메뉴 건너뛰기




Volumn 527, Issue , 2015, Pages 326-344

Runoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approach

Author keywords

Gene Expression Programming; Rainfall runoff modelling; Wavelet transformation

Indexed keywords

CATCHMENTS; DISCRETE WAVELET TRANSFORMS; GENE EXPRESSION; GENES; METADATA; RAIN; RUNOFF; VECTORS;

EID: 84929359193     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.04.072     Document Type: Article
Times cited : (76)

References (65)
  • 1
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407(1-4):28-40.
    • (2011) J. Hydrol. , vol.407 , Issue.1-4 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 2
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390(1):85-91.
    • (2010) J. Hydrol. , vol.390 , Issue.1 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 3
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390(1-2):85-91.
    • (2010) J. Hydrol. , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 5
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem A., Campbell J., Murtagh F. Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Finan. 1998, 6(2):5-12.
    • (1998) J. Comput. Intell. Finan. , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 6
    • 43149114256 scopus 로고    scopus 로고
    • An application of artificial intelligence for rainfall-runoff modeling
    • Aytek A., Alp M. An application of artificial intelligence for rainfall-runoff modeling. J. Earth Syst. Sci. 2008, 117(2):145-155.
    • (2008) J. Earth Syst. Sci. , vol.117 , Issue.2 , pp. 145-155
    • Aytek, A.1    Alp, M.2
  • 7
    • 80051665368 scopus 로고    scopus 로고
    • Gene-expression programming for the development of a stage-discharge curve of the Pahang River
    • Azamathulla H.M., Ghani A.A., Leow C.S., Chang C.K., Zakaria N.A. Gene-expression programming for the development of a stage-discharge curve of the Pahang River. Water Res. Manage. 2011, 25(11):2901-2916.
    • (2011) Water Res. Manage. , vol.25 , Issue.11 , pp. 2901-2916
    • Azamathulla, H.M.1    Ghani, A.A.2    Leow, C.S.3    Chang, C.K.4    Zakaria, N.A.5
  • 8
    • 84863863577 scopus 로고    scopus 로고
    • Data mining in hydrology
    • Babovic V. Data mining in hydrology. Hydrol. Process. 2005, 19(7):1511-1515.
    • (2005) Hydrol. Process. , vol.19 , Issue.7 , pp. 1511-1515
    • Babovic, V.1
  • 9
    • 0030646548 scopus 로고    scopus 로고
    • The evolution of equations from hydraulic data Part I: Theory
    • Babovic V., Abbott M.B. The evolution of equations from hydraulic data Part I: Theory. J. Hydraul. Res. 1997, 35(3):397-410.
    • (1997) J. Hydraul. Res. , vol.35 , Issue.3 , pp. 397-410
    • Babovic, V.1    Abbott, M.B.2
  • 10
    • 0030698936 scopus 로고    scopus 로고
    • The evolution of equations from hydraulic data Part II: applications
    • Babovic V., Abbott M.B. The evolution of equations from hydraulic data Part II: applications. J. Hydraul. Res. 1997, 35(3):411-430.
    • (1997) J. Hydraul. Res. , vol.35 , Issue.3 , pp. 411-430
    • Babovic, V.1    Abbott, M.B.2
  • 12
    • 0026358189 scopus 로고
    • Principles and confidence in hydrological modelling
    • Bergström S. Principles and confidence in hydrological modelling. Nord. Hydrol. 1991, 22(2):123-136.
    • (1991) Nord. Hydrol. , vol.22 , Issue.2 , pp. 123-136
    • Bergström, S.1
  • 13
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth, Parts A/B/C 2006, 31(18):1164-1171.
    • (2006) Phys. Chem. Earth, Parts A/B/C , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 14
    • 78651491440 scopus 로고    scopus 로고
    • Applying multiobjective genetic algorithm to analyze the conflict among different water use sectors during drought period
    • Chang L.-C., Ho C.-C., Chen Y.-W. Applying multiobjective genetic algorithm to analyze the conflict among different water use sectors during drought period. J. Water Res. Pl. 2009, 136(5):539-546.
    • (2009) J. Water Res. Pl. , vol.136 , Issue.5 , pp. 539-546
    • Chang, L.-C.1    Ho, C.-C.2    Chen, Y.-W.3
  • 15
    • 47049118310 scopus 로고    scopus 로고
    • Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for a n overland plane
    • Chua L.H.C., Wong T.S.W., Sriramula L.K. Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for a n overland plane. J. Hydrol. 2008, 357:337-348.
    • (2008) J. Hydrol. , vol.357 , pp. 337-348
    • Chua, L.H.C.1    Wong, T.S.W.2    Sriramula, L.K.3
