-
1
-
-
4644274685
-
Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data
-
Agarwal A., and Singh R.D. Runoff modelling through back propagation artificial neural network with variable rainfall-runoff data. Wat. Res. Mgt. 18 (2004) 285-300
-
(2004)
Wat. Res. Mgt.
, vol.18
, pp. 285-300
-
-
Agarwal, A.1
Singh, R.D.2
-
2
-
-
0019115365
-
Parametric-deterministic urban watershed model
-
Alley W.M., Dawdy D.R., and Schaake J.C. Parametric-deterministic urban watershed model. J. Hydraulic Eng. 106 HY5 (1980) 679-690
-
(1980)
J. Hydraulic Eng.
, vol.106
, Issue.HY5
, pp. 679-690
-
-
Alley, W.M.1
Dawdy, D.R.2
Schaake, J.C.3
-
3
-
-
33645158824
-
Rainfall-runoff modelling using artificial neural networks technique: a blue Nile catchment case study
-
Antar M.A., Elassiouti I., and Allam M.N. Rainfall-runoff modelling using artificial neural networks technique: a blue Nile catchment case study. Hydrol. Proc. 29 (2006) 1201-1216
-
(2006)
Hydrol. Proc.
, vol.29
, pp. 1201-1216
-
-
Antar, M.A.1
Elassiouti, I.2
Allam, M.N.3
-
4
-
-
11044233103
-
Hybrid neural network - finite element river flow model
-
Chua H.C.L., and Holz K.P. Hybrid neural network - finite element river flow model. J. Hydraulic Eng. 131 1 (2005) 52-59
-
(2005)
J. Hydraulic Eng.
, vol.131
, Issue.1
, pp. 52-59
-
-
Chua, H.C.L.1
Holz, K.P.2
-
5
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
Dawson C.W., and Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phy. Geog. 25 1 (2001) 80-108
-
(2001)
Prog. Phy. Geog.
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
6
-
-
0038502200
-
Artificial neural network for streamflow prediction
-
Dolling O.R., and Varas E.A. Artificial neural network for streamflow prediction. J. Hydraulic Res. 40 5 (2002) 547-554
-
(2002)
J. Hydraulic Res.
, vol.40
, Issue.5
, pp. 547-554
-
-
Dolling, O.R.1
Varas, E.A.2
-
7
-
-
0022511581
-
Roughness coefficients for routing surface runoff
-
Engman E.T. Roughness coefficients for routing surface runoff. J. Irr. Drain. Eng. 112 1 (1986) 39-53
-
(1986)
J. Irr. Drain. Eng.
, vol.112
, Issue.1
, pp. 39-53
-
-
Engman, E.T.1
-
9
-
-
0037340658
-
Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical and artificial neural networks
-
Jain A., and Indurthy S.K.V.P. Comparative analysis of event-based rainfall-runoff modeling techniques - deterministic, statistical and artificial neural networks. J. Hydrol. Eng. 8 2 (2003) 93-98
-
(2003)
J. Hydrol. Eng.
, vol.8
, Issue.2
, pp. 93-98
-
-
Jain, A.1
Indurthy, S.K.V.P.2
-
10
-
-
28844473522
-
Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
-
Jain A., and Srinivasulu S. Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 317 (2006) 291-306
-
(2006)
J. Hydrol.
, vol.317
, pp. 291-306
-
-
Jain, A.1
Srinivasulu, S.2
-
11
-
-
0031997848
-
Effect of urbanization on runoff characteristics of the On-Cheon stream watershed in Pusan, Korea
-
Kang I.S., Park J.I., and Singh V.P. Effect of urbanization on runoff characteristics of the On-Cheon stream watershed in Pusan, Korea. Hydrol. Proc. 12 2 (1998) 351-363
-
(1998)
Hydrol. Proc.
, vol.12
, Issue.2
, pp. 351-363
-
-
Kang, I.S.1
Park, J.I.2
Singh, V.P.3
-
12
-
-
47049091480
-
-
MATLAB, 2002. Neural Network Toolbox Reference Manual, Release 13. The MathWorks Inc., Natick, MA.
-
MATLAB, 2002. Neural Network Toolbox Reference Manual, Release 13. The MathWorks Inc., Natick, MA.
-
-
-
-
13
-
-
33750122324
-
Evaluation of the Nash-Sutcliffe efficiency index
-
McCuen R.H., Knight Z., and Cutter A.G. Evaluation of the Nash-Sutcliffe efficiency index. J. Hydrol. Eng. 11 6 (2006) 597-602
-
(2006)
J. Hydrol. Eng.
, vol.11
, Issue.6
, pp. 597-602
-
-
McCuen, R.H.1
Knight, Z.2
Cutter, A.G.3
-
14
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
Minns A.W., and Hall M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. 41 3 (1996) 399-417
-
(1996)
Hydrol. Sci.
