메뉴 건너뛰기




Volumn 32, Issue , 2015, Pages 38-50

Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA

Author keywords

Bayesian inference; Multiblock kernel principal component analysis; Mutual information spectral clustering; Nonlinear plant wide process monitoring

Indexed keywords

BAYESIAN NETWORKS; CLUSTERING ALGORITHMS; INFERENCE ENGINES; MONITORING; NUMERICAL METHODS; PROCESS CONTROL; PROCESS MONITORING;

EID: 84930207440     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2015.04.014     Document Type: Article
Times cited : (96)

References (69)
  • 1
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies
    • V. Venkatasubramanian, R. Rengaswamy, and S.N. Kavuri A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies Comput. Chem. Eng. 27 2003 313 326
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 2
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: Part III: Process history based methods
    • V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, and K. Yin A review of process fault detection and diagnosis: Part III: Process history based methods Comput. Chem. Eng. 27 2003 327 346
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 3
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: Part I: Quantitative model-based methods
    • V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S.N. Kavuri A review of process fault detection and diagnosis: Part I: Quantitative model-based methods Comput. Chem. Eng. 27 2003 293 311
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 5
    • 84863101603 scopus 로고
    • Quality control methods for several related variables
    • J.E. Jackson Quality control methods for several related variables Technometrics 1959 359 377
    • (1959) Technometrics , pp. 359-377
    • Jackson, J.E.1
  • 6
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • S. Joe Qin Statistical process monitoring: basics and beyond J. Chemom. 17 2003 480 502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Joe Qin, S.1
  • 7
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno, R. Strauss, and B.R. Bakshi Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem Comput. Chem. Eng. 26 2002 161 174
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 161-174
    • Kano, M.1    Nagao, K.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6    Bakshi, B.R.7
  • 8
    • 35548968908 scopus 로고    scopus 로고
    • Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry
    • M. Kano, and Y. Nakagawa Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry Comput. Chem. Eng. 32 2008 12 24
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 12-24
    • Kano, M.1    Nakagawa, Y.2
  • 9
    • 77954386508 scopus 로고    scopus 로고
    • Fault detection of non-Gaussian processes based on modified independent component analysis
    • Y. Zhang Fault detection of non-Gaussian processes based on modified independent component analysis Chem. Eng. Sci. 65 2010 4630 4639
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 4630-4639
    • Zhang, Y.1
  • 10
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • L.H. Chiang, E.L. Russell, and R.D. Braatz Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis Chemom. Intell. Lab. Syst. 50 2000 243 252
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 11
    • 0035882158 scopus 로고    scopus 로고
    • A new multivariate statistical process monitoring method using principal component analysis
    • M. Kano, S. Hasebe, I. Hashimoto, and H. Ohno A new multivariate statistical process monitoring method using principal component analysis Comput. Chem. Eng. 25 2001 1103 1113
    • (2001) Comput. Chem. Eng. , vol.25 , pp. 1103-1113
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 12
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • T. Kourti, and J.F. MacGregor Multivariate SPC methods for process and product monitoring J. Qual. Technol. 28 1996 409 428
    • (1996) J. Qual. Technol. , vol.28 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 13
    • 84894068408 scopus 로고    scopus 로고
    • Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
    • Q. Jiang, and X. Yan Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring AIChE J. 60 2014 949 965
    • (2014) AIChE J. , vol.60 , pp. 949-965
    • Jiang, Q.1    Yan, X.2
  • 14
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • W. Ku, R.H. Storer, and C. Georgakis Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 30 1995 179 196
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 15
