메뉴 건너뛰기




Volumn 357, Issue 3-4, 2008, Pages 337-348

Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane

Author keywords

Artificial neural networks; Event based; Hydrograph; Kinematic wave model; Rainfall runoff

Indexed keywords

DISCHARGE (FLUID MECHANICS); FLUID MECHANICS; FORECASTING; IMAGE CLASSIFICATION; KINEMATICS; NEURAL NETWORKS; RAIN; RUNOFF; WAVES;

EID: 47049118310     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2008.05.015     Document Type: Article
Times cited : (42)

References (26)
  • 1
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A., and Singh R.D. Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Wat. Res. Mgt. 18 (2004) 285-300
    • (2004) Wat. Res. Mgt. , vol.18 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 2
    • 0019115365 scopus 로고
    • Parametric-deterministic urban watershed model
    • Alley W.M., Dawdy D.R., and Schaake J.C. Parametric-deterministic urban watershed model. J. Hydraulic Eng. 106 HY5 (1980) 679-690
    • (1980) J. Hydraulic Eng. , vol.106 , Issue.HY5 , pp. 679-690
    • Alley, W.M.1    Dawdy, D.R.2    Schaake, J.C.3
  • 3
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural networks technique: a blue Nile catchment case study
    • Antar M.A., Elassiouti I., and Allam M.N. Rainfall-runoff modelling using artificial neural networks technique: a blue Nile catchment case study. Hydrol. Proc. 29 (2006) 1201-1216
    • (2006) Hydrol. Proc. , vol.29 , pp. 1201-1216
    • Antar, M.A.1    Elassiouti, I.2    Allam, M.N.3
  • 4
    • 11044233103 scopus 로고    scopus 로고
    • Hybrid neural network - finite element river flow model
    • Chua H.C.L., and Holz K.P. Hybrid neural network - finite element river flow model. J. Hydraulic Eng. 131 1 (2005) 52-59
    • (2005) J. Hydraulic Eng. , vol.131 , Issue.1 , pp. 52-59
    • Chua, H.C.L.1    Holz, K.P.2
  • 5
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phy. Geog. 25 1 (2001) 80-108
    • (2001) Prog. Phy. Geog. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 6
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural network for streamflow prediction
    • Dolling O.R., and Varas E.A. Artificial neural network for streamflow prediction. J. Hydraulic Res. 40 5 (2002) 547-554
    • (2002) J. Hydraulic Res. , vol.40 , Issue.5 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 7
    • 0022511581 scopus 로고
    • Roughness coefficients for routing surface runoff
    • Engman E.T. Roughness coefficients for routing surface runoff. J. Irr. Drain. Eng. 112 1 (1986) 39-53
    • (1986) J. Irr. Drain. Eng. , vol.112 , Issue.1 , pp. 39-53
    • Engman, E.T.1
  • 9
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical and artificial neural networks
    • Jain A., and Indurthy S.K.V.P. Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical and artificial neural networks. J. Hydrol. Eng. 8 2 (2003) 93-98
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, S.K.V.P.2
  • 10
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain A., and Srinivasulu S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 317 (2006) 291-306
    • (2006) J. Hydrol. , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 11
    • 0031997848 scopus 로고    scopus 로고
    • Effect of urbanization on runoff characteristics of the On-Cheon stream watershed in Pusan, Korea
    • Kang I.S., Park J.I., and Singh V.P. Effect of urbanization on runoff characteristics of the On-Cheon stream watershed in Pusan, Korea. Hydrol. Proc. 12 2 (1998) 351-363
    • (1998) Hydrol. Proc. , vol.12 , Issue.2 , pp. 351-363
    • Kang, I.S.1    Park, J.I.2    Singh, V.P.3
  • 12
    • 47049091480 scopus 로고    scopus 로고
    • MATLAB, 2002. Neural Network Toolbox Reference Manual, Release 13. The MathWorks Inc., Natick, MA.
    • MATLAB, 2002. Neural Network Toolbox Reference Manual, Release 13. The MathWorks Inc., Natick, MA.
  • 13
    • 33750122324 scopus 로고    scopus 로고
    • Evaluation of the Nash-Sutcliffe efficiency index
