메뉴 건너뛰기




Volumn 32, Issue 21, 2004, Pages 6414-6424

Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL CELL; ARABIDOPSIS; ARTICLE; BAYES THEOREM; BIOINFORMATICS; CAENORHABDITIS ELEGANS; CELLULAR DISTRIBUTION; CONTROLLED STUDY; DROSOPHILA MELANOGASTER; GENE EXPRESSION PROFILING; GENE SEQUENCE; GENETIC ANALYSIS; HIGH THROUGHPUT SCREENING; MOLECULAR BIOLOGY; NONHUMAN; PREDICTION; PRIORITY JOURNAL; PROBABILITY; PROTEIN ANALYSIS; PROTEIN FUNCTION; PROTEIN MICROARRAY; QUANTITATIVE ANALYSIS; SACCHAROMYCES CEREVISIAE; SIMULATION; STATISTICAL ANALYSIS; TWO HYBRID SYSTEM;

EID: 13444283846     PISSN: 03051048     EISSN: None     Source Type: Journal    
DOI: 10.1093/nar/gkh978     Document Type: Article
Times cited : (98)

References (37)
  • 2
    • 0023989064 scopus 로고    scopus 로고
    • Improved tools for biological sequence comparison
    • Pearson,W. and Lipman,D. (1998) Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. USA, 85, 2444-2448.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.85 , pp. 2444-2448
    • Pearson, W.1    Lipman, D.2
  • 4
    • 0033523854 scopus 로고    scopus 로고
    • A combined algorithm for genome-wide prediction of protein function
    • Marcotte,E., Pellegrini,M., Thompson,M., Yeates,T. and Eisenberg,D. (1999) A combined algorithm for genome-wide prediction of protein function. Nature, 402, 83-86.
    • (1999) Nature , vol.402 , pp. 83-86
    • Marcotte, E.1    Pellegrini, M.2    Thompson, M.3    Yeates, T.4    Eisenberg, D.5
  • 6
    • 0025940629 scopus 로고
    • The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest
    • Chien,C., Bartel,P., Sternglanz,R. and Fields,S. (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc. Natl Acad. Sci. USA, 88, 9578-9582.
    • (1991) Proc. Natl. Acad. Sci. USA , vol.88 , pp. 9578-9582
    • Chien, C.1    Bartel, P.2    Sternglanz, R.3    Fields, S.4
  • 9
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen,M., Spellman,P., Brown,P. and Bostein,D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA, 95, 14863-14868.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Bostein, D.4
  • 11
    • 0033669189 scopus 로고    scopus 로고
    • A network of protein-protein interactions in yeast
    • Schwikowski,B., Uetz,P. and Fields,S. (2000) A network of protein-protein interactions in yeast. Nat. Biotechnol., 18, 1257-1261.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 1257-1261
    • Schwikowski, B.1    Uetz, P.2    Fields, S.3
  • 12
    • 0035044077 scopus 로고    scopus 로고
    • Assessment of prediction accuracy of protein function from protein-protein interaction data
    • Hishigaki,H., Nakai,K., Ono,T., Tanigami,A. and Takagi,T. (2001) Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast, 18, 523-531.
    • (2001) Yeast , vol.18 , pp. 523-531
    • Hishigaki, H.1    Nakai, K.2    Ono, T.3    Tanigami, A.4    Takagi, T.5
  • 13
    • 6944251719 scopus 로고    scopus 로고
    • Predicting gene function in Saccharomyces cerevisiae
    • Clare,A. and King,R.D. (2003) Predicting gene function in Saccharomyces cerevisiae. Bioinformatics, 19, II42-II49.
    • (2003) Bioinformatics , vol.19
    • Clare, A.1    King, R.D.2
  • 15
    • 1542271409 scopus 로고    scopus 로고
    • Predicting protein function from protein/protein interaction data: A probabilistic approach
    • Letovsky,S. and Kasif,S. (2003) Predicting protein function from protein/protein interaction data: a probabilistic approach. Bioinformatics, 19, I197-I204.
    • (2003) Bioinformatics , vol.19
    • Letovsky, S.1    Kasif, S.2
  • 16
    • 0038492417 scopus 로고    scopus 로고
    • A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)
    • Troyanskaya,O., Dolinski,K., Owen,A., Altman,R. and Botstein,D. (2003) A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA, 100, 8348-8353.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 8348-8353
