-
1
-
-
37449014995
-
-
P. Andersen, R. Morris, D. Amaral, T. Bliss, and J. O'Keefe, Eds.. London, U.K.: Oxford Univ. Press
-
The Hippocampus Book, P. Andersen, R. Morris, D. Amaral, T. Bliss, and J. O'Keefe, Eds.. London, U.K.: Oxford Univ. Press, 2007.
-
(2007)
The Hippocampus Book
-
-
-
2
-
-
0015799240
-
Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path
-
July
-
T. V. P. Bliss and T. Lømo, "Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path," J. Phys., vol. 232, no. 2, pp. 331-356, July 1973.
-
(1973)
J. Phys.
, vol.232
, Issue.2
, pp. 331-356
-
-
Bliss, T.V.P.1
Lømo, T.2
-
3
-
-
0004230131
-
-
D. Hebb, Ed. New York, NY, USA: Wiley
-
The Organization of Behavior, D. Hebb, Ed. New York, NY, USA: Wiley, 1994.
-
(1994)
The Organization of Behavior
-
-
-
4
-
-
85028209790
-
-
M. Arbib and J. Bonaiuto, Eds. Cambridge, MA, USA: MIT Press, ch. 9, to appear in: From Neuron to Cognition via Computational Neuroscience
-
W. Gerstner, Hebbian Learning and Plasticity, M. Arbib and J. Bonaiuto, Eds. Cambridge, MA, USA: MIT Press, ch. 9, to appear in: From Neuron to Cognition via Computational Neuroscience.
-
Hebbian Learning and Plasticity
-
-
Gerstner, W.1
-
5
-
-
82755181118
-
Voltage and spike timing interact in STDP - A unified model
-
July
-
C. Clopath and W. Gerstner, "Voltage and spike timing interact in STDP - A unified model," Front Synaptic Neurosci., vol. 21, no. 2, p. 25, July 2010.
-
(2010)
Front Synaptic Neurosci.
, vol.21
, Issue.2
, pp. 25
-
-
Clopath, C.1
Gerstner, W.2
-
6
-
-
79959203683
-
Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models
-
Sept.
-
M. Graupner and N. Brunel, "Mechanisms of induction and maintenance of spike-timing dependent plasticity in biophysical synapse models," Front. Comput. Neurosci., vol. 17, no. 4, Sept. 2010.
-
(2010)
Front. Comput. Neurosci.
, vol.17
, Issue.4
-
-
Graupner, M.1
Brunel, N.2
-
7
-
-
0025507283
-
Neuromorphic electronic systems
-
C. Mead, "Neuromorphic electronic systems," Proc. IEEE, vol. 78, pp. 1629-1636, 1990.
-
(1990)
Proc. IEEE
, vol.78
, pp. 1629-1636
-
-
Mead, C.1
-
8
-
-
84930067130
-
-
R. Tetzlaff, Ed. Berlin, Germany: Springer
-
Memristors and Memristive Systems, R. Tetzlaff, Ed. Berlin, Germany: Springer, 2014.
-
(2014)
Memristors and Memristive Systems
-
-
-
9
-
-
84869487445
-
Advances in neuromorphic memristors science and applications
-
R. Kozma, R. E. Pino, and G. E. Paziena, Eds., "Advances in neuromorphic memristors science and applications," Springer Series in Cognitive and Neural Systems, vol. 4, 2012.
-
(2012)
Springer Series in Cognitive and Neural Systems