메뉴 건너뛰기




Volumn 37, Issue 10, 2011, Pages 1692-1701

Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations

Author keywords

Forecast; Genetic programming; Groundwater depth fluctuation; Neuro fuzzy

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS MODEL; COEFFICIENT OF DETERMINATION; EXPLICIT EXPRESSIONS; FORECAST; NEURO-FUZZY; NEUROFUZZY SYSTEM; ROOT MEAN SQUARE ERRORS; SCATTER INDEX; WATER TABLE DEPTHS;

EID: 80052542665     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2010.11.010     Document Type: Article
Times cited : (123)

References (41)
  • 1
    • 43149114256 scopus 로고    scopus 로고
    • An application of artificial intelligence for rainfall runoff modeling
    • Aytek A., Alp M. An application of artificial intelligence for rainfall runoff modeling. Journal of Earth Systems Science 2008, 117(2):145-155.
    • (2008) Journal of Earth Systems Science , vol.117 , Issue.2 , pp. 145-155
    • Aytek, A.1    Alp, M.2
  • 2
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment modeling
    • Aytek A., Kisi O. A genetic programming approach to suspended sediment modeling. Journal of Hydrology 2008, 351:288-298.
    • (2008) Journal of Hydrology , vol.351 , pp. 288-298
    • Aytek, A.1    Kisi, O.2
  • 3
    • 0036416096 scopus 로고    scopus 로고
    • A data mining approach to modeling of water supply assessment
    • Babovic V., Drecourt J.P., Keijzer M., Hansen P.F. A data mining approach to modeling of water supply assessment. Urban Water 2002, 4:401-414.
    • (2002) Urban Water , vol.4 , pp. 401-414
    • Babovic, V.1    Drecourt, J.P.2    Keijzer, M.3    Hansen, P.F.4
  • 5
    • 0031715454 scopus 로고    scopus 로고
    • Modeling water table fluctuations by means of a stochastic differential equation
    • Bierkens M.F.P. Modeling water table fluctuations by means of a stochastic differential equation. Water Resources Research 1998, 34(10):2485-24499.
    • (1998) Water Resources Research , vol.34 , Issue.10 , pp. 2485-24499
    • Bierkens, M.F.P.1
  • 6
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part1-background and methodologies
    • Bowden G.J., Maier H.R., Dandy G.C. Input determination for neural network models in water resources applications. Part1-background and methodologies. Journal of hydrology 2005, 301:75-92.
    • (2005) Journal of hydrology , vol.301 , pp. 75-92
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 8
    • 0344984214 scopus 로고    scopus 로고
    • Artificial neural network approach for predicting transient water levels multi layered ground water system under variable state, pumping and climatic conditions
    • Coppola E., Szidarovszky F., Poulton M., Charles E. Artificial neural network approach for predicting transient water levels multi layered ground water system under variable state, pumping and climatic conditions. Journal of Hydrological Engineering 2003, 80(6):348-359.
    • (2003) Journal of Hydrological Engineering , vol.80 , Issue.6 , pp. 348-359
    • Coppola, E.1    Szidarovszky, F.2    Poulton, M.3    Charles, E.4
  • 9
    • 15944365544 scopus 로고    scopus 로고
    • A neural network model for predicting aquifer water level elevations
    • Coppola E., Rana A., Poulton M., Szidarovszky F., Uhl V. A neural network model for predicting aquifer water level elevations. Ground Water 2005, 43(2):231-241.
    • (2005) Ground Water , vol.43 , Issue.2 , pp. 231-241
    • Coppola, E.1    Rana, A.2    Poulton, M.3    Szidarovszky, F.4    Uhl, V.5
  • 10
    • 33846235962 scopus 로고    scopus 로고
    • Multi objective analysis of a public wellfield using artificial neural networks
    • Coppola E., Szidarovszky F., Davis D., Spayad S., Poulton M., Roman E. Multi objective analysis of a public wellfield using artificial neural networks. Ground Water 2007, 45(1):53-61.
    • (2007) Ground Water , vol.45 , Issue.1 , pp. 53-61
    • Coppola, E.1    Szidarovszky, F.2    Davis, D.3    Spayad, S.4    Poulton, M.5    Roman, E.6
  • 11
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P., Anctil F., Aravena R., Bobee B. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 2001, 37(4):885-896.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 12
    • 20344369583 scopus 로고    scopus 로고
    • Ground water level forecasting using artificial neural networks
    • Daliakopoulos I., Coulibaly P., Tsanis I. Ground water level forecasting using artificial neural networks. Journal of Hydrology 2005, 309(1-4):229-240.
    • (2005) Journal of Hydrology , vol.309 , Issue.1-4 , pp. 229-240
    • Daliakopoulos, I.1    Coulibaly, P.2    Tsanis, I.3
  • 13
    • 37549038684 scopus 로고    scopus 로고
    • Neural networks to simulate regional groundwater levels affected by human activities
    • Feng.S., Kang S., Huo Z., Chen S., Mao X. Neural networks to simulate regional groundwater levels affected by human activities. Ground Water 2008, 46(1):80-90.
    • (2008) Ground Water , vol.46 , Issue.1 , pp. 80-90
    • Feng, S.1    Kang, S.2    Huo, Z.3    Chen, S.4    Mao, X.5
  • 14
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 2001, 13(2):87-129.
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 15
    • 80052536511 scopus 로고    scopus 로고
    • Gene expression programming in problem solving. In: 6th online world confrence on soft computing in industrial applications (Invited Tutorial).
    • Ferreira, C., 2001b. Gene expression programming in problem solving. In: 6th online world confrence on soft computing in industrial applications (Invited Tutorial).
    • (2001)
    • Ferreira, C.1
  • 17
    • 77950864370 scopus 로고    scopus 로고
    • Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks
