-
1
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S., Loewith R. & Hall M. N. TOR signaling in growth and metabolism. Cell 124, 471-484 (2006).
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
2
-
-
84859024021
-
Focus issue: TOR signaling, a tale of two complexes
-
Gough N. R. Focus issue: TOR signaling, a tale of two complexes. Sci. Signal 5, eg4 (2012).
-
(2012)
Sci. Signal
, vol.5
, pp. eg4
-
-
Gough, N.R.1
-
3
-
-
84890149646
-
Where is mTOR and what is it doing there?
-
Betz C. & Hall M. N. Where is mTOR and what is it doing there? J. Cell Biol. 203, 563-574 (2013).
-
(2013)
J. Cell Biol.
, vol.203
, pp. 563-574
-
-
Betz, C.1
Hall, M.N.2
-
4
-
-
78650510609
-
MTOR: From growth signal integration to cancer, diabetes and ageing
-
Zoncu R., Efeyan A. & Sabatini D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35 (2011).
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
5
-
-
84859903360
-
Integrity of mTORC2 is dependent on the rictor Gly-934 site
-
Aimbetov R. et al. Integrity of mTORC2 is dependent on the rictor Gly-934 site. Oncogene. 31, 2115-2120 (2012).
-
(2012)
Oncogene.
, vol.31
, pp. 2115-2120
-
-
Aimbetov, R.1
-
6
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin D. A. et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859-871 (2006).
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
-
8
-
-
65949103405
-
Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1
-
Jones K. T., Greer E. R., Pearce D. & Ashrafi K. Rictor/TORC2 regulates Caenorhabditis elegans fat storage, body size, and development through sgk-1. PLoS biology 7, e60 (2009).
-
(2009)
PLoS Biology
, vol.7
, pp. e60
-
-
Jones, K.T.1
Greer, E.R.2
Pearce, D.3
Ashrafi, K.4
-
9
-
-
84864605572
-
LST8 regulates cell growth via target-of-rapamycin complex 2 (TORC2)
-
Wang T., Blumhagen R., Lao U., Kuo Y. & Edgar B. A. LST8 regulates cell growth via target-of-rapamycin complex 2 (TORC2). Mol. Cell Biol. 32, 2203-2213 (2012).
-
(2012)
Mol. Cell Biol.
, vol.32
, pp. 2203-2213
-
-
Wang, T.1
Blumhagen, R.2
Lao, U.3
Kuo, Y.4
Edgar, B.A.5
-
10
-
-
84877927481
-
MTOR in aging, metabolism, and cancer
-
Cornu M., Albert V. & Hall M. N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev. 23, 53-62 (2013).
-
(2013)
Curr. Opin. Genet. Dev.
, vol.23
, pp. 53-62
-
-
Cornu, M.1
Albert, V.2
Hall, M.N.3
-
11
-
-
84859778293
-
MTOR signaling in growth control and disease
-
Laplante M., Sabatini D. M. mTOR signaling in growth control and disease. Cell 149, 274-293 (2012).
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
13
-
-
33749076673
-
SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E. et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125-137 (2006).
-
(2006)
Cell
, vol.127
, pp. 125-137
-
-
Jacinto, E.1
-
14
-
-
84859171807
-
MYC on the path to cancer
-
Dang C. V. MYC on the path to cancer. Cell 149, 22-35 (2012).
-
(2012)
Cell
, vol.149
, pp. 22-35
-
-
Dang, C.V.1
-
16
-
-
80053358316
-
Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo
-
Parisi F. et al. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo. BMC Biol. 9, 65 (2011).
-
(2011)
BMC Biol.
, vol.9
, pp. 65
-
-
Parisi, F.1
-
18
-
-
0038523952
-
Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network
-
Orian A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes. Dev. 17, 1101-1114 (2003).
-
(2003)
Genes. Dev.
, vol.17
, pp. 1101-1114
-
-
Orian, A.1
-
19
-
-
17644420711
-
Whole-genome analysis reveals a strong positional bias of conserved dMyc-dependent E-boxes
-
Hulf T. et al. Whole-genome analysis reveals a strong positional bias of conserved dMyc-dependent E-boxes. Mol. Cell Biol. 25, 3401-3410 (2005).
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 3401-3410
-
-
Hulf, T.1
-
20
-
-
14744297005
-
Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development
-
Grewal S. S., Li L., Orian A., Eisenman R. N. & Edgar B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat. Cell Biol. 7, 295-302 (2005).
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 295-302
-
-
Grewal, S.S.1
Li, L.2
Orian, A.3
Eisenman, R.N.4
Edgar, B.A.5
-
21
-
-
84859900304
-
Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila
-
Marshall L., Rideout E. J. & Grewal S. S. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila. EMBO J. 31, 1916-1930 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 1916-1930
-
-
Marshall, L.1
Rideout, E.J.2
Grewal, S.S.3
-
22
-
-
0033539555
-
C-Myc enhances protein synthesis and cell size during B lymphocyte development
-
Iritani B. M. & Eisenman R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl. Acad. Sci. USA 96, 13180-13185 (1999).
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 13180-13185
-
-
Iritani, B.M.1
Eisenman, R.N.2
-
23
-
-
0033578793
-
Drosophila myc regulates cellular growth during development
-
Johnston L. A., Prober D. A., Edgar B. A., Eisenman R. N. & Gallant P. Drosophila myc regulates cellular growth during development. Cell 98, 779-790 (1999).
-
(1999)
Cell
, vol.98
, pp. 779-790
-
-
Johnston, L.A.1
Prober, D.A.2
Edgar, B.A.3
Eisenman, R.N.4
Gallant, P.5
-
25
-
-
37449029143
-
Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila
-
Teleman A. A., Hietakangas V., Sayadian A. C. & Cohen S. M. Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab. 7, 21-32 (2008).