    • McCuen R.H., Knight Z., and Cutter A.G. Evaluation of the Nash-Sutcliffe efficiency index. J. Hydrol. Eng. 11 6 (2006) 597-602
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.6 , pp. 597-602
    • McCuen, R.H.1    Knight, Z.2    Cutter, A.G.3
  • 14
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns A.W., and Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. 41 3 (1996) 399-417
    • (1996) Hydrol. Sci. , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 15
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H., Hsu K.-L., Gupta H.V., and Sorooshian S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295 (2004) 246-262
    • (2004) J. Hydrol. , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.V.3    Sorooshian, S.4
  • 16
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models, part I - a discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models, part I - a discussion of principles. J. Hydrol. 10 (1970) 282-290
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 17
    • 0001884506 scopus 로고
    • Flood runoff
    • Maidment D.R. (Ed), McGraw-Hill, New York
    • Pilgrim D.H., and Cordery I. Flood runoff. In: Maidment D.R. (Ed). Handbook of Hydrology (1993), McGraw-Hill, New York 9.1-9.4
    • (1993) Handbook of Hydrology
    • Pilgrim, D.H.1    Cordery, I.2
  • 18
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • Pulido-Calvo I., and Portela M.M. Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J. Hydrol. 332 (2007) 1-15
    • (2007) J. Hydrol. , vol.332 , pp. 1-15
    • Pulido-Calvo, I.1    Portela, M.M.2
  • 19
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285 (2004) 96-113
    • (2004) J. Hydrol. , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 21
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modeling. J. Hydrol. 199 3-4 (1997) 272-294
    • (1997) J. Hydrol. , vol.199 , Issue.3-4 , pp. 272-294
    • Shamseldin, A.Y.1
  • 22
    • 34447334519 scopus 로고    scopus 로고
    • Predicting and forecasting flow discharge at sites receiving significant lateral inflow
    • Tayfur G., Moramarco T., and Singh V.P. Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrological Processes 21 (2007) 1848-1859
    • (2007) Hydrological Processes , vol.21 , pp. 1848-1859
    • Tayfur, G.1    Moramarco, T.2    Singh, V.P.3
  • 23
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur G., and Singh V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydrol. Eng. 132 12 (2006) 1321-1330
    • (2006) J. Hydrol. Eng. , vol.132 , Issue.12 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 24
    • 33750483993 scopus 로고    scopus 로고
    • Effect of loss model on evaluation of Manning roughness coefficient of experimental concrete catchment
    • Wong T.S.W., and Lim C.K. Effect of loss model on evaluation of Manning roughness coefficient of experimental concrete catchment. J. Hydrol. 331 1-2 (2006) 2050-2218
    • (2006) J. Hydrol. , vol.331 , Issue.1-2 , pp. 2050-2218
    • Wong, T.S.W.1    Lim, C.K.2
  • 25
    • 47049110663 scopus 로고    scopus 로고
    • Which model type is best for deterministic rainfall-runoff modelling?
    • Robinson L.N. (Ed), Nova Science Publishers, New York
    • Wong T.S.W., and Koh X.C. Which model type is best for deterministic rainfall-runoff modelling?. In: Robinson L.N. (Ed). Water Resources Research Progress (2008), Nova Science Publishers, New York 241-260
    • (2008) Water Resources Research Progress , pp. 241-260
    • Wong, T.S.W.1    Koh, X.C.2
  • 26
    • 18744366631 scopus 로고    scopus 로고
    • Artificial neural networks for forecasting watershed runoff and stream flows
    • Wu J.S., Han J., Annambhotla A., and Bryant S. Artificial neural networks for forecasting watershed runoff and stream flows. J. Hydrol. Eng. 10 3 (2005) 216-222
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.3 , pp. 216-222
    • Wu, J.S.1    Han, J.2    Annambhotla, A.3    Bryant, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.