메뉴 건너뛰기




Volumn 2015, Issue , 2015, Pages

A review of feature selection and feature extraction methods applied on microarray data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84932642625     PISSN: 16878027     EISSN: 16878035     Source Type: Journal    
DOI: 10.1155/2015/198363     Document Type: Article
Times cited : (774)

References (99)
  • 2
    • 47649102470 scopus 로고    scopus 로고
    • Chapter 1: Feature Selection for Genomic and Proteomic Data Mining, JohnWiley & Sons, Hoboken, NJ, USA
    • S. Y. Kung andM.W.Mak, Machine Learning in Bioinformatics, Chapter 1: Feature Selection for Genomic and Proteomic Data Mining, JohnWiley & Sons, Hoboken, NJ, USA, 2009.
    • (2009) Machine Learning in Bioinformatics
    • Kung, S.Y.1    Mak, M.W.2
  • 3
    • 0003585297 scopus 로고    scopus 로고
    • Morgan Kaufmann Publishers, San Francisco, Calif, USA
    • J. Han, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, San Francisco, Calif, USA, 2005.
    • (2005) Data Mining: Concepts and Techniques
    • Han, J.1
  • 5
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. Attribute noise: A quantitative study of their impacts
    • X. Zhu and X.Wu, "Class noise vs. attribute noise: a quantitative study of their impacts, " Artificial Intelligence Review, vol. 22, no. 3, pp. 177-210, 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3 , pp. 177-210
    • Zhu, X.1    Wu, X.2
  • 6
    • 84861648384 scopus 로고    scopus 로고
    • Global burden of cancers attributable to infections in2008: A reviewandsynthetic analysis
    • C. de Martel, J. Ferlay, S. Franceschi et al., "Global burden of cancers attributable to infections in2008: a reviewandsynthetic analysis, " The Lancet Oncology, vol. 13, no. 6, pp. 607-615, 2012.
    • (2012) The Lancet Oncology , vol.13 , Issue.6 , pp. 607-615
    • De Martel, C.1    Ferlay, J.2    Franceschi, S.3
  • 7
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A. L. Blum and R. L. Rivest, "Training a 3-node neural network is NP-complete, " Neural Networks, vol. 5, no. 1, pp. 117-127, 1992.
    • (1992) Neural Networks , vol.5 , Issue.1 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 9
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics, " Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 10
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. L. Blum and P. Langley, "Selection of relevant features and examples in machine learning, " Artificial Intelligence, vol. 97, no. 1-2, pp. 245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 11
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid for feature selection
    • Morgan Kaufmann Publishers, San Francisco, Calif, USA
    • S. Das, "Filters, wrappers and a boosting-based hybrid for feature selection, " in Proceedings of the 18th International Conference on Machine Learning (ICML '01), pp. 74-81, Morgan Kaufmann Publishers, San Francisco, Calif, USA, 2001.
    • (2001) Proceedings of the 18th International Conference on Machine Learning (ICML ' 01) , pp. 74-81
    • Das, S.1
  • 13
    • 0036372855 scopus 로고    scopus 로고
    • New feature subset selection procedures for classification of expression profiles
    • T. Band I. Jonassen, "New feature subset selection procedures for classification of expression profiles, " Genome biology, vol. 3, no. 4, 2002.
    • (2002) Genome Biology , vol.3 , Issue.4
    • Band, T.1    Jonassen, I.2
  • 14
    • 33745092378 scopus 로고    scopus 로고
    • Correction: Multiclass classification of microarray data with repeated measurements: Application to cancer
    • K. Yeung and R. Bumgarner, "Correction: multiclass classification of microarray data with repeated measurements: application to cancer, " Genome Biology, vol. 6, no. 13, p. 405, 2005.
    • (2005) Genome Biology , vol.6 , Issue.13 , pp. 405
    • Yeung, K.1    Bumgarner, R.2
  • 15
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • IEEE Computer Society, Washington, DC, USA, August
    • C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene expression data, " in Proceedings of the IEEE Bioinformatics Conference (CSB '03), pp. 523-528, IEEE Computer Society, Washington, DC, USA, August 2003.