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • D. Kim, and I.-B. Lee Process monitoring based on probabilistic PCA Chemom. Intell. Lab. Syst. 67 2003 109 123
    • (2003) Chemom. Intell. Lab. Syst. , vol.67 , pp. 109-123
    • Kim, D.1    Lee, I.-B.2
  • 16
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • M.E. Tipping, and C.M. Bishop Mixtures of probabilistic principal component analyzers Neural Comput. 11 1999 443 482
    • (1999) Neural Comput. , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 17
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • P. Nomikos, and J.F. MacGregor Monitoring batch processes using multiway principal component analysis AIChE J. 40 1994 1361 1375
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 18
    • 0028825273 scopus 로고
    • Multi-way partial least squares in monitoring batch processes
    • P. Nomikos, and J.F. MacGregor Multi-way partial least squares in monitoring batch processes Chemom. Intell. Lab. Syst. 30 1995 97 108
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 97-108
    • Nomikos, P.1    MacGregor, J.F.2
  • 19
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • J. Chen, and J. Liu Mixture principal component analysis models for process monitoring Ind. Eng. Chem. Res. 38 1999 1478 1488
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 20
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Z. Ge, and Z. Song Mixture Bayesian regularization method of PPCA for multimode process monitoring AIChE J. 56 2010 2838 2849
    • (2010) AIChE J. , vol.56 , pp. 2838-2849
    • Ge, Z.1    Song, Z.2
  • 21
    • 84867006916 scopus 로고    scopus 로고
    • Chemical processes monitoring based on weighted principal component analysis and its application
    • Q. Jiang, and X. Yan Chemical processes monitoring based on weighted principal component analysis and its application Chemom. Intell. Lab. Syst. 119 2012 11 20
    • (2012) Chemom. Intell. Lab. Syst. , vol.119 , pp. 11-20
    • Jiang, Q.1    Yan, X.2
  • 22
    • 84873855648 scopus 로고    scopus 로고
    • Fault detection and diagnosis in chemical processes using sensitive principal component analysis
    • Q. Jiang, X. Yan, and W. Zhao Fault detection and diagnosis in chemical processes using sensitive principal component analysis Ind. Eng. Chem. Res. 52 2013 1635 1644
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 1635-1644
    • Jiang, Q.1    Yan, X.2    Zhao, W.3
  • 23
    • 0242390969 scopus 로고    scopus 로고
    • On-line batch process monitoring using a consecutively updated multiway principal component analysis model
    • J.-M. Lee, C. Yoo, and I.-B. Lee On-line batch process monitoring using a consecutively updated multiway principal component analysis model Comput. Chem. Eng. 27 2003 1903 1912
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 1903-1912
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 24
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • M. Misra, H.H. Yue, S.J. Qin, and C. Ling Multivariate process monitoring and fault diagnosis by multi-scale PCA Comput. Chem. Eng. 26 2002 1281 1293
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 25
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principle component analysis models
    • S.J. Zhao, J. Zhang, and Y.M. Xu Monitoring of processes with multiple operating modes through multiple principle component analysis models Ind. Eng. Chem. Res. 43 2004 7025 7035
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 26
    • 10444237307 scopus 로고    scopus 로고
    • Multiblock PLS-based localized process diagnosis
    • S.W. Choi, and I.-B. Lee Multiblock PLS-based localized process diagnosis J. Process Control 15 2005 295 306
    • (2005) J. Process Control , vol.15 , pp. 295-306
    • Choi, S.W.1    Lee, I.-B.2
  • 27
    • 84873346452 scopus 로고    scopus 로고
    • Distributed PCA model for plant-wide process monitoring
    • Z. Ge, and Z. Song Distributed PCA model for plant-wide process monitoring Ind. Eng. Chem. Res. 52 2013 1947 1957
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 1947-1957
    • Ge, Z.1    Song, Z.2
  • 29
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multiblock analysis with application to decentralized process monitoring
    • S.J. Qin, S. Valle, and M.J. Piovoso On unifying multiblock analysis with application to decentralized process monitoring J. Chemom. 15 2001 715 742
    • (2001) J. Chemom. , vol.15 , pp. 715-742
    • Qin, S.J.1    Valle, S.2    Piovoso, M.J.3
  • 30
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • J.A. Westerhuis, T. Kourti, and J.F. MacGregor Analysis of multiblock and hierarchical PCA and PLS models J. Chemom. 12 1998 301 321
