메뉴 건너뛰기




Volumn 515, Issue , 2014, Pages 47-58

Comparative study of different wavelet based neural network models for rainfall-runoff modeling

Author keywords

Artificial neural network; Rainfall runoff modeling; Transformation; Wavelet

Indexed keywords

DISCRETE WAVELET TRANSFORMS; METADATA; MULTILAYERS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; RAIN; RUNOFF; SIGNAL RECONSTRUCTION; WAVELET DECOMPOSITION;

EID: 84900000488     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2014.04.055     Document Type: Article
Times cited : (142)

References (43)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390(1-2):85-91.
    • (2010) J. Hydrol. , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 3
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem A., Campbell J., Murtagh F. Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Finance 1998, 6(2):5-12.
    • (1998) J. Comput. Intell. Finance , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 4
    • 33751401308 scopus 로고    scopus 로고
    • Giuliana Data pre-processing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Giuliana Data pre-processing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth Parts A/B/C 2006, 31(18):1164-1171.
    • (2006) Phys. Chem. Earth Parts A/B/C , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3
  • 5
    • 84990575058 scopus 로고
    • orthonormal bases of compactly supported wavelets
    • Daubechies, I., 1988. orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. XLI, 909-996.
    • (1988) Commun. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 6
    • 0012535694 scopus 로고
    • Ten lectures on wavelets (CBMS-NSF regional conference series in applied mathematics)
    • Daubechies, I., 1992. Ten lectures on wavelets (CBMS-NSF regional conference series in applied mathematics). Soc. Indust. Appl. Math.
    • (1992) Soc. Indust. Appl. Math.
    • Daubechies, I.1
  • 7
    • 27644470780 scopus 로고    scopus 로고
    • Assessing the performance of eight real-time updating models and procedures for the Brosna River
    • Goswami M., O'Connor K.M., Bhattarai K.P., Shamseldin A.Y. Assessing the performance of eight real-time updating models and procedures for the Brosna River. Hydrol. Earth Syst. Sci. 2005, 9(4).
    • (2005) Hydrol. Earth Syst. Sci. , vol.9 , Issue.4
    • Goswami, M.1    O'Connor, K.M.2    Bhattarai, K.P.3    Shamseldin, A.Y.4
  • 8
    • 34250967631 scopus 로고
    • Zur Theories der orthogonalen Funktionensysteme
    • Haar A. Zur Theories der orthogonalen Funktionensysteme. Math. Ann. 1910, 69(3):331-371.
    • (1910) Math. Ann. , vol.69 , Issue.3 , pp. 331-371
    • Haar, A.1
  • 9
    • 0027627965 scopus 로고
    • Working with neural networks
    • Hammerstrom D. Working with neural networks. Spectrum IEEE 1993, 30(7):46-53.
    • (1993) Spectrum IEEE , vol.30 , Issue.7 , pp. 46-53
    • Hammerstrom, D.1
  • 10
    • 33748316537 scopus 로고    scopus 로고
    • Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems
    • Jacquin A.P., Shamseldin A.Y. Development of rainfall-runoff models using Takagi-Sugeno fuzzy inference systems. J. Hydrol. 2006, 329(1):154-173.
    • (2006) J. Hydrol. , vol.329 , Issue.1 , pp. 154-173
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 11
    • 76749120626 scopus 로고    scopus 로고
    • Sensitivity analysis of Takagi-Sugeno-Kang rainfall-runoff fuzzy models
    • Jacquin A.P., Shamseldin A.Y. Sensitivity analysis of Takagi-Sugeno-Kang rainfall-runoff fuzzy models. Hydrol. Earth Syst. Sci. 2009, 13(1).
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , Issue.1
    • Jacquin, A.P.1    Shamseldin, A.Y.2
  • 12
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A., Kumar A.M. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. 2007, 7(2):585-592.
    • (2007) Appl. Soft Comput. , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 14
    • 0004003832 scopus 로고    scopus 로고
    • Foundations of neural networks, fuzzy systems, and knowledge engineering
    • United States of America, Massachusetts Institute of Technology.
    • Kasabov, N.K., 1996. Foundations of neural networks, fuzzy systems, and knowledge engineering. United States of America, Massachusetts Institute of Technology.
    • (1996)
    • Kasabov, N.K.1
  • 15
    • 78751591071 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for river stage forecasting