    • (2003) Proceedings of the IEEE Bioinformatics Conference (CSB '03) , pp. 523-528
    • Ding, C.1    Peng, H.2
  • 16
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • article 76
    • X. Liu, A. Krishnan, and A. Mondry, "An entropy-based gene selection method for cancer classification using microarray data, " BMC Bioinformatics, vol. 6, article 76, 2005.
    • (2005) BMC Bioinformatics , vol.6
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 17
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and nu-meric class machine learning
    • Morgan Kaufmann, San Francisco, Calif, USA
    • M. A.Hall, "Correlation-based feature selection for discrete and nu-meric class machine learning, " in Proceedings of the 17th International Conference on Machine Learning (ICML '00), pp. 359-366, Morgan Kaufmann, San Francisco, Calif, USA, 2000.
    • (2000) Proceedings of the 17th International Conference on Machine Learning (ICML ' 00) , pp. 359-366
    • Hall, M.A.1
  • 18
    • 12444320350 scopus 로고    scopus 로고
    • Gene selection from microarray data for cancer classification-A machine learning approach
    • Y. Wang, I. V. Tetko, M. A. Hall et al., "Gene selection from microarray data for cancer classification-a machine learning approach, " Computational Biology and Chemistry, vol. 29, no. 1, pp. 37-46, 2005.
    • (2005) Computational Biology and Chemistry , vol.29 , Issue.1 , pp. 37-46
    • Wang, Y.1    Tetko, I.V.2    Hall, M.A.3
  • 20
    • 17444436178 scopus 로고    scopus 로고
    • Biological detection of low radiation doses by combining results of two microarray analysis methods
    • article e12
    • G. Mercier, N. Berthault, J. Mary et al., "Biological detection of low radiation doses by combining results of two microarray analysis methods, " Nucleic Acids Research, vol. 32, no. 1, article e12, 2004.
    • (2004) Nucleic Acids Research , vol.32 , Issue.1
    • Mercier, G.1    Berthault, N.2    Mary, J.3
  • 21
    • 14044270137 scopus 로고    scopus 로고
    • Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data
    • IEEE Computer Society, August
    • Y. Wang and F. Makedon, "Application of relief-F feature filtering algorithm to selecting informative genes for cancer classification using microarray data, " in Proceedings of IEEE Computational Systems Bioinformatics Conference (CSB '04), pp. 497-498, IEEE Computer Society, August 2004.
    • (2004) Proceedings of IEEE Computational Systems Bioinformatics Conference (CSB '04) , pp. 497-498
    • Wang, Y.1    Makedon, F.2
  • 22
    • 3042679216 scopus 로고    scopus 로고
    • Multivariate selection of genetic markers in diagnostic classification
    • G. Weber, S. Vinterbo, and L. Ohno-Machado, "Multivariate selection of genetic markers in diagnostic classification, " Artificial Intelligence in Medicine, vol. 31, no. 2, pp. 155-167, 2004.
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.2 , pp. 155-167
    • Weber, G.1    Vinterbo, S.2    Ohno-Machado, L.3
  • 23
    • 0028547556 scopus 로고
    • Floating search methods in feature selection
    • P. Pudil, J. Novovicov, and J. Kittler, "Floating search methods in feature selection, " Pattern Recognition Letters, vol. 15, no. 11, pp. 1119-1125, 1994.
    • (1994) Pattern Recognition Letters , vol.15 , Issue.11 , pp. 1119-1125
    • Pudil, P.1    Novovicov, J.2    Kittler, J.3
  • 25
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O.Chapelle, V. Vapnik, O.Bousquet, andS.Mukherjee, "Choosing multiple parameters for support vector machines, " Machine Learning, vol. 46, no. 1-3, pp. 131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 26
    • 77949506233 scopus 로고    scopus 로고
    • Feature selection and classification of MAQC-II breast cancer and multiplemyelomamicroarray gene expression data
    • Article ID e8250
    • Q.Liu, A.H. Sung, Z. Chen, J.Liu, X.Huang, andY. Deng, "Feature selection and classification of MAQC-II breast cancer and multiplemyelomamicroarray gene expression data, " PLoSONE, vol. 4, no. 12, Article ID e8250, 2009.
