메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

DIFFERENTIALLY EXPRESSED GENE; DIMENSION REDUCTION TECHNIQUES; HIGH DIMENSIONAL DATA; LOCALLY LINEAR EMBEDDING; LOW-DIMENSIONAL REPRESENTATION; MICROARRAY GENE EXPRESSION DATA; SUPPORT VECTOR MACHINE CLASSIFICATION; THREE DIMENSIONAL SPACE;

EID: 78349264279     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-567     Document Type: Article
Times cited : (66)

References (58)
  • 1
    • 25444533045 scopus 로고    scopus 로고
    • Visualization methods for statistical analysis of microarray clusters
    • 10.1186/1471-2105-6-115, 1156867, 15890080
    • Hibbs MA, Dirksen NC, Li K, Troyanskaya OG. Visualization methods for statistical analysis of microarray clusters. BMC Bioinformatics 2005, 6:115. 10.1186/1471-2105-6-115, 1156867, 15890080.
    • (2005) BMC Bioinformatics , vol.6 , pp. 115
    • Hibbs, M.A.1    Dirksen, N.C.2    Li, K.3    Troyanskaya, O.G.4
  • 2
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • 10.1093/bioinformatics/17.9.763, 11590094
    • Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics 2001, 17(9):763-774. 10.1093/bioinformatics/17.9.763, 11590094.
    • (2001) Bioinformatics , vol.17 , Issue.9 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 4
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data
    • 10.1109/TPAMI.2009.149, 20489231
    • Baek J, McLachlan GJ, Flack LK. Mixtures of factor analyzers with common factor loadings: Applications to the clustering and visualization of high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence 2010, 32:1298-1309. 10.1109/TPAMI.2009.149, 20489231.
    • (2010) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.32 , pp. 1298-1309
    • Baek, J.1    McLachlan, G.J.2    Flack, L.K.3
  • 5
    • 0036884167 scopus 로고    scopus 로고
    • The use and analysis of microarray data
    • 10.1038/nrd961, 12461517
    • Butte A. The use and analysis of microarray data. Nature Reviews Drug Discovery 2002, 1(12):951-960. 10.1038/nrd961, 12461517.
    • (2002) Nature Reviews Drug Discovery , vol.1 , Issue.12 , pp. 951-960
    • Butte, A.1
  • 6
    • 0036069214 scopus 로고    scopus 로고
    • Interactive exploration of microarray gene expression patterns in a reduced dimensional space
    • 10.1101/gr.225302, 186614, 12097349
    • Misra J, Schmitt W, Hwang D, Hsiao LL, Gullans S, Stephanopoulos G, Stephanopoulos G. Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome research 2002, 12(7):1112-1120. 10.1101/gr.225302, 186614, 12097349.
    • (2002) Genome research , vol.12 , Issue.7 , pp. 1112-1120
    • Misra, J.1    Schmitt, W.2    Hwang, D.3    Hsiao, L.L.4    Gullans, S.5    Stephanopoulos, G.6    Stephanopoulos, G.7
  • 7
    • 34548572183 scopus 로고    scopus 로고
    • Visualization-based cancer microarray data classification analysis
    • 10.1093/bioinformatics/btm312, 17586552
    • Mramor M, Leban G, Demsar J, Zupan B. Visualization-based cancer microarray data classification analysis. Bioinformatics (Oxford, England) 2007, 23(16):2147-2154. 10.1093/bioinformatics/btm312, 17586552.
    • (2007) Bioinformatics (Oxford, England) , vol.23 , Issue.16 , pp. 2147-2154
    • Mramor, M.1    Leban, G.2    Demsar, J.3    Zupan, B.4
  • 8
    • 25444512607 scopus 로고    scopus 로고
    • Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm
    • 10.1186/1471-2105-6-195, 1189082, 16076401
    • Dawson K, Rodriguez RL, Malyj W. Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm. BMC Bioinformatics 2005, 6:195. 10.1186/1471-2105-6-195, 1189082, 16076401.
    • (2005) BMC Bioinformatics , vol.6 , pp. 195
    • Dawson, K.1    Rodriguez, R.L.2    Malyj, W.3
  • 9
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes
    • 10.1186/1471-2105-6-148, 1181625, 15958165
    • Umpai TJ, Aitken S. Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics 2005, 6:148. 10.1186/1471-2105-6-148, 1181625, 15958165.