  • 17
    • 0003358593 scopus 로고
    • Ten Lectures on Wavelets (CBMS-NSF regional conference series in applied mathematics) 61.
    • Daubechies, I., 1992. Ten Lectures on Wavelets (CBMS-NSF regional conference series in applied mathematics) 61. Society for Industrial and Applied mathematics.
    • (1992) Society for Industrial and Applied mathematics.
    • Daubechies, I.1
  • 18
    • 0007545218 scopus 로고    scopus 로고
    • Application of neural networks and genetic programming to rainfall-runoff modeling.
    • D2K Technical Rep (0699-1)
    • Drecourt, J.-P., 1999. Application of neural networks and genetic programming to rainfall-runoff modeling. D2K Technical Rep (0699-1): 1.
    • (1999) , vol.1
    • Drecourt, J.-P.1
  • 19
    • 33847739065 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems.
    • arXiv preprint cs/0102027.
    • Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027.
    • (2001)
    • Ferreira, C.1
  • 20
    • 10644274066 scopus 로고    scopus 로고
    • Gene expression Programming in Problem Solving, Soft Computing and Industry.
    • Springer
    • Ferreira, C., 2002. Gene expression Programming in Problem Solving, Soft Computing and Industry. Springer, pp. 635-653.
    • (2002) , pp. 635-653
    • Ferreira, C.1
  • 21
    • 25844490424 scopus 로고    scopus 로고
    • Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Studies in Computational Intelligence).
    • Springer-Verlag New York Inc.
    • Ferreira, C., 2006. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence (Studies in Computational Intelligence). Springer-Verlag New York Inc.
    • (2006)
    • Ferreira, C.1
  • 22
    • 0031998129 scopus 로고    scopus 로고
    • Application example of neural netwroks for time series analysis: rainfall-runoff modeling
    • Furundzic D. Application example of neural netwroks for time series analysis: rainfall-runoff modeling. Signal Process. 1998, 64:383-396.
    • (1998) Signal Process. , vol.64 , pp. 383-396
    • Furundzic, D.1
  • 23
    • 0000293183 scopus 로고
    • Theory of communications. Part 1: The analysis of information
    • Gabor D. Theory of communications. Part 1: The analysis of information. J. Institut. Electr. Engrs. 1948, 95(38):429-441.
    • (1948) J. Institut. Electr. Engrs. , vol.95 , Issue.38 , pp. 429-441
    • Gabor, D.1
  • 24
    • 84929386963 scopus 로고    scopus 로고
    • GeneXproTools Release 4.0 (Computer Program), Bristol, United Kingdom.
    • Gepsoft Inc., 2006. GeneXproTools Release 4.0 (Computer Program), Bristol, United Kingdom.
    • (2006)
  • 25
    • 0000562670 scopus 로고
    • Decomposition of Hardy functions into square integrable wavelets of constant shape
    • Grossmann A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15(4):723-736.
    • (1984) SIAM J. Math. Anal. , vol.15 , Issue.4 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 26
    • 68049113510 scopus 로고    scopus 로고
    • New approach for stage-discharge relationship: gene-expression programming
    • Guven A., Aytek A. New approach for stage-discharge relationship: gene-expression programming. J. Hydrol. Eng. 2009, 14(8):812-820.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.8 , pp. 812-820
    • Guven, A.1    Aytek, A.2
  • 29
    • 78751591071 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for river stage forecasting
    • Kisi O. Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Res. Manage. 2011, 25(2):579-600.
    • (2011) Water Res. Manage. , vol.25 , Issue.2 , pp. 579-600
    • Kisi, O.1
  • 30
    • 80053449485 scopus 로고    scopus 로고
    • Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models
    • Kisi O., Shiri J. Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour. Manage 2011, 25(13):3135-3152.
    • (2011) Water Resour. Manage , vol.25 , Issue.13 , pp. 3135-3152
    • Kisi, O.1    Shiri, J.2
  • 31
    • 84857912130 scopus 로고    scopus 로고
    • Forecasting daily lake levels using artificial intelligence approaches
    • Kisi O., Shiri J., Nikoofar B. Forecasting daily lake levels using artificial intelligence approaches. Comput. Geosci. 2012, 41:169-180.
    • (2012) Comput. Geosci. , vol.41 , pp. 169-180
    • Kisi, O.1    Shiri, J.2    Nikoofar, B.3
  • 32
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • Kisi O., Shiri J., Tombul M. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 2013, 51:108-117.
