
-
Networkbased classification of breast cancer metastasis
-
article 140
-
H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, andT. Ideker, "Networkbased classification of breast cancer metastasis, " Molecular Systems Biology, vol. 3, no. 1, article 140, 2007.
-
(2007)
Molecular Systems Biology
, vol.3
, Issue.1
-
-
Chuang, H.-Y.1
Lee, E.2
Liu, Y.-T.3
Lee, D.4
Ideker, T.5
-
96
-
-
11244306358
-
Discovering statistically significant biclusters in gene expression data
-
Edmonton, Canada, July
-
A. Tanay, R. Sharan, and R. Shamir, "Discovering statistically significant biclusters in gene expression data, " in Proceedings of the 10th International Conference on Intelligent Systems for Molecular Biology (ISMB '02), pp. 136-144, Edmonton, Canada, July 2002.
-
(2002)
Proceedings of the 10th International Conference on Intelligent Systems for Molecular Biology (ISMB ' 02)
, pp. 136-144
-
-
Tanay, A.1
Sharan, R.2
Shamir, R.3
-
97
-
-
42649140560
-
Network-constrained regularization and variable selection for analysis of genomic data
-
C. Li and H. Li, "Network-constrained regularization and variable selection for analysis of genomic data, " Bioinformatics, vol. 24, no. 9, pp. 1175-1182, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.9
, pp. 1175-1182
-
-
Li, C.1
Li, H.2
-
98
-
-
33847162049
-
Classification of microarray data using gene networks
-
article 35
-
F. Rapaport, A. Zinovyev, M.Dutreix, E. Barillot, and J.-P. Vert, "Classification of microarray data using gene networks, " BMC Bioinformatics, vol. 8, article 35, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Rapaport, F.1
Zinovyev, A.2
Dutreix, M.3
Barillot, E.4
Vert, J.-P.5
-
99
-
-
84896378977
-
Pathway-basedfeature selection algorithm for cancer microarray data
-
Article ID 532989
-
N. Bandyopadhyay, T. Kahveci, S. Goodison, Y. Sun, and S. Ranka, "Pathway-basedfeature selection algorithm for cancer microarray data, " Advances in Bioinformatics, vol. 2009, Article ID 532989, 16 pages, 2009.
-
(2009)
Advances in Bioinformatics
, vol.2009
, pp. 16
-
-
Bandyopadhyay, N.1
Kahveci, T.2
Goodison, S.3
Sun, Y.4
Ranka, S.5
|