-
(2008)
Cell Metab.
, vol.7
, pp. 21-32
-
-
Teleman, A.A.1
Hietakangas, V.2
Sayadian, A.C.3
Cohen, S.M.4
-
26
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317-1322 (2011).
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
-
27
-
-
65449136284
-
TopHat: Discovering splice junctions with RNA-Seq
-
Trapnell C., Pachter L. & Salzberg S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111 (2009).
-
(2009)
Bioinformatics
, vol.25
, pp. 1105-1111
-
-
Trapnell, C.1
Pachter, L.2
Salzberg, S.L.3
-
28
-
-
77952123055
-
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
-
Trapnell C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 511-515
-
-
Trapnell, C.1
-
29
-
-
61449172037
-
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
-
Huang da W., Sherman B.T. & Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57 (2009).
-
(2009)
Nat. Protoc.
, vol.4
, pp. 44-57
-
-
Huang Da, W.1
Sherman, B.T.2
Lempicki, R.A.3
-
30
-
-
33947152396
-
The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth
-
Secombe J., Li L., Carlos L. & Eisenman R. N. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes. Dev. 21, 537-551 (2007).
-
(2007)
Genes. Dev.
, vol.21
, pp. 537-551
-
-
Secombe, J.1
Li, L.2
Carlos, L.3
Eisenman, R.N.4
-
31
-
-
1842816486
-
Drosophila myc regulates organ size by inducing cell competition
-
de la Cova C., Abril M., Bellosta P., Gallant P. & Johnston L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107-116 (2004).
-
(2004)
Cell
, vol.117
, pp. 107-116
-
-
De La Cova, C.1
Abril, M.2
Bellosta, P.3
Gallant, P.4
Johnston, L.A.5
-
32
-
-
61449244533
-
Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans
-
Soukas A. A., Kane E. A., Carr C. E., Melo J. A. & Ruvkun G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes. Dev. 23, 496-511 (2009).
-
(2009)
Genes. Dev.
, vol.23
, pp. 496-511
-
-
Soukas, A.A.1
Kane, E.A.2
Carr, C.E.3
Melo, J.A.4
Ruvkun, G.5
-
33
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V., Stracka D., Oppliger W. & Hall M. N. Activation of mTORC2 by association with the ribosome. Cell 144, 757-768 (2011).
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
34
-
-
84876104926
-
Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription
-
Li Z. & Hann S. R. Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription. Oncogene. 32, 1988-1994 (2013).
-
(2013)
Oncogene.
, vol.32
, pp. 1988-1994
-
-
Li, Z.1
Hann, S.R.2
-
35
-
-
80052282364
-
AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer
-
Chan J. C. et al. AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci. Signal 4, ra56 (2011).
-
(2011)
Sci. Signal
, vol.4
, pp. ra56
-
-
Chan, J.C.1
-
36
-
-
84880352272
-
Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers
-
Pourdehnad M. et al. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc. Natl. Acad. Sci. USA 110, 11988-11993 (2013).
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 11988-11993
-
-
Pourdehnad, M.1
-
37
-
-
84878423346
-
Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response
-
Babcock J. T. et al. Mammalian target of rapamycin complex 1 (mTORC1) enhances bortezomib-induced death in tuberous sclerosis complex (TSC)-null cells by a c-MYC-dependent induction of the unfolded protein response. J. Biol. Chem. 288, 15687-15698 (2013).
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 15687-15698
-
-
Babcock, J.T.1
-
38
-
-
78249287240
-
B55beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer
-
Tan J. et al. B55beta-associated PP2A complex controls PDK1-directed myc signaling and modulates rapamycin sensitivity in colorectal cancer. Cancer Cell 18, 459-471 (2010).
-
(2010)
Cancer Cell
, vol.18
, pp. 459-471
-
-
Tan, J.1
-
39
-
-
79958207849
-
Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells
-
Amcheslavsky A., Ito N., Jiang J. & Ip Y. T. Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J. Cell Biol. 193, 695-710 (2011).
-
(2011)
J. Cell Biol.
, vol.193
, pp. 695-710
-
-
Amcheslavsky, A.1
Ito, N.2
Jiang, J.3
Ip, Y.T.4
-
40
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin D. A. et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 15, 148-159 (2009).
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
-
41
-
-
41849150779
-
FOXOs cancer and regulation of apoptosis
-
Fu Z. & Tindall D. J. FOXOs, cancer and regulation of apoptosis. Oncogene. 27, 2312-2319 (2008).
-
(2008)
Oncogene.
, vol.27
, pp. 2312-2319
-
-
Fu, Z.1
Tindall, D.J.2
-
42
-
-
79960470913
-
MTOR complex 2 signaling and functions
-
Oh W. J. & Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle 10, 2305-2316 (2011).
-
(2011)
Cell Cycle
, vol.10
, pp. 2305-2316
-
-
Oh, W.J.1
Jacinto, E.2
-
43
-
-
81255195809
-
FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function
-
Jensen K. S. et al. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J. 30, 4554-4570 (2011).
-
(2011)
EMBO J.
, vol.30
, pp. 4554-4570
-
-
Jensen, K.S.1
-
44
-
-
84860709659
-
FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression
-
Ferber E. C. et al. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19, 968-979 (2012).
-
(2012)
Cell Death Differ
, vol.19
, pp. 968-979
-
-
Ferber, E.C.1
-
45
-
-
84887430714
-
MTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
-
Masui K. et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 18, 726-739 (2013).
-
(2013)
Cell Metab.
, vol.18
, pp. 726-739
-
-
Masui, K.1
|