    • (2009) PLoSONE , vol.4 , Issue.12
    • Liu, Q.1    Sung, A.H.2    Chen, Z.3    Liu, J.4    Huang, X.5    Deng, Y.6
  • 27
    • 33645157313 scopus 로고    scopus 로고
    • Gene selection algorithms for microarray data based on least squares support vector machine
    • article 95
    • E. K. Tang, P. N. Suganthan, and X. Yao, "Gene selection algorithms for microarray data based on least squares support vector machine, " BMC Bioinformatics, vol. 7, article 95, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 28
    • 84892610864 scopus 로고    scopus 로고
    • Analyzing kernel matrices for the identification of differentially expressed genes
    • Article ID e81683
    • X.-L. Xia, H. Xing, and X. Liu, "Analyzing kernel matrices for the identification of differentially expressed genes, " PLoS ONE, vol. 8, no. 12, Article ID e81683, 2013.
    • (2013) PLoS ONE , vol.8 , Issue.12
    • Xia, X.-L.1    Xing, H.2    Liu, X.3
  • 30
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines, " Machine Learning, vol. 46, no. 1-3, pp. 389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 31
    • 84255194463 scopus 로고    scopus 로고
    • Gene selection and classification for cancer microarray data based on machine learning and similarity measures
    • article S1
    • Q. Liu, A. H. Sung, Z. Chen et al., "Gene selection and classification for cancer microarray data based on machine learning and similarity measures, " BMC Genomics, vol. 12, supplement 5, article S1, 2011.
    • (2011) BMC Genomics , vol.12
    • Liu, Q.1    Sung, A.H.2    Chen, Z.3
  • 33
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • article 148
    • T. Jirapech-Umpai and S. Aitken, "Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes, " BMC Bioinformatics, vol. 6, article 148, 2005.
    • (2005) BMC Bioinformatics , vol.6
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 34
    • 78349264279 scopus 로고    scopus 로고
    • Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
    • article 567
    • C. Bartenhagen, H.-U. Klein, C. Ruckert, X. Jiang, and M. Dugas, "Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data, " BMC Bioinformatics, vol. 11, no. 1, article 567, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1
    • Bartenhagen, C.1    Klein, H.-U.2    Ruckert, C.3    Jiang, X.4    Dugas, M.5
  • 35
    • 33748416594 scopus 로고    scopus 로고
    • Incremental wrapper-based gene selection from microarray data for cancer classification
    • R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz, "Incremental wrapper-based gene selection from microarray data for cancer classification, " Pattern Recognition, vol. 39, no. 12, pp. 2383-2392, 2006.
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2383-2392
    • Ruiz, R.1    Riquelme, J.C.2    Aguilar-Ruiz, J.S.3
  • 36
    • 57049136560 scopus 로고    scopus 로고
    • Gene selection for microarray data by a LDA-based genetic algorithm
    • Melbourne, Australia, October 15-17, 2008, M. Chetty, A. Ngom, and S. Ahmad, Eds., of Lecture Notes in Computer Science, Springer, Berlin, Germany, 2008
    • E. B. Huerta, B. Duval, and J.-K. Hao, "Gene selection for microarray data by a LDA-based genetic algorithm, " in Pattern Recognition in Bioinformatics: Proceedings of the 3rd IAPR International Conference, PRIB 2008, Melbourne, Australia, October 15-17, 2008, M. Chetty, A. Ngom, and S. Ahmad, Eds., vol. 5265 of Lecture Notes in Computer Science, pp. 250-261, Springer, Berlin, Germany, 2008.
    • Pattern Recognition in Bioinformatics: Proceedings of the 3rd IAPR International Conference, PRIB 2008 , vol.5265 , pp. 250-261
    • Huerta, E.B.1    Duval, B.2    Hao, J.-K.3
  • 38
    • 84863834971 scopus 로고    scopus 로고
    • GA-SVM wrapper approach for gene ranking and classification using expressions of very few genes
    • N. Revathy and R. Balasubramanian, "GA-SVM wrapper approach for gene ranking and classification using expressions of very few genes, " Journal of Theoretical and Applied Information Technology, vol. 40, no. 2, pp. 113-119, 2012.