, vol.41
, Issue.3
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
15
-
-
3142538909
-
Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
-
Moradkhani H., Hsu K.-L., Gupta H.V., and Sorooshian S. Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol. 295 (2004) 246-262
-
(2004)
J. Hydrol.
, vol.295
, pp. 246-262
-
-
Moradkhani, H.1
Hsu, K.-L.2
Gupta, H.V.3
Sorooshian, S.4
-
16
-
-
0014776873
-
River flow forecasting through conceptual models, part I - a discussion of principles
-
Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models, part I - a discussion of principles. J. Hydrol. 10 (1970) 282-290
-
(1970)
J. Hydrol.
, vol.10
, pp. 282-290
-
-
Nash, J.E.1
Sutcliffe, J.V.2
-
17
-
-
0001884506
-
Flood runoff
-
Maidment D.R. (Ed), McGraw-Hill, New York
-
Pilgrim D.H., and Cordery I. Flood runoff. In: Maidment D.R. (Ed). Handbook of Hydrology (1993), McGraw-Hill, New York 9.1-9.4
-
(1993)
Handbook of Hydrology
-
-
Pilgrim, D.H.1
Cordery, I.2
-
18
-
-
33845620661
-
Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
-
Pulido-Calvo I., and Portela M.M. Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J. Hydrol. 332 (2007) 1-15
-
(2007)
J. Hydrol.
, vol.332
, pp. 1-15
-
-
Pulido-Calvo, I.1
Portela, M.M.2
-
19
-
-
0347135926
-
Modeling of the daily rainfall-runoff relationship with artificial neural network
-
Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285 (2004) 96-113
-
(2004)
J. Hydrol.
, vol.285
, pp. 96-113
-
-
Rajurkar, M.P.1
Kothyari, U.C.2
Chaube, U.C.3
-
21
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modeling
-
Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modeling. J. Hydrol. 199 3-4 (1997) 272-294
-
(1997)
J. Hydrol.
, vol.199
, Issue.3-4
, pp. 272-294
-
-
Shamseldin, A.Y.1
-
22
-
-
34447334519
-
Predicting and forecasting flow discharge at sites receiving significant lateral inflow
-
Tayfur G., Moramarco T., and Singh V.P. Predicting and forecasting flow discharge at sites receiving significant lateral inflow. Hydrological Processes 21 (2007) 1848-1859
-
(2007)
Hydrological Processes
, vol.21
, pp. 1848-1859
-
-
Tayfur, G.1
Moramarco, T.2
Singh, V.P.3
-
23
-
-
33751081243
-
ANN and fuzzy logic models for simulating event-based rainfall-runoff
-
Tayfur G., and Singh V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydrol. Eng. 132 12 (2006) 1321-1330
-
(2006)
J. Hydrol. Eng.
, vol.132
, Issue.12
, pp. 1321-1330
-
-
Tayfur, G.1
Singh, V.P.2
-
24
-
-
33750483993
-
Effect of loss model on evaluation of Manning roughness coefficient of experimental concrete catchment
-
Wong T.S.W., and Lim C.K. Effect of loss model on evaluation of Manning roughness coefficient of experimental concrete catchment. J. Hydrol. 331 1-2 (2006) 2050-2218
-
(2006)
J. Hydrol.
, vol.331
, Issue.1-2
, pp. 2050-2218
-
-
Wong, T.S.W.1
Lim, C.K.2
-
25
-
-
47049110663
-
Which model type is best for deterministic rainfall-runoff modelling?
-
Robinson L.N. (Ed), Nova Science Publishers, New York
-
Wong T.S.W., and Koh X.C. Which model type is best for deterministic rainfall-runoff modelling?. In: Robinson L.N. (Ed). Water Resources Research Progress (2008), Nova Science Publishers, New York 241-260
-
(2008)
Water Resources Research Progress
, pp. 241-260
-
-
Wong, T.S.W.1
Koh, X.C.2
-
26
-
-
18744366631
-
Artificial neural networks for forecasting watershed runoff and stream flows
-
Wu J.S., Han J., Annambhotla A., and Bryant S. Artificial neural networks for forecasting watershed runoff and stream flows. J. Hydrol. Eng. 10 3 (2005) 216-222
-
(2005)
J. Hydrol. Eng.
, vol.10
, Issue.3
, pp. 216-222
-
-
Wu, J.S.1
Han, J.2
Annambhotla, A.3
Bryant, S.4
|