    • (1998) J. Chemom. , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 31
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • J.-H. Cho, J.-M. Lee, S. Wook Choi, D. Lee, and I.-B. Lee Fault identification for process monitoring using kernel principal component analysis Chem. Eng. Sci. 60 2005 279 288
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 279-288
    • Cho, J.-H.1    Lee, J.-M.2    Wook Choi, S.3    Lee, D.4    Lee, I.-B.5
  • 32
    • 11144331636 scopus 로고    scopus 로고
    • Fault detection and identification of nonlinear processes based on kernel PCA
    • S.W. Choi, C. Lee, J.-M. Lee, J.H. Park, and I.-B. Lee Fault detection and identification of nonlinear processes based on kernel PCA Chemom. Intell. Lab. Syst. 75 2005 55 67
    • (2005) Chemom. Intell. Lab. Syst. , vol.75 , pp. 55-67
    • Choi, S.W.1    Lee, C.2    Lee, J.-M.3    Park, J.H.4    Lee, I.-B.5
  • 33
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Z. Ge, C. Yang, and Z. Song Improved kernel PCA-based monitoring approach for nonlinear processes Chem. Eng. Sci. 64 2009 2245 2255
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 34
    • 84880623050 scopus 로고    scopus 로고
    • Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
    • Q. Jiang, and X. Yan Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring Chemom. Intell. Lab. Syst. 127 2013 121 131
    • (2013) Chemom. Intell. Lab. Syst. , vol.127 , pp. 121-131
    • Jiang, Q.1    Yan, X.2
  • 35
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • J.-M. Lee, C. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.-B. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 36
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 1998 1299 1319
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 37
    • 84863151045 scopus 로고    scopus 로고
    • Dynamic processes monitoring using recursive kernel principal component analysis
    • Y. Zhang, S. Li, and Y. Teng Dynamic processes monitoring using recursive kernel principal component analysis Chem. Eng. Sci. 72 2012 78 86
    • (2012) Chem. Eng. Sci. , vol.72 , pp. 78-86
    • Zhang, Y.1    Li, S.2    Teng, Y.3
  • 38
    • 84876305649 scopus 로고    scopus 로고
    • Modeling and performance monitoring of multivariate multimodal processes
    • T. Feital, U. Kruger, J. Dutra, J.C. Pinto, and E.L. Lima Modeling and performance monitoring of multivariate multimodal processes AIChE J. 59 2012 1557 1569
    • (2012) AIChE J. , vol.59 , pp. 1557-1569
    • Feital, T.1    Kruger, U.2    Dutra, J.3    Pinto, J.C.4    Lima, E.L.5
  • 39
  • 40
    • 84880858673 scopus 로고    scopus 로고
    • Distributed statistical process monitoring based on four-subspace construction and Bayesian inference
    • C. Tong, Y. Song, and X. Yan Distributed statistical process monitoring based on four-subspace construction and Bayesian inference Ind. Eng. Chem. Res. 52 2013 9897 9907
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 9897-9907
    • Tong, C.1    Song, Y.2    Yan, X.3
  • 41
    • 84908118075 scopus 로고    scopus 로고
    • Plant-wide process monitoring based on mutual information - multiblock principal component analysis
    • Q. Jiang, and X. Yan Plant-wide process monitoring based on mutual information - multiblock principal component analysis ISA Trans. 53 2014 1516 1527
    • (2014) ISA Trans. , vol.53 , pp. 1516-1527
    • Jiang, Q.1    Yan, X.2
  • 42
    • 84902304472 scopus 로고    scopus 로고
    • Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference
    • Q. Jiang, and X. Yan Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference Chemom. Intell. Lab. Syst. 136 2014 121 137
    • (2014) Chemom. Intell. Lab. Syst. , vol.136 , pp. 121-137
    • Jiang, Q.1    Yan, X.2
  • 43
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • M.A. Kramer Nonlinear principal component analysis using autoassociative neural networks AIChE J. 37 1991 233 243
    • (1991) AIChE J. , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 44
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis - based on principal curves and neural networks
    • D. Dong, and T.J. McAvoy Nonlinear principal component analysis - based on principal curves and neural networks Comput. Chem. Eng. 20 1996 65 78
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 45
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • C. Cheng, and M.-S. Chiu Nonlinear process monitoring using JITL-PCA Chemom. Intell. Lab. Syst. 76 2005 1 13
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.-S.2
  • 47
