-
1
-
-
0038509036
-
Lipotoxicity: When tissues overeat
-
J.E. Schaffer Lipotoxicity: when tissues overeat Curr. Opin. Lipidol. 14 2003 281 287
-
(2003)
Curr. Opin. Lipidol.
, vol.14
, pp. 281-287
-
-
Schaffer, J.E.1
-
3
-
-
2342519703
-
USRDS: The United States renal data system
-
Anonymous
-
Anonymous USRDS: the United States renal data system Am. J. Kidney. Dis. 42 2003 1 230
-
(2003)
Am. J. Kidney. Dis.
, vol.42
, pp. 1-230
-
-
-
4
-
-
0002437244
-
Intercapillary Lesions in the Glomeruli of the Kidney
-
P. Kimmelstiel, and C. Wilson Intercapillary Lesions in the Glomeruli of the Kidney Am. J. Pathol. 12 1936 83 98 87
-
(1936)
Am. J. Pathol.
, vol.12
-
-
Kimmelstiel, P.1
Wilson, C.2
-
5
-
-
34948821093
-
Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet
-
S. Kume, T. Uzu, and S. Araki et al. Role of altered renal lipid metabolism in the development of renal injury induced by a high-fat diet J. Am. Soc. Nephrol. 18 2007 2715 2723
-
(2007)
J. Am. Soc. Nephrol.
, vol.18
, pp. 2715-2723
-
-
Kume, S.1
Uzu, T.2
Araki, S.3
-
6
-
-
23644438916
-
Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes
-
Z. Wang, T. Jiang, and J. Li et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes Diabetes 54 2005 2328 2335
-
(2005)
Diabetes
, vol.54
, pp. 2328-2335
-
-
Wang, Z.1
Jiang, T.2
Li, J.3
-
7
-
-
34948838912
-
Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy
-
T. Jiang, X.X. Wang, and P. Scherzer et al. Farnesoid X receptor modulates renal lipid metabolism, fibrosis, and diabetic nephropathy Diabetes 56 2007 2485 2493
-
(2007)
Diabetes
, vol.56
, pp. 2485-2493
-
-
Jiang, T.1
Wang, X.X.2
Scherzer, P.3
-
8
-
-
0020429608
-
Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease
-
J.F. Moorhead, M.K. Chan, and M. El-Nahas et al. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease Lancet 2 1982 1309 1311
-
(1982)
Lancet
, vol.2
, pp. 1309-1311
-
-
Moorhead, J.F.1
Chan, M.K.2
El-Nahas, M.3
-
9
-
-
0023890242
-
Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study
-
R.S. Balaban, and L.J. Mandel Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study Am. J. Physiol. 254 1988 F407 F416
-
(1988)
Am. J. Physiol.
, vol.254
, pp. F407-F416
-
-
Balaban, R.S.1
Mandel, L.J.2
-
10
-
-
17444447906
-
Stimulation of phosphate transport in the proximal tubule by metabolic substrates
-
S.R. Gullans, P.C. Brazy, and L.J. Mandel et al. Stimulation of phosphate transport in the proximal tubule by metabolic substrates Am. J. Physiol. 247 1984 F582 F587
-
(1984)
Am. J. Physiol.
, vol.247
, pp. F582-F587
-
-
Gullans, S.R.1
Brazy, P.C.2
Mandel, L.J.3
-
11
-
-
0023943402
-
Regulation of acetyl-coenzyme A carboxylase. I. Purification and properties of two forms of acetyl-coenzyme A carboxylase from rat liver
-
K.G. Thampy, and S.J. Wakil Regulation of acetyl-coenzyme A carboxylase. I. Purification and properties of two forms of acetyl-coenzyme A carboxylase from rat liver J. Biol. Chem. 263 1988 6447 6453
-
(1988)
J. Biol. Chem.
, vol.263
, pp. 6447-6453
-
-
Thampy, K.G.1
Wakil, S.J.2
-
12
-
-
0035970805
-
Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
-
L. Abu-Elheiga, M.M. Matzuk, and K.A. Abo-Hashema et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2 Science 291 2001 2613 2616
-
(2001)
Science
, vol.291
, pp. 2613-2616
-
-
Abu-Elheiga, L.1
Matzuk, M.M.2
Abo-Hashema, K.A.3
-
13
-
-
39849109338
-
Autophagy fights disease through cellular self-digestion
-
N. Mizushima, B. Levine, and A.M. Cuervo et al. Autophagy fights disease through cellular self-digestion Nature 451 2008 1069 1075
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
-
14
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
T. Hara, K. Nakamura, and M. Matsui et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice Nature 441 2006 885 889
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
-
15
-
-
84926183748
-
Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy
-
X. Wang, J. Liu, and J. Zhen et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy Kidney. Int. 86 2014 712 725
-
(2014)
Kidney. Int.