    • (2012) Journal of Theoretical and Applied Information Technology , vol.40 , Issue.2 , pp. 113-119
    • Revathy, N.1    Balasubramanian, R.2
  • 39
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • J. C. Dunn, "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters, " Journal of Cybernetics, vol. 3, no. 3, pp. 32-57, 1973.
    • (1973) Journal of Cybernetics , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 41
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • article 3
    • R. Dz-Uriarte and S. Alvarez de Andrs, "Gene selection and classification of microarray data using random forest, " BMC Bioinformatics, vol. 7, article 3, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Dz-Uriarte, R.1    De Andrs, S.A.2
  • 43
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • S. Maldonado, R. Weber, and J. Basak, "Simultaneous feature selection and classification using kernel-penalized support vector machines, " Information Sciences, vol. 181, no. 1, pp. 115-128, 2011.
    • (2011) Information Sciences , vol.181 , Issue.1 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 45
    • 85030413794 scopus 로고    scopus 로고
    • Development of twostage SVM-RFE gene selection strategy for microarray expression data analysis
    • Y. Tang, Y.-Q. Zhang, and Z. Huang, "Development of twostage SVM-RFE gene selection strategy for microarray expression data analysis, " IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 4, no. 3, pp. 365-381, 2007.
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Zhang, Y.-Q.2    Huang, Z.3
  • 46
    • 33646377650 scopus 로고    scopus 로고
    • Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
    • article 197
    • X. Zhang, X. Lu, Q. Shi et al., "Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data, " BMC Bioinformatics, vol. 7, article 197, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Zhang, X.1    Lu, X.2    Shi, Q.3
  • 48
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclusteringmethods for gene expression data
    • A. Preli, S. Bleuler, P. Zimmermann et al., "A systematic comparison and evaluation of biclusteringmethods for gene expression data, " Bioinformatics, vol. 22, no. 9, pp. 1122-1129, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.9 , pp. 1122-1129
    • Preli, A.1    Bleuler, S.2    Zimmermann, P.3
  • 49
    • 33746489367 scopus 로고    scopus 로고
    • An assessment of recently published gene expression data analyses: Reporting experimental design and statistical factors
    • article 27
    • P. Jafari and F. Azuaje, "An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors, " BMC Medical Informatics and Decision Making, vol. 6, no. 1, article 27, 2006.
    • (2006) BMC Medical Informatics and Decision Making , vol.6 , Issue.1
    • Jafari, P.1    Azuaje, F.2
  • 50
    • 0004060921 scopus 로고    scopus 로고
    • Correlation-based feature selection for machine learning
    • M. A. Hall, "Correlation-based feature selection for machine learning, " Tech. Rep., 1998.
    • (1998) Tech. Rep
    • Hall, M.A.1
  • 51
    • 7444220224 scopus 로고    scopus 로고
    • Feature selection by Bayesian networks
    • A. Y. Tawfik and S. D. Goodwin, Eds, of Lecture Notes in Computer Science Springer, Berlin, Germany
    • J.Hruschka, R. Estevam, E. R. Hruschka, and N. F. F. Ebecken, "Feature selection by Bayesian networks, " in Advances in Artificial Intelligence, A. Y. Tawfik and S. D. Goodwin, Eds., vol. 3060 of Lecture Notes in Computer Science, pp. 370-379, Springer, Berlin, Germany, 2004.
    • (2004) Advances in Artificial Intelligence , vol.3060 , pp. 370-379
    • Hruschka, J.1    Estevam, R.2    Hruschka, E.R.3    Ebecken, N.F.F.4
  • 53
    • 75149178749 scopus 로고    scopus 로고
    • Amulti-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data
    • article S5
    • P.Yang, B. B. Zhou, Z. Zhang, and A. Y. Zomaya, "Amulti-filter enhanced genetic ensemble system for gene selection and sample classification of microarray data, " BMC Bioinformatics, vol. 11, supplement 1, article S5, 2010.