    • (2013) Comput. Geosci. , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Tombul, M.3
  • 33
    • 0003882343 scopus 로고
    • Genetic programming: on the programming of computers by means of natural selection
    • 1. MIT press.
    • Koza, J.R., 1992. Genetic programming: on the programming of computers by means of natural selection, 1. MIT press.
    • (1992)
    • Koza, J.R.1
  • 34
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks: comparison of network types
    • Kumar A.R.S., Sudheer K.P., Jain S.K., Agarwal P.K. Rainfall-runoff modelling using artificial neural networks: comparison of network types. Hydrol. Process. 2005, 19(6):1277-1291.
    • (2005) Hydrol. Process. , vol.19 , Issue.6 , pp. 1277-1291
    • Kumar, A.R.S.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 35
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35(1):233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 36
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representaiton
    • Mallat G.S. A theory for multiresolution signal decomposition: the wavelet representaiton. IEE Trans. Pattern Anal. Machine Intell. 1989, 11(7):674-693.
    • (1989) IEE Trans. Pattern Anal. Machine Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, G.S.1
  • 37
    • 0039732097 scopus 로고
    • Principe d'incerlitude, bases hilbertiennes et algebres d'operateurs.
    • Asterisque, Societe Mathematique de France, Paris, France.
    • Meyer, Y., 1985. Principe d'incerlitude, bases hilbertiennes et algebres d'operateurs. Asterisque, Societe Mathematique de France, Paris, France.
    • (1985)
    • Meyer, Y.1
  • 40
    • 84874285796 scopus 로고    scopus 로고
    • A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods
    • Moosavi V., Vafakhah M., Shirmohammadi B., Behnia N. A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour. Manage. 2013, 1-21.
    • (2013) Water Resour. Manage. , pp. 1-21
    • Moosavi, V.1    Vafakhah, M.2    Shirmohammadi, B.3    Behnia, N.4
  • 41
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I-A discussion of principles
    • Nash J., Sutcliffe J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10(3):282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.1    Sutcliffe, J.V.2
  • 43
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 2004, 291(1-2):52-66.
    • (2004) J. Hydrol. , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 44
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real time flood forecasting
    • Nayak P.C., Sudheer K.P., Ramasastri K.S. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrol. Process. 2005, 19(4):955-968.
    • (2005) Hydrol. Process. , vol.19 , Issue.4 , pp. 955-968
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 46
    • 36649032078 scopus 로고    scopus 로고
    • Rainfall-runoff modeling through hbyrid intelligent system
    • Nayak P.C., Sudheer K.P., Jain S.K. Rainfall-runoff modeling through hbyrid intelligent system. Water Resour. Res. 2007, 43.
    • (2007) Water Resour. Res. , vol.43
    • Nayak, P.C.1    Sudheer, K.P.2    Jain, S.K.3
  • 47
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22(3):466-472.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.3 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 48
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage 2009, 23(14):2877-2894.
    • (2009) Water Resour. Manage , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 49
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process.
    • Nourani, V., Kisi, Ö., Komasi, M., 2011. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol..
    • (2011) J. Hydrol.
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 50
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kişi Ö. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342(1):199-212.
    • (2007) J. Hydrol. , vol.342 , Issue.1 , pp. 199-212
    • Partal, T.1    Kişi, Ö.2
  • 51
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kisi O. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342(1-2):199-212.
    • (2007) J. Hydrol. , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 52
    • 4644296256 scopus 로고    scopus 로고
    • Predicting catchment flow in a semi-arid region via an artificial neural netwrok technique
    • Riad S., Mania J., Bouchaou L., Najjar Y. Predicting catchment flow in a semi-arid region via an artificial neural netwrok technique. Hydrol. Process. 2004, 18:2387-2393.