    • Ghorbani M.A., Khatibi R., Aytek A., Makarynskyy O., Shiri J. Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Computers & Geosciences 2010, 2010). 10.1016/j.cageo.2009.09.14.
    • (2010) Computers & Geosciences
    • Ghorbani, M.A.1    Khatibi, R.2    Aytek, A.3    Makarynskyy, O.4    Shiri, J.5
  • 19
    • 0001283907 scopus 로고
    • Time series modeling of water resources and environmental systems
    • Elsevier Science: New York
    • Hipel K.W., Mc Leod A.I. Time series modeling of water resources and environmental systems. Development in Water Science 1994, 45. Elsevier Science: New York.
    • (1994) Development in Water Science , vol.45
    • Hipel, K.W.1    Mc Leod, A.I.2
  • 20
  • 24
    • 10244243705 scopus 로고    scopus 로고
    • Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey
    • Keskin M.E., Terzi O., Taylan D. Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey. Hydrological Sciences Journal 2004, 49(6):1001-1010.
    • (2004) Hydrological Sciences Journal , vol.49 , Issue.6 , pp. 1001-1010
    • Keskin, M.E.1    Terzi, O.2    Taylan, D.3
  • 25
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi O. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 2005, 50(4):683-696.
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 26
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using a neuro-fuzzy computing technique
    • Kisi O. Daily pan evaporation modeling using a neuro-fuzzy computing technique. Journal of Hydrology 2006, 329:636-646.
    • (2006) Journal of Hydrology , vol.329 , pp. 636-646
    • Kisi, O.1
  • 27
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms.
    • Kisi O. Streamflow forecasting using different artificial neural network algorithms. ASCE J. Hydrol. Eng. 2007, 12(5):532-539.
    • (2007) ASCE J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 28
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy computing technique for evapotranspiration estimation.
    • Kisi O., Ozturk O. Adaptive neuro-fuzzy computing technique for evapotranspiration estimation. ASCE J. Irr. Drain. Eng. 2007, 133(4):368-379.
    • (2007) ASCE J. Irr. Drain. Eng. , vol.133 , Issue.4 , pp. 368-379
    • Kisi, O.1    Ozturk, O.2
  • 29
    • 65649154545 scopus 로고    scopus 로고
    • Evolutionary fuzzy models for river suspended sediment cpncentration estimation
    • Kisi O. Evolutionary fuzzy models for river suspended sediment cpncentration estimation. Journal of Hydrology 2009, 372:68-79.
    • (2009) Journal of Hydrology , vol.372 , pp. 68-79
    • Kisi, O.1
  • 30
    • 80052554011 scopus 로고    scopus 로고
    • A comparison of genetic programming and ANFIS in forecasting daily, monthly and daily stremflows. In: Proceedings of the international symposium on innovations in intelligent systems and applications. 21-24 June 2010, Kayseri and Cappadocia, Turkey.
    • Kisi, O., Shiri, J. 2010. A comparison of genetic programming and ANFIS in forecasting daily, monthly and daily stremflows. In: Proceedings of the international symposium on innovations in intelligent systems and applications. 21-24 June 2010, Kayseri and Cappadocia, Turkey, pp. 118-122.
    • (2010) , pp. 118-122
    • Kisi, O.1    Shiri, J.2
  • 32
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research 1999, 35(1):233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 34
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kisi O. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology 2007, 342:199-212.
    • (2007) Journal of Hydrology , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 35
    • 80052535349 scopus 로고    scopus 로고
    • Covariant parsimony pressure for genetic programming. Technical report CES-480, ISSN:1744-8050.
    • Ploi, R., McPhee, N.F. 2008. Covariant parsimony pressure for genetic programming. Technical report CES-480, ISSN:1744-8050.
    • (2008)
    • Ploi, R.1    McPhee, N.F.2
  • 37
    • 34548134022 scopus 로고    scopus 로고
    • A hybrid artifiucial neural network-numerical model for groundwater problems
    • Szidarovszky F., Coppola E., Long J., Hall A., Poulton M. A hybrid artifiucial neural network-numerical model for groundwater problems. Ground Water 2007, 45(5):590-600.
    • (2007) Ground Water , vol.45 , Issue.5 , pp. 590-600
    • Szidarovszky, F.1    Coppola, E.2    Long, J.3    Hall, A.4    Poulton, M.5
  • 38
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on System, Man and Cybernetics 1985, 15(1):116-132.
    • (1985) IEEE Transactions on System, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 40
    • 60949086949 scopus 로고    scopus 로고
    • Application and comparison of two prediction models for groundwater levels: a case study in Western Jilin Province, China
    • Yang Z.P., Lu W.X., Long Y.Q., Li P. Application and comparison of two prediction models for groundwater levels: a case study in Western Jilin Province, China. Journal of Arid Environments 2009, 73:487-492.
    • (2009) Journal of Arid Environments , vol.73 , pp. 487-492
    • Yang, Z.P.1    Lu, W.X.2    Long, Y.Q.3    Li, P.4
  • 41
    • 77957982491 scopus 로고    scopus 로고
    • Different types of learning algorithms of artificial neural network (ANN) models for prediction of gross calorific value of coals
    • Yilmaz I., Erik N.Y., Kaynar O. Different types of learning algorithms of artificial neural network (ANN) models for prediction of gross calorific value of coals. Scientific Researches and Essays 2010, 5(16):2242-2249.
    • (2010) Scientific Researches and Essays , vol.5 , Issue.16 , pp. 2242-2249
    • Yilmaz, I.1    Erik, N.Y.2    Kaynar, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.