메뉴 건너뛰기




Volumn 16, Issue 7, 2006, Pages 671-683

A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring

Author keywords

Fault detection; Optimal wavelet decomposition; Orthogonal nonlinear PCA; Robust

Indexed keywords

APPROXIMATION THEORY; PRINCIPAL COMPONENT ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS); STATISTICAL PROCESS CONTROL; STATISTICS; WAVELET TRANSFORMS;

EID: 33646182626     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2006.01.006     Document Type: Article
Times cited : (54)

References (25)
  • 1
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor J.F., and Kourti T. Statistical process control of multivariate processes. Control Eng. Pract. 3 3 (1995) 403-414
    • (1995) Control Eng. Pract. , vol.3 , Issue.3 , pp. 403-414
    • MacGregor, J.F.1    Kourti, T.2
  • 2
    • 0030530039 scopus 로고    scopus 로고
    • The process chemometrics approach to process monitoring and fault detection
    • Wise B.M., and Gallagher N.B. The process chemometrics approach to process monitoring and fault detection. J. Process Control 6 6 (1996) 329-348
    • (1996) J. Process Control , vol.6 , Issue.6 , pp. 329-348
    • Wise, B.M.1    Gallagher, N.B.2
  • 3
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37 2 (1991) 233-243
    • (1991) AIChE J. , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.A.1
  • 4
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis - Based on principal curves and neural networks
    • Dong D., and McAvoy T.J. Nonlinear principal component analysis - Based on principal curves and neural networks. Comput. Chem. Eng. 20 1 (1996) 65-78
    • (1996) Comput. Chem. Eng. , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 5
    • 0029322882 scopus 로고
    • Reducing data dimensionality through optimising neural network inputs
    • Tan S., and Mavrovouniotis M.L. Reducing data dimensionality through optimising neural network inputs. AIChE J 41 (1995) 1471-1480
    • (1995) AIChE J , vol.41 , pp. 1471-1480
    • Tan, S.1    Mavrovouniotis, M.L.2
  • 6
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a Kernel eigenvalue problem
    • Schölkopf B., Smola A., and Müller K.-R. Nonlinear component analysis as a Kernel eigenvalue problem. Neural Comput. 10 5 (1998) 1299
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1299
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 7
    • 0033611749 scopus 로고    scopus 로고
    • Non-linear principal components analysis using genetic programming
    • Hiden H.G., et al. Non-linear principal components analysis using genetic programming. Comput. Chem. Eng. 23 3 (1999) 413-425
    • (1999) Comput. Chem. Eng. , vol.23 , Issue.3 , pp. 413-425
    • Hiden, H.G.1
  • 8
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bakshi B.R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE J. 44 7 (1998) 1596-1610
    • (1998) AIChE J. , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 9
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra M., et al. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 26 9 (2002) 1281-1293
    • (2002) Comput. Chem. Eng. , vol.26 , Issue.9 , pp. 1281-1293
    • Misra, M.1
  • 10
    • 0032853906 scopus 로고    scopus 로고
    • Wavelets and non-linear principal components analysis for process monitoring
    • Shao R., et al. Wavelets and non-linear principal components analysis for process monitoring. Control Eng. Pract. 7 7 (1999) 865-879
    • (1999) Control Eng. Pract. , vol.7 , Issue.7 , pp. 865-879
    • Shao, R.1
  • 11
    • 33646170923 scopus 로고    scopus 로고
    • A. Palazoglu et al., An environment for wavelet-based multivariate statistical process monitoring, in: 11th European Symposium of Computer Aided Process Engineering (ESCAPE-11), Kolding, Denmark, 2001.
  • 12
    • 0029542217 scopus 로고    scopus 로고
    • C.J. Chessari, G.W. Barton, P. Watson, On the development of a neural network based orthogonal nonlinear principal component algorithm for process data analysis, in: Proceedings, IEEE International Conference on Neural Networks, 1995.
  • 14
    • 0024861871 scopus 로고
    • Approximations by superpositions of a sigmoidal function
    • Cybenco G. Approximations by superpositions of a sigmoidal function. Math. Control Signal Syst. 2 (1989) 303-314
    • (1989) Math. Control Signal Syst. , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 15
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 5 (1989) 359-366
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 17
    • 0018469598 scopus 로고
    • Nonlinear system identification using the hammerstein model
    • Billings S.A., and Fakhouri S.Y. Nonlinear system identification using the hammerstein model. Int. J. Syst. Sci. 10 5 (1979) 567-578
    • (1979) Int. J. Syst. Sci. , vol.10 , Issue.5 , pp. 567-578
    • Billings, S.A.1    Fakhouri, S.Y.2
  • 18
    • 0026111055 scopus 로고
    • Use of Hammerstein models in identification of nonlinear systems
    • Eskinat E., Johnson S.H., and Luyben W.L. Use of Hammerstein models in identification of nonlinear systems. Am. Inst. Chem. Eng. 37 (1991) 255-268
    • (1991) Am. Inst. Chem. Eng. , vol.37 , pp. 255-268
    • Eskinat, E.1    Johnson, S.H.2    Luyben, W.L.3
  • 19
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallat S.G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11 7 (1989) 674-693
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 20
    • 0002199780 scopus 로고
    • Multivariate quality control, illustrated by the air testing of sample bombsights
    • Eisenhart C., Hastay M.W., and Wallis W.A. (Eds), McGraw-Hill, New York
    • Hotelling H. Multivariate quality control, illustrated by the air testing of sample bombsights. In: Eisenhart C., Hastay M.W., and Wallis W.A. (Eds). Techniques of Statistical Analysis (1947), McGraw-Hill, New York 113-184
    • (1947) Techniques of Statistical Analysis , pp. 113-184
    • Hotelling, H.1
  • 21
    • 0028905904 scopus 로고
    • Process analysis, monitoring and diagnosis, using multivariate projection methods
    • Kourti T., and MacGregor J.F. Process analysis, monitoring and diagnosis, using multivariate projection methods. Chemometrics Intell. Lab. Syst. 28 1 (1995) 3-21
    • (1995) Chemometrics Intell. Lab. Syst. , vol.28 , Issue.1 , pp. 3-21
    • Kourti, T.1    MacGregor, J.F.2
  • 23
    • 0001925804 scopus 로고
    • Multivariate control charts for Individual observations
    • Tracy N.D., Young J.C., and Mason R.L. Multivariate control charts for Individual observations. J. Qual. Technol. 24 (1992) 88-95
    • (1992) J. Qual. Technol. , vol.24 , pp. 88-95
    • Tracy, N.D.1    Young, J.C.2    Mason, R.L.3
  • 24
    • 0018503842 scopus 로고
    • Control procedures for residuals associated with principal component analysis
    • Jackson J.E., and Mudholkar G.S. Control procedures for residuals associated with principal component analysis. Technometrics 21 (1979) 341-349
    • (1979) Technometrics , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.