    • Kisi O. Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Resour. Manage 2011, 25(2):579-600.
    • (2011) Water Resour. Manage , vol.25 , Issue.2 , pp. 579-600
    • Kisi, O.1
  • 16
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • Kisi O., Shiri J., Tombul M. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 2013, 51:108-117.
    • (2013) Comput. Geosci. , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Tombul, M.3
  • 17
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat D., Ababou R., Mangin A. Rainfall-runoff relations for karstic springs. Part II: continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238(3):149-178.
    • (2000) J. Hydrol. , vol.238 , Issue.3 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 18
    • 0034931357 scopus 로고    scopus 로고
    • Introduction of wavelet analyses to rainfall/runoffs relationship for a Karstic Basin: the case of Licq-Atherey Karstic System (France)
    • Labat D., Ababou R., Mangin A. Introduction of wavelet analyses to rainfall/runoffs relationship for a Karstic Basin: the case of Licq-Atherey Karstic System (France). Ground Water 2001, 39(4):605-615.
    • (2001) Ground Water , vol.39 , Issue.4 , pp. 605-615
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 19
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness of fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of "goodness of fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35(1):233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 20
    • 84900008876 scopus 로고    scopus 로고
    • Applied Neural Networks for Signal Processing, Cambridge University Press.
    • Luo, F.-L., Unbehauen, R., Applied Neural Networks for Signal Processing, Cambridge University Press.
    • Luo, F.-L.1    Unbehauen, R.2
  • 21
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran R., Khosa R. Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci. 2012, 46:284-295.
    • (2012) Comput. Geosci. , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 22
    • 85131706346 scopus 로고    scopus 로고
    • Knowledge extraction from radial basis function networks and multilayer perceptron
    • In: International Joint Conference on Neural Networks, 1999. IJCNN'99. IEEE.
    • McGarry, K.J., Wermter, S., MacIntyre, J., 1999. Knowledge extraction from radial basis function networks and multilayer perceptron. In: International Joint Conference on Neural Networks, 1999. IJCNN'99. IEEE.
    • (1999)
    • McGarry, K.J.1    Wermter, S.2    MacIntyre, J.3
  • 23
    • 84900017317 scopus 로고
    • Principe d'incerlitude, bases hilbertiennes et algebres d'operateurs., Asterisque, Societe Mathematique de France, Paris, France.
    • Meyer, Y., 1985. Principe d'incerlitude, bases hilbertiennes et algebres d'operateurs., Asterisque, Societe Mathematique de France, Paris, France.
    • (1985)
    • Meyer, Y.1
  • 25
    • 84899996567 scopus 로고    scopus 로고
    • Wavelet Toolbox User's Guide, The Math Works, Inc., Apple Hill Drive, Natick, MA 01760-2098.
    • Misiti, Y., Oppenheim, G., Poggi, J.M., 2012(b). Wavelet Toolbox User's Guide, The Math Works, Inc., Apple Hill Drive, Natick, MA 01760-2098.
    • (2012)
    • Misiti, Y.1    Oppenheim, G.2    Poggi, J.M.3
  • 26
    • 0033021786 scopus 로고    scopus 로고
    • Wavelet analysis of rainfall-runoff variability isolating climatic from anthropogenic patterns
    • Nakken M. Wavelet analysis of rainfall-runoff variability isolating climatic from anthropogenic patterns. Environ. Modell. Softw. 1999, 14(4):283-295.
    • (1999) Environ. Modell. Softw. , vol.14 , Issue.4 , pp. 283-295
    • Nakken, M.1
  • 27
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part 1: A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models. Part 1: A discussion of principles. J. Hydrol. 1970, 10(3):282-290.
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 28
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22(3):466-472.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.3 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 29
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage 2009, 23(14):2877-2894.
    • (2009) Water Resour. Manage , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 30