    • 33646182626 scopus 로고    scopus 로고
    • A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring
    • A. Maulud, D. Wang, and J. Romagnoli A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring J. Process Control 16 2006 671 683
    • (2006) J. Process Control , vol.16 , pp. 671-683
    • Maulud, A.1    Wang, D.2    Romagnoli, J.3
  • 48
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Y. Zhang Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM Chem. Eng. Sci. 64 2009 801 811
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 51
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • M.M. Rashid, and J. Yu A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring Chemom. Intell. Lab. Syst. 115 2012 44 58
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 53
    • 84911466620 scopus 로고    scopus 로고
    • A performance evaluation of mutual information estimators for multivariate feature selection
    • Springer
    • G. Doquire, and M. Verleysen A performance evaluation of mutual information estimators for multivariate feature selection Pattern Recognition - Applications and Methods 2013 Springer 51 63
    • (2013) Pattern Recognition - Applications and Methods , pp. 51-63
    • Doquire, G.1    Verleysen, M.2
  • 54
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
    • G. Brown, A. Pocock, M.-J. Zhao, and M. Luján Conditional likelihood maximisation: a unifying framework for information theoretic feature selection J. Mach. Learn. Res. 13 2012 27 66
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.-J.3    Luján, M.4
  • 57
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. Von Luxburg A tutorial on spectral clustering Stat. Comput. 17 2007 395 416
    • (2007) Stat. Comput. , vol.17 , pp. 395-416
    • Von Luxburg, U.1
  • 58
    • 77951091017 scopus 로고    scopus 로고
    • Development of correlation-based clustering method and its application to software sensing
    • K. Fujiwara, M. Kano, and S. Hasebe Development of correlation-based clustering method and its application to software sensing Chemom. Intell. Lab. Syst. 101 2010 130 138
    • (2010) Chemom. Intell. Lab. Syst. , vol.101 , pp. 130-138
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 59
    • 80054758420 scopus 로고    scopus 로고
    • Correlation-based spectral clustering for flexible process monitoring
    • K. Fujiwara, M. Kano, and S. Hasebe Correlation-based spectral clustering for flexible process monitoring J. Process Control 21 2011 1438 1448
    • (2011) J. Process Control , vol.21 , pp. 1438-1448
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 60
    • 0021583718 scopus 로고
    • FCM: the fuzzy C-means clustering algorithm
    • J.C. Bezdek, R. Ehrlich, and W. Full FCM: the fuzzy C-means clustering algorithm Comput. Geosci. 10 1984 191 203
    • (1984) Comput. Geosci. , vol.10 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 62
    • 56349129392 scopus 로고    scopus 로고
    • A fuzzy c-means clustering-based fragile watermarking scheme for image authentication
    • W.-C. Chen, and M.-S. Wang A fuzzy c-means clustering-based fragile watermarking scheme for image authentication Expert Syst. Appl. 36 2009 1300 1307
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1300-1307
    • Chen, W.-C.1    Wang, M.-S.2
  • 63
    • 77957298441 scopus 로고    scopus 로고
    • Fault detection based on kernel principal component analysis
    • V.H. Nguyen, and J.-C. Golinval Fault detection based on kernel principal component analysis Eng. Struct. 32 2010 3683 3691
    • (2010) Eng. Struct. , vol.32 , pp. 3683-3691
    • Nguyen, V.H.1    Golinval, J.-C.2
  • 65
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen On estimation of a probability density function and mode Ann. Math. Stat. 33 1962 1065 1076
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 66
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Z. Ge, M. Zhang, and Z. Song Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 20 2010 676 688
    • (2010) J. Process Control , vol.20 , pp. 676-688
    • Ge, Z.1    Zhang, M.2    Song, Z.3
  • 67
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Z. Ge, and Z. Song Multimode process monitoring based on Bayesian method J. Chemom. 23 2009 636 650
    • (2009) J. Chemom. , vol.23 , pp. 636-650
    • Ge, Z.1    Song, Z.2
  • 68
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 69
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • P.R. Lyman, and C. Georgakis Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 19 1995 321 331
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.