    • (2005) BMC Bioinformatics , vol.6 , pp. 148
    • Umpai, T.J.1    Aitken, S.2
  • 10
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • 10.1093/bioinformatics/bth267, 15087314
    • Li T, Zhang C, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 2004, 20(15):2429-2437. 10.1093/bioinformatics/bth267, 15087314.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 11
    • 0042388208 scopus 로고    scopus 로고
    • RankGene: identification of diagnostic genes based on expression data
    • 10.1093/bioinformatics/btg179, 12912841
    • Su Y, Murali TM, Pavlovic V, Schaffer M, Kasif S. RankGene: identification of diagnostic genes based on expression data. Bioinformatics 2003, 19(12):1578-1579. 10.1093/bioinformatics/btg179, 12912841.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1578-1579
    • Su, Y.1    Murali, T.M.2    Pavlovic, V.3    Schaffer, M.4    Kasif, S.5
  • 13
    • 70349731768 scopus 로고    scopus 로고
    • The ordering of expression among a few genes can provide simple cancer biomarkers and signal BRCA1 mutations
    • 10.1186/1471-2105-10-256, 2745389, 19695104
    • Lin X, Afsari B, Marchionni L, Cope L, Parmigiani G, Naiman D, Geman D. The ordering of expression among a few genes can provide simple cancer biomarkers and signal BRCA1 mutations. BMC Bioinformatics 2009, 10:256. 10.1186/1471-2105-10-256, 2745389, 19695104.
    • (2009) BMC Bioinformatics , vol.10 , pp. 256
    • Lin, X.1    Afsari, B.2    Marchionni, L.3    Cope, L.4    Parmigiani, G.5    Naiman, D.6    Geman, D.7
  • 15
    • 27944476083 scopus 로고    scopus 로고
    • Feature dimension reduction for microarray data analysis using locally linear embedding
    • Chao S, Lihui C. Feature dimension reduction for microarray data analysis using locally linear embedding. In APBC 2004, 211-217.
    • (2004) In APBC , pp. 211-217
    • Chao, S.1    Lihui, C.2
  • 17
    • 60849135116 scopus 로고    scopus 로고
    • Integrative disease classification based on cross-platform microarray data
    • 10.1186/1471-2105-10-S1-S25, 2660303, 19154573
    • Liu CCC, Hu J, Kalakrishnan M, Huang H, Zhou XJJ. Integrative disease classification based on cross-platform microarray data. BMC Bioinformatics 2009, 10(Suppl 1):25. 10.1186/1471-2105-10-S1-S25, 2660303, 19154573.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1 , pp. 25
    • Liu, C.C.C.1    Hu, J.2    Kalakrishnan, M.3    Huang, H.4    Zhou, X.J.J.5
  • 18
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: assessing the role of nonlinearity and dimensionality reduction
    • 10.1093/bioinformatics/bth383, 15231531
    • Pochet N, De Smet F, Suykens JA, De Moor BL. Systematic benchmarking of microarray data classification: assessing the role of nonlinearity and dimensionality reduction. Bioinformatics 2004, 3185-3195. 10.1093/bioinformatics/bth383, 15231531.
    • (2004) Bioinformatics , pp. 3185-3195
    • Pochet, N.1    De Smet, F.2    Suykens, J.A.3    De Moor, B.L.4
  • 19
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • 10.1093/bioinformatics/18.1.39, 11836210
    • Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002, 18:39-50. 10.1093/bioinformatics/18.1.39, 11836210.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 22
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • 10.1093/bioinformatics/btg062, 12651713
    • Antoniadis A, Lambert-Lacroix S, Leblanc F. Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 2003, 19(5):563-570. 10.1093/bioinformatics/btg062, 12651713.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 24
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by Locally Linear Embedding
    • 10.1126/science.290.5500.2323, 11125150
    • Roweis ST, Saul LK. Nonlinear dimensionality reduction by Locally Linear Embedding. Science 2000, 290(5500):2323-2326. 10.1126/science.290.5500.2323, 11125150.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 27
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • 10.1126/science.290.5500.2319, 11125149
    • Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290(5500):2319-2323. 10.1126/science.290.5500.2319, 11125149.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 29
    • 0001710505 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • 498-520
    • Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 1933, 24:417-441,498-520.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 30
    • 34548463136 scopus 로고    scopus 로고
    • Principal Component Analysis
    • 2
    • Jolliffe IT. Principal Component Analysis. Springer 2002, 2.
    • (2002) Springer
    • Jolliffe, I.T.1
  • 32
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B, Smola A, Müller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10(5):1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 36
    • 33746476985 scopus 로고    scopus 로고
    • Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
    • Lafon S, Lee AB. Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. Pattern Analysis and Machine Intelligence, IEEE Transactions on 2006, 28(9):1393-1403.
    • (2006) Pattern Analysis and Machine Intelligence, IEEE Transactions on , vol.28 , Issue.9 , pp. 1393-1403
    • Lafon, S.1    Lee, A.B.2
  • 37
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of low dimensional manifolds
    • Saul LK, Roweis ST. Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research 2003, 4:119-155.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 38
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian Eigenmaps for dimensionality reduction and data representation
    • Belkin M, Niyogi P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comp 2003, 15(6):1373-1396.