    • Troyanskaya, O.1    Dolinski, K.2    Owen, A.3    Altman, R.4    Botstein, D.5
  • 17
    • 0038135024 scopus 로고    scopus 로고
    • Computation analysis of high-throughput protein-protein interaction data
    • Chen,Y. and Xu,D. (2003) Computation analysis of high-throughput protein-protein interaction data. Curr. Protein Pept. Sci., 4, 159-181.
    • (2003) Curr. Protein Pept. Sci. , vol.4 , pp. 159-181
    • Chen, Y.1    Xu, D.2
  • 19
    • 0038699587 scopus 로고    scopus 로고
    • Global protein function prediction from protein-protein interaction networks
    • Vazquez,A., Flammini,A., Maritan,A. and Vespignani,A. (2003) Global protein function prediction from protein-protein interaction networks. Nat. Biotechnol., 21, 697-700.
    • (2003) Nat. Biotechnol. , vol.21 , pp. 697-700
    • Vazquez, A.1    Flammini, A.2    Maritan, A.3    Vespignani, A.4
  • 21
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • The Gene Ontology Consortium
    • The Gene Ontology Consortium (2000) Gene Ontology: tool for the unification of biology. Nature Genet., 25, 25-29.
    • (2000) Nature Genet. , vol.25 , pp. 25-29
  • 24
    • 0035836765 scopus 로고    scopus 로고
    • Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins
    • Ito,T., Tashiro,K., Muta,S., Ozawa,R., Chiba,T., Nishizawa,M., Yamamoto,K., Kuhara,S. and Sakaki,Y. (2001) Toward a protein-protein interaction map of the budding yeast: a comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Natl Acad. Sci. USA, 98, 4569-4574.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 4569-4574
    • Ito, T.1    Tashiro, K.2    Muta, S.3    Ozawa, R.4    Chiba, T.5    Nishizawa, M.6    Yamamoto, K.7    Kuhara, S.8    Sakaki, Y.9
  • 28
    • 0036443972 scopus 로고    scopus 로고
    • The constraints of protein-protein interactions place on sequence divergence
    • Teichmann,S.A. (2002) The constraints of protein-protein interactions place on sequence divergence. J. Mol. Biol., 324 399-407.
    • (2002) J. Mol. Biol. , vol.324 , pp. 399-407
    • Teichmann, S.A.1
  • 29
    • 85081437061 scopus 로고    scopus 로고
    • Genome-scale understanding protein dispensability through machine-learning analysis of high-throughput data
    • in press
    • Chen,Y. and Xu,D. (2004) Genome-scale understanding protein dispensability through machine-learning analysis of high-throughput data. Bioinformatics, in press.
    • (2004) Bioinformatics
    • Chen, Y.1    Xu, D.2
  • 31
    • 3042523388 scopus 로고    scopus 로고
    • Predicting protein complex membership using probabilistic network
    • Asthana,S., King,O.D., Gibbons,F.D. and Roth,F.P. (2004) Predicting protein complex membership using probabilistic network. Genome Res., 14, 1170-1175.
    • (2004) Genome Res. , vol.14 , pp. 1170-1175
    • Asthana, S.1    King, O.D.2    Gibbons, F.D.3    Roth, F.P.4
  • 35
    • 6344283102 scopus 로고    scopus 로고
    • Predicting subcellular localization via protein motif co-occurrence
    • Scott,M.S., Thomas,D.Y. and Hallett,M.T. (2004) Predicting subcellular localization via protein motif co-occurrence. Genome Res. 14, 1957-1966.
    • (2004) Genome Res. , vol.14 , pp. 1957-1966
    • Scott, M.S.1    Thomas, D.Y.2    Hallett, M.T.3
  • 36
    • 0001578518 scopus 로고
    • A learning algorithms for Boltzmann machines
    • Ackley,D.H., Hinton,G.E. and Sejnowski,T.J. (1985) A learning algorithms for Boltzmann machines. Cognit. Sci., 9, 147-169.
    • (1985) Cognit. Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 37
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Williams College, MA
    • Lafferty,J., McCallum,A. and Pereira,F. (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data, In International Conference on Machine Learning (ICML), Williams College, MA, pp. 282-289.
    • (2001) International Conference on Machine Learning (ICML) , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.