, vol.86
, pp. 712-725
-
-
Wang, X.1
Liu, J.2
Zhen, J.3
-
16
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
R. Singh, S. Kaushik, and Y. Wang et al. Autophagy regulates lipid metabolism Nature 458 2009 1131 1135
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
Kaushik, S.2
Wang, Y.3
-
17
-
-
73949124173
-
Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis
-
Y. Zhang, S. Goldman, and R. Baerga et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis Proc. Natl. Acad. Sci. U. S. A. 106 2009 19860 19865
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 19860-19865
-
-
Zhang, Y.1
Goldman, S.2
Baerga, R.3
-
18
-
-
84899426857
-
Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy
-
Y. Xu, J. Huang, and W. Xin et al. Lipid accumulation is ahead of epithelial-to-mesenchymal transition and therapeutic intervention by acetyl-CoA carboxylase 2 silence in diabetic nephropathy Metabolism 63 2014 716 726
-
(2014)
Metabolism
, vol.63
, pp. 716-726
-
-
Xu, Y.1
Huang, J.2
Xin, W.3
-
19
-
-
84862277244
-
Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells
-
M.J. Khan, M. Rizwan Alam, and M. Waldeck-Weiermair et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells J. Biol. Chem. 287 2012 21110 21120
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 21110-21120
-
-
Khan, M.J.1
Rizwan Alam, M.2
Waldeck-Weiermair, M.3
-
20
-
-
80053111340
-
Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen
-
H. Ning, G. Lin, and T.F. Lue et al. Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen Biochem. Biophys. Res. Commun. 413 2011 353 357
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.413
, pp. 353-357
-
-
Ning, H.1
Lin, G.2
Lue, T.F.3
-
21
-
-
64949194158
-
In vivo and in vitro effects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study
-
H. Jun, Z. Song, and W. Chen et al. In vivo and in vitro effects of SREBP-1 on diabetic renal tubular lipid accumulation and RNAi-mediated gene silencing study Histochem. Cell Biol. 131 2009 327 345
-
(2009)
Histochem. Cell Biol.
, vol.131
, pp. 327-345
-
-
Jun, H.1
Song, Z.2
Chen, W.3
-
22
-
-
0035149738
-
Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats
-
R.L. Dobbins, L.S. Szczepaniak, and B. Bentley et al. Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats Diabetes 50 2001 123 130
-
(2001)
Diabetes
, vol.50
, pp. 123-130
-
-
Dobbins, R.L.1
Szczepaniak, L.S.2
Bentley, B.3
-
23
-
-
0037643536
-
Effects of free fatty acids (FFA) on glucose metabolism: Significance for insulin resistance and type 2 diabetes
-
G. Boden Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes Exp. Clin. Endocrinol. Diabetes 111 2003 121 124
-
(2003)
Exp. Clin. Endocrinol. Diabetes
, vol.111
, pp. 121-124
-
-
Boden, G.1
-
24
-
-
84875910204
-
Activation of renin-angiotensin system is involved in dyslipidemia-mediated renal injuries in apolipoprotein e knockout mice and HK-2 cells
-
J. Ni, K.L. Ma, and C.X. Wang et al. Activation of renin-angiotensin system is involved in dyslipidemia-mediated renal injuries in apolipoprotein E knockout mice and HK-2 cells Lipids. Health. Dis. 12 2013 49
-
(2013)
Lipids. Health. Dis.
, vol.12
, pp. 49
-
-
Ni, J.1
Ma, K.L.2
Wang, C.X.3
-
25
-
-
77951464621
-
Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: Pathophysiological implications
-
M.J. Czaja Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: pathophysiological implications Am. J. Physiol. Cell Physiol. 298 2010 C973 C978
-
(2010)
Am. J. Physiol. Cell Physiol.
, vol.298
, pp. C973-C978
-
-
Czaja, M.J.1
-
26
-
-
77951581118
-
Role of the energy sensor AMP-activated protein kinase in renal physiology and disease
-
K.R. Hallows, P.F. Mount, and N.M. Pastor-Soler et al. Role of the energy sensor AMP-activated protein kinase in renal physiology and disease Am. J. Physiol. Ren. Physiol. 298 2010 F1067 F1077
-
(2010)
Am. J. Physiol. Ren. Physiol.
, vol.298
, pp. F1067-F1077
-
-
Hallows, K.R.1
Mount, P.F.2
Pastor-Soler, N.M.3
-
27
-
-
84898725533
-
Palmitic acid induces autophagy in hepatocytes via JNK2 activation
-
Q.Q. Tu, R.Y. Zheng, and J. Li et al. Palmitic acid induces autophagy in hepatocytes via JNK2 activation Acta. Pharmacol. Sin. 35 2014 504 512
-
(2014)
Acta. Pharmacol. Sin.