    • (2010) BMC Bioinformatics , vol.11
    • Yang, P.1    Zhou, B.B.2    Zhang, Z.3    Zomaya, A.Y.4
  • 54
    • 0037245772 scopus 로고    scopus 로고
    • Genetic algorithms applied tomulti-class prediction for the analysis of gene expression data
    • C. H.Ooi and P. Tan, "Genetic algorithms applied tomulti-class prediction for the analysis of gene expression data, " Bioinformatics, vol. 19, no. 1, pp. 37-44, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 37-44
    • Ooi, C.H.1    Tan, P.2
  • 55
    • 0011691468 scopus 로고
    • Sequential search: A method for solving constrained optimization problems
    • H. Glass and L. Cooper, "Sequential search: a method for solving constrained optimization problems, " Journal of the ACM, vol. 12, no. 1, pp. 71-82, 1965.
    • (1965) Journal of the ACM , vol.12 , Issue.1 , pp. 71-82
    • Glass, H.1    Cooper, L.2
  • 56
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • article 81
    • H. Jiang, Y. Deng, H.-S. Chen et al., "Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes, " BMC Bioinformatics, vol. 5, article 81, 2004.
    • (2004) BMC Bioinformatics , vol.5
    • Jiang, H.1    Deng, Y.2    Chen, H.-S.3
  • 57
    • 33947425580 scopus 로고    scopus 로고
    • Supervised group Lasso with applications to microarray data analysis
    • article 60
    • S. Ma, X. Song, and J. Huang, "Supervised group Lasso with applications to microarray data analysis, " BMC Bioinformatics, vol. 8, article 60, 2007.
    • (2007) BMC Bioinformatics , vol.8
    • Ma, S.1    Song, X.2    Huang, J.3
  • 59
    • 46049100989 scopus 로고    scopus 로고
    • Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data
    • article 267
    • S. Jonnalagadda and R. Srinivasan, "Principal components analysis based methodology to identify differentially expressed genes in time-course microarray data, "BMC Bioinformatics, vol. 9, article 267, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Jonnalagadda, S.1    Srinivasan, R.2
  • 60
    • 0036372382 scopus 로고    scopus 로고
    • Permutation-validated principal components analysis of microarray data
    • J. Landgrebe, W. Wurst, and G. Welzl, "Permutation-validated principal components analysis of microarray data, " Genome Biology, vol. 3, no. 4, 2002.
    • (2002) Genome Biology , vol.3 , Issue.4
    • Landgrebe, J.1    Wurst, W.2    Welzl, G.3
  • 61
    • 0036069214 scopus 로고    scopus 로고
    • Interactive exploration of microarray gene expression patterns in a reduced dimensional space
    • J.Misra, W. Schmitt, D.Hwang et al., "Interactive exploration of microarray gene expression patterns in a reduced dimensional space, " Genome Research, vol. 12, no. 7, pp. 1112-1120, 2002.
    • (2002) Genome Research , vol.12 , Issue.7 , pp. 1112-1120
    • Misra, J.1    Schmitt, W.2    Hwang, D.3
  • 62
    • 77955787591 scopus 로고    scopus 로고
    • Penalized principal component analysis of microarray data
    • F. Masulli, L. E. Peterson, and R. Tagliaferri, Eds of Lecture Notes in Computer Science Springer, Berlin, Germany
    • V. Nikulin and G. J. McLachlan, "Penalized principal component analysis of microarray data, " in Computational Intelligence Methods for Bioinformatics and Biostatistics, F. Masulli, L. E. Peterson, and R. Tagliaferri, Eds., vol. 6160 of Lecture Notes in Computer Science, pp. 82-96, Springer, Berlin, Germany, 2009.
    • (2009) Computational Intelligence Methods for Bioinformatics and Biostatistics , vol.6160 , pp. 82-96
    • Nikulin, V.1    McLachlan, G.J.2
  • 64
    • 21244444543 scopus 로고    scopus 로고
    • Gene selection for microarray data analysis using principal component analysis
    • A.Wang and E. A. Gehan, "Gene selection for microarray data analysis using principal component analysis, " Statistics inMedicine, vol. 24, no. 13, pp. 2069-2087, 2005.