    • (2003) Neural Comp , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 40
    • 0003798635 scopus 로고    scopus 로고
    • An introduction to Support Vector Machines and other kernel-based learning methods
    • Cambridge University Press, 1
    • Cristianini N, Shawe-Taylor J. An introduction to Support Vector Machines and other kernel-based learning methods. 2000, Cambridge University Press, 1.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 42
    • 67949110882 scopus 로고    scopus 로고
    • Clustering
    • Wiley-IEEE Press, illustrated
    • Xu R, Wunsch D. Clustering. 2008, Wiley-IEEE Press, illustrated.
    • (2008)
    • Xu, R.1    Wunsch, D.2
  • 43
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM, a library for support vector machines
    • [last accessed at 29th of Oct 2010]
    • Chang CC, Lin CJ. LIBSVM, a library for support vector machines. 2001, [last accessed at 29th of Oct 2010]., http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2001)
    • Chang, C.C.1    Lin, C.J.2
  • 44
    • 84874659696 scopus 로고    scopus 로고
    • Automatic model selection for kernel methods
    • [last accessed at 29th of Oct 2010]
    • Chapelle O. Automatic model selection for kernel methods. http://olivier.chapelle.cc/ams/ [last accessed at 29th of Oct 2010].
    • http://olivier.chapelle.cc/ams/
    • Chapelle, O.1
  • 45
    • 73649137648 scopus 로고    scopus 로고
    • Matlab toolbox for dimensionality reduction
    • [last accessed at 29th of Oct 2010]
    • van der Maaten LJP. Matlab toolbox for dimensionality reduction. [last accessed at 29th of Oct 2010]., http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
    • van der Maaten, L.J.P.1
  • 46
    • 84874646544 scopus 로고    scopus 로고
    • Matlab Isomap package
    • [last accessed at 29th of Oct 2010]
    • Tenenbaum JB. Matlab Isomap package. [last accessed at 29th of Oct 2010]., http://isomap.stanford.edu/
    • Tenenbaum, J.B.1
  • 47
    • 84874651848 scopus 로고    scopus 로고
    • Maximum Variance Unfolding
    • [last accessed at 29th of Oct 2010]
    • Weinberger KQ. Maximum Variance Unfolding. [last accessed at 29th of Oct 2010]., http://www.cse.wustl.edu/~kilian/code/code.html
    • Weinberger, K.Q.1
  • 48
    • 80055091440 scopus 로고    scopus 로고
    • The R Project for statistical computing
    • [last accessed at 29th of Oct 2010]
    • The R Project for statistical computing. [last accessed at 29th of Oct 2010]., http://www.r-project.org/
  • 49
    • 84874667780 scopus 로고    scopus 로고
    • RDRToolbox - A package for nonlinear dimension reduction with Isomap and LLE
    • [last accessed at 29th of Oct 2010]
    • RDRToolbox - A package for nonlinear dimension reduction with Isomap and LLE. [last accessed at 29th of Oct 2010]., http://www.bioconductor.org/help/bioc-views/release/bioc/html/RDRToolbox.html
  • 51
    • 58149240152 scopus 로고    scopus 로고
    • Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling
    • 10.3324/haematol.13299, 2625407, 18838472
    • Verhaak R, Wouters B, Erpelinck C, Abbas S, Beverloo H, Lugthart S, Löwenberg B, Delwel R, Valk P. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 2009, 94:131-134. 10.3324/haematol.13299, 2625407, 18838472.
    • (2009) Haematologica , vol.94 , pp. 131-134
    • Verhaak, R.1    Wouters, B.2    Erpelinck, C.3    Abbas, S.4    Beverloo, H.5    Lugthart, S.6    Löwenberg, B.7    Delwel, R.8    Valk, P.9
  • 52
    • 74049126063 scopus 로고    scopus 로고
    • Quantitative comparison of microarray experiments with published leukemia related gene expression signatures
    • 10.1186/1471-2105-10-422, 2803858, 20003504
    • Klein HU, Ruckert C, Kohlmann A, Bullinger L, Thiede C, Haferlach T, Dugas M. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures. BMC Bioinformatics 2009, 10:422. 10.1186/1471-2105-10-422, 2803858, 20003504.
    • (2009) BMC Bioinformatics , vol.10 , pp. 422
    • Klein, H.U.1    Ruckert, C.2    Kohlmann, A.3    Bullinger, L.4    Thiede, C.5    Haferlach, T.6    Dugas, M.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.