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid Artificial Intelligence approaches for modelling rainfall-runoff process
    • Nourani V., Kisi Ö., Komasi M. Two hybrid Artificial Intelligence approaches for modelling rainfall-runoff process. J. Hydrol. 2011, 402(1-2):41-59.
    • (2011) J. Hydrol. , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 31
    • 84900007185 scopus 로고    scopus 로고
    • Knowledge extraction from artificial neural network for rainfall-runoff models combination system
    • Phukoetphim P., Shamseldin A.Y., Bruce W.M. Knowledge extraction from artificial neural network for rainfall-runoff models combination system. J. Hydrol. Eng 2013.
    • (2013) J. Hydrol. Eng
    • Phukoetphim, P.1    Shamseldin, A.Y.2    Bruce, W.M.3
  • 32
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajukar M.P., Kothyari U.C., Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 2004, 285(1-4):96-113.
    • (2004) J. Hydrol. , vol.285 , Issue.1-4 , pp. 96-113
    • Rajukar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 33
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modelling. J. Hydrol. 1997, 199(3-4):272-294.
    • (1997) J. Hydrol. , vol.199 , Issue.3-4 , pp. 272-294
    • Shamseldin, A.Y.1
  • 34
    • 0030131272 scopus 로고    scopus 로고
    • A nearest neighbour linear perturbation model for river flow forecasting
    • Shamseldin A.Y., O'Connor K.M. A nearest neighbour linear perturbation model for river flow forecasting. J. Hydrol. 1996, 179(1):353-375.
    • (1996) J. Hydrol. , vol.179 , Issue.1 , pp. 353-375
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 35
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combination method for the outputs of different rainfall-runoff models
    • Shamseldin A.Y., O'Connor K.M. A real-time combination method for the outputs of different rainfall-runoff models. Hydrol. Sci. J. 1999, 44(6):895-912.
    • (1999) Hydrol. Sci. J. , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 36
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff models
    • Shamseldin A.Y., O'Connor K.M., Liang G.C. Methods for combining the outputs of different rainfall-runoff models. J. Hydrol. 1997, 197(1-4):203-229.
    • (1997) J. Hydrol. , vol.197 , Issue.1-4 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 37
    • 0036698155 scopus 로고    scopus 로고
    • Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting
    • Shamseldin A.Y., Nasr A.E., O'Connor K.M. Comparison of different forms of the multi-layer feed-forward neural network method used for river flow forecasting. Hydrol. Earth Syst. Sci. Discuss. 2002, 6(4):671-684.
    • (2002) Hydrol. Earth Syst. Sci. Discuss. , vol.6 , Issue.4 , pp. 671-684
    • Shamseldin, A.Y.1    Nasr, A.E.2    O'Connor, K.M.3
  • 38
    • 34848868092 scopus 로고    scopus 로고
    • A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models
    • Shamseldin A.Y., O'Connor K.M., Nasr A.E. A comparative study of three neural network forecast combination methods for simulated river flows of different rainfall-runoff models. Hydrol. Sci. J. 2007, 52(5):896-916.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.5 , pp. 896-916
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Nasr, A.E.3
  • 39
    • 84861211172 scopus 로고    scopus 로고
    • Wavelet-ANN model for Flood Events
    • Singh R.M. Wavelet-ANN model for Flood Events. Adv. Intell. Soft Comput. 2012, 131:165-175.
    • (2012) Adv. Intell. Soft Comput. , vol.131 , pp. 165-175
    • Singh, R.M.1
  • 40
    • 33644636765 scopus 로고    scopus 로고
    • A comparative analysis of training methods for artificial neural network rainfall-runoff models
    • Srinivasulu S., Jain A. A comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl. Soft Comput. 2006, 6(3):295-306.
    • (2006) Appl. Soft Comput. , vol.6 , Issue.3 , pp. 295-306
    • Srinivasulu, S.1    Jain, A.2
  • 41
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari M.K., Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394(3-4):458-470.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 42
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4(3):232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 43
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang W., Ding J. Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 2003, 1(1):67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.