    • (2005) Statistics InMedicine , vol.24 , Issue.13 , pp. 2069-2087
    • Wang, A.1    Gehan, E.A.2
  • 66
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • E. Bair and R. Tibshirani, "Semi-supervised methods to predict patient survival from gene expression data, " PLoS Biology, vol. 2, pp. 511-522, 2004.
    • (2004) PLoS Biology , vol.2 , pp. 511-522
    • Bair, E.1    Tibshirani, R.2
  • 67
    • 0034568109 scopus 로고    scopus 로고
    • Gene shaving as a method for identifying distinct sets of genes with similar expression patterns
    • T. Hastie, R. Tibshirani, M. B. Eisen et al., "'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns, " Genome Biology, vol. 1, no. 2, pp. 1-21, 2000.
    • (2000) Genome Biology , vol.1 , Issue.2 , pp. 1-21
    • Hastie, T.1    Tibshirani, R.2    Eisen, M.B.3
  • 69
    • 42549170683 scopus 로고    scopus 로고
    • Multidimensional scaling for large genomic data sets
    • article 179
    • J. Tzeng, H. Lu, and W.-H. Li, "Multidimensional scaling for large genomic data sets, " BMC Bioinformatics, vol. 9, article 179, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Tzeng, J.1    Lu, H.2    Li, W.-H.3
  • 71
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. B. Tenenbaum, V. de Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction, " Science, vol. 290, no. 5500, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 72
    • 0037016775 scopus 로고    scopus 로고
    • The isomap algorithm and topological stability
    • M. Balasubramanian and E. L. Schwartz, "The isomap algorithm and topological stability, " Science, vol. 295, no. 5552, p. 7, 2002.
    • (2002) Science , vol.295 , Issue.5552 , pp. 7
    • Balasubramanian, M.1    Schwartz, E.L.2
  • 73
    • 80054968486 scopus 로고    scopus 로고
    • An effective double-bounded tree-connected Isomap algorithm for microarray data classification
    • C. Orsenigo and C. Vercellis, "An effective double-bounded tree-connected Isomap algorithm for microarray data classification, " Pattern Recognition Letters, vol. 33, no. 1, pp. 9-16, 2012.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.1 , pp. 9-16
    • Orsenigo, C.1    Vercellis, C.2
  • 74
    • 25444512607 scopus 로고    scopus 로고
    • Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm
    • article 195
    • K. Dawson, R. L. Rodriguez, andW. Malyj, "Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm, " BMC Bioinformatics, vol. 6, article 195, 2005.
    • (2005) BMC Bioinformatics , vol.6
    • Dawson, K.1    Rodriguez, R.L.2    Malyj, W.3
  • 76
    • 81355144460 scopus 로고    scopus 로고
    • Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development
    • article S3
    • M. Ehler, V. N. Rajapakse, B. R. Zeeberg et al., "Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development, " BMC Proceedings, vol. 5, no. 2, article S3, 2011.
    • (2011) BMC Proceedings , vol.5 , Issue.2
    • Ehler, M.1    Rajapakse, V.N.2    Zeeberg, B.R.3
  • 78
    • 27744594238 scopus 로고    scopus 로고
    • Gene expression data classification with kernel principal component analysis
    • Z. Liu, D. Chen, and H. Bensmail, "Gene expression data classification with kernel principal component analysis, " Journal of Biomedicine and Biotechnology, vol. 2005, no. 2, pp. 155-159, 2005.
    • (2005) Journal of Biomedicine and Biotechnology , vol.2005 , Issue.2 , pp. 155-159
    • Liu, Z.1    Chen, D.2    Bensmail, H.3
  • 79
    • 84925230881 scopus 로고    scopus 로고
    • Kernel-PCA data integration with enhanced interpretability
    • F. Reverter, E. Vegas, and J. M. Oller, "Kernel-PCA data integration with enhanced interpretability, " BMC Systems Biology, vol. 8, supplement 2, p. S6, 2014.
    • (2014) BMC Systems Biology , vol.8 , pp. S6
    • Reverter, F.1    Vegas, E.2    Oller, J.M.3
  • 81
    • 0012940569 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • MIT Press, Cambridge, Mass, USA
    • T. Kohonen, "Self-organized formation of topologically correct feature maps, " in Neurocomputing: Foundations of Research, pp. 509-521, MIT Press, Cambridge, Mass, USA, 1988.