    • (2004) Hydrol. Process. , vol.18 , pp. 2387-2393
    • Riad, S.1    Mania, J.2    Bouchaou, L.3    Najjar, Y.4
  • 53
    • 0032804627 scopus 로고    scopus 로고
    • A genetic programming approach to rainfall-runoff modelling
    • Savic D.A., Walters G.A., Davidson J.W. A genetic programming approach to rainfall-runoff modelling. Water Resour. Manage. 1999, 13(3):219-231.
    • (1999) Water Resour. Manage. , vol.13 , Issue.3 , pp. 219-231
    • Savic, D.A.1    Walters, G.A.2    Davidson, J.W.3
  • 54
    • 78149414268 scopus 로고    scopus 로고
    • Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
    • Shiri J., Kisi O. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol. 2010, 394(3-4):486-493.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 486-493
    • Shiri, J.1    Kisi, O.2
  • 55
    • 80052542665 scopus 로고    scopus 로고
    • Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
    • Shiri J., Kişi Ö. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Comput. Geosci. 2011, 37(10):1692-1701.
    • (2011) Comput. Geosci. , vol.37 , Issue.10 , pp. 1692-1701
    • Shiri, J.1    Kişi, Ö.2
  • 56
    • 84855193767 scopus 로고    scopus 로고
    • Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
    • Shiri J., Kişi Ö., Landeras G., López J.J., Nazemi A.H., Stuyt L.C.P.M. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J. Hydrol. 2012, 414:302-316.
    • (2012) J. Hydrol. , vol.414 , pp. 302-316
    • Shiri, J.1    Kişi, Ö.2    Landeras, G.3    López, J.J.4    Nazemi, A.H.5    Stuyt, L.C.P.M.6
  • 57
    • 84900000488 scopus 로고    scopus 로고
    • Comparative study of different wavelet based neural network models for rainfall-runoff modeling
    • Shoaib M., Shamseldin A.Y., Melville B.W. Comparative study of different wavelet based neural network models for rainfall-runoff modeling. J. Hydrol. 2014, 515:47-58.
    • (2014) J. Hydrol. , vol.515 , pp. 47-58
    • Shoaib, M.1    Shamseldin, A.Y.2    Melville, B.W.3
  • 58
    • 84952361595 scopus 로고    scopus 로고
    • Hybrid wavelet neuro-fuzzy approach for rainfall-runoff modeling
    • 04014125.
    • Shoaib M., Shamseldin A.Y., Melville B.W., Khan M.M. Hybrid wavelet neuro-fuzzy approach for rainfall-runoff modeling. J. Comput. Civil Eng. 2014, 10.1061/(ASCE)CP.1943-5487.0000457, 04014125.
    • (2014) J. Comput. Civil Eng.
    • Shoaib, M.1    Shamseldin, A.Y.2    Melville, B.W.3    Khan, M.M.4
  • 59
    • 84861211172 scopus 로고    scopus 로고
    • Wavelet-ANN model for flood events
    • Springer, Berlin/Heidelberg, K. Deep, A. Nagar, M. Pant, J.C. Bansal (Eds.) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011
    • Singh R. Wavelet-ANN model for flood events. Advances in Intelligent and Soft Computing 2012, 165-175. Springer, Berlin/Heidelberg. K. Deep, A. Nagar, M. Pant, J.C. Bansal (Eds.).
    • (2012) Advances in Intelligent and Soft Computing , pp. 165-175
    • Singh, R.1
  • 60
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K., Gosain A., Ramasastri K. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16(6):1325-1330.
    • (2002) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.1    Gosain, A.2    Ramasastri, K.3
  • 61
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari M.K., Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394(3-4):458-470.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 62
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modling using artificial neural networks and conceptual models
    • Tokar A.S., Markus M. Precipitation-runoff modling using artificial neural networks and conceptual models. J. Hydrol. Eng. 2000, 5:156-161.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 63
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang W., Ding J. Wavelet network model and its application to the prediction of hydrology. Nature Sci. 2003, 1(1):67-71.
    • (2003) Nature Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 64
  • 65
    • 33845328764 scopus 로고    scopus 로고
    • Bearing fault detection using wavelet packet transform of induction motor stator current
    • Zarei J., Poshtan J. Bearing fault detection using wavelet packet transform of induction motor stator current. Tribol. Int. 2007, 40(5):763-769.
    • (2007) Tribol. Int. , vol.40 , Issue.5 , pp. 763-769
    • Zarei, J.1    Poshtan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.