, vol.35
, pp. 504-512
-
-
Tu, Q.Q.1
Zheng, R.Y.2
Li, J.3
-
28
-
-
84887070613
-
Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions
-
K. Yamahara, S. Kume, and D. Koya et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions J. Am. Soc. Nephrol. 24 2013 1769 1781
-
(2013)
J. Am. Soc. Nephrol.
, vol.24
, pp. 1769-1781
-
-
Yamahara, K.1
Kume, S.2
Koya, D.3
-
29
-
-
84855996286
-
Autophagy guards against cisplatin-induced acute kidney injury
-
A. Takahashi, T. Kimura, and Y. Takabatake et al. Autophagy guards against cisplatin-induced acute kidney injury Am. J. Pathol. 180 2012 517 525
-
(2012)
Am. J. Pathol.
, vol.180
, pp. 517-525
-
-
Takahashi, A.1
Kimura, T.2
Takabatake, Y.3
-
30
-
-
78649901091
-
Alternative cell death mechanisms in development and beyond
-
J. Yuan, and G. Kroemer Alternative cell death mechanisms in development and beyond Genes. Dev. 24 2010 2592 2602
-
(2010)
Genes. Dev.
, vol.24
, pp. 2592-2602
-
-
Yuan, J.1
Kroemer, G.2
-
31
-
-
28544435485
-
Lysosomes and autophagy in cell death control
-
G. Kroemer, and M. Jaattela Lysosomes and autophagy in cell death control Nat. Rev. Cancer. 5 2005 886 897
-
(2005)
Nat. Rev. Cancer.
, vol.5
, pp. 886-897
-
-
Kroemer, G.1
Jaattela, M.2
-
32
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
J. Kim, M. Kundu, and B. Viollet et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 Nat. Cell Biol. 13 2011 132 141
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
Kundu, M.2
Viollet, B.3
-
33
-
-
84555195156
-
Nutrient sensing, autophagy, and diabetic nephropathy
-
S. Kume, M.C. Thomas, and D. Koya Nutrient sensing, autophagy, and diabetic nephropathy Diabetes 61 2012 23 29
-
(2012)
Diabetes
, vol.61
, pp. 23-29
-
-
Kume, S.1
Thomas, M.C.2
Koya, D.3
-
34
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
C. Ebato, T. Uchida, and M. Arakawa et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet Cell Metab. 8 2008 325 332
-
(2008)
Cell Metab.
, vol.8
, pp. 325-332
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
-
35
-
-
70449448312
-
Autophagy regulates adipose mass and differentiation in mice
-
R. Singh, Y. Xiang, and Y. Wang et al. Autophagy regulates adipose mass and differentiation in mice J. Clin. Invest. 119 2009 3329 3339
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3329-3339
-
-
Singh, R.1
Xiang, Y.2
Wang, Y.3
-
36
-
-
77955789211
-
Altered lipid content inhibits autophagic vesicular fusion
-
H. Koga, S. Kaushik, and A.M. Cuervo Altered lipid content inhibits autophagic vesicular fusion FASEB. J. 24 2010 3052 3065
-
(2010)
FASEB. J.
, vol.24
, pp. 3052-3065
-
-
Koga, H.1
Kaushik, S.2
Cuervo, A.M.3
-
38
-
-
84884755154
-
Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation
-
L. Galdieri, J. Chang, and S. Mehrotra et al. Yeast phospholipase C is required for normal acetyl-CoA homeostasis and global histone acetylation J. Biol. Chem. 288 2013 27986 27998
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 27986-27998
-
-
Galdieri, L.1
Chang, J.2
Mehrotra, S.3
-
39
-
-
84912019905
-
Protein acetylation and acetyl coenzyme a metabolism in budding yeast
-
L. Galdieri, T. Zhang, and D. Rogerson et al. Protein acetylation and acetyl coenzyme a metabolism in budding yeast Eukaryot. Cell 13 2014 1472 1483
-
(2014)
Eukaryot. Cell
, vol.13
, pp. 1472-1483
-
-
Galdieri, L.1
Zhang, T.2
Rogerson, D.3
-
40
-
-
84903775270
-
Acetyl-coenzyme A: A metabolic master regulator of autophagy and longevity
-
S. Schroeder, T. Pendl, and A. Zimmermann et al. Acetyl-coenzyme A: a metabolic master regulator of autophagy and longevity Autophagy 10 2014 1335 1337
-
(2014)
Autophagy
, vol.10
, pp. 1335-1337
-
-
Schroeder, S.1
Pendl, T.2
Zimmermann, A.3
|