    • (1988) Neurocomputing: Foundations of Research , pp. 509-521
    • Kohonen, T.1
  • 84
    • 78649334862 scopus 로고    scopus 로고
    • Independent component analysis: Mining microarray data for fundamental human gene expression modules
    • J.M. Engreitz, B. J. Daigle Jr., J. J. Marshall, and R. B. Altman, "Independent component analysis: mining microarray data for fundamental human gene expression modules, " Journal of Biomedical Informatics, vol. 43, no. 6, pp. 932-944, 2010.
    • (2010) Journal of Biomedical Informatics , vol.43 , Issue.6 , pp. 932-944
    • Engreitz, J.M.1    Daigle, B.J.2    Marshall, J.J.3    Altman, R.B.4
  • 85
    • 1542473171 scopus 로고    scopus 로고
    • Application of independent component analysis to microarrays
    • article R76
    • S.-I. Lee and S. Batzoglou, "Application of independent component analysis to microarrays, " Genome Biology, vol. 4, no. 11, article R76, 2003.
    • (2003) Genome Biology , vol.4 , Issue.11
    • Lee, S.-I.1    Batzoglou, S.2
  • 86
    • 0037381038 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • L. J. Cao, K. S. Chua, W. K. Chong, H. P. Lee, andQ.M.Gu, "A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine, " Neurocomputing, vol. 55, no. 1-2, pp. 321-336, 2003.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 88
    • 13444283846 scopus 로고    scopus 로고
    • Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae
    • Y. Chen and D. Xu, "Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae, "Nucleic Acids Research, vol. 32, no. 21, pp. 6414-6424, 2004.
    • (2004) Nucleic Acids Research , vol.32 , Issue.21 , pp. 6414-6424
    • Chen, Y.1    Xu, D.2
  • 91
    • 3142749026 scopus 로고    scopus 로고
    • A knowledge-based clustering algorithm driven by gene ontology
    • J. Cheng, M. Cline, J. Martin et al., "A knowledge-based clustering algorithm driven by gene ontology, " Journal of Biopharmaceutical Statistics, vol. 14, no. 3, pp. 687-700, 2004.
    • (2004) Journal of Biopharmaceutical Statistics , vol.14 , Issue.3 , pp. 687-700
    • Cheng, J.1    Cline, M.2    Martin, J.3
  • 92
    • 59649124237 scopus 로고    scopus 로고
    • Integrating biological knowledge with gene expression profiles for survival prediction of cancer
    • X. Chen and L. Wang, "Integrating biological knowledge with gene expression profiles for survival prediction of cancer, " Journal of Computational Biology, vol. 16, no. 2, pp. 265-278, 2009.
    • (2009) Journal of Computational Biology , vol.16 , Issue.2 , pp. 265-278
    • Chen, X.1    Wang, L.2
  • 93
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • D. Huang and W. Pan, "Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data, " Bioinformatics, vol. 22, no. 10, pp. 1259-1268, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1259-1268
    • Huang, D.1    Pan, W.2
  • 94
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors inmodel-based clustering of microarray gene expression data
    • W. Pan, "Incorporating gene functions as priors inmodel-based clustering of microarray gene expression data, " Bioinformatics, vol. 22, no. 7, pp. 795-801, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 795-801
    • Pan, W.1
  • 97
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • C. Li and H. Li, "Network-constrained regularization and variable selection for analysis of genomic data, " Bioinformatics, vol. 24, no. 9, pp. 1175-1182, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 99
    • 84896378977 scopus 로고    scopus 로고
    • Pathway-basedfeature selection algorithm for cancer microarray data
    • Article ID 532989
    • N. Bandyopadhyay, T. Kahveci, S. Goodison, Y. Sun, and S. Ranka, "Pathway-basedfeature selection algorithm for cancer microarray data, " Advances in Bioinformatics, vol. 2009, Article ID 532989, 16 pages, 2009.
    • (2009) Advances in Bioinformatics , vol.2009 , pp. 16
    • Bandyopadhyay, N.1    Kahveci, T.2    Goodison, S.3    Sun, Y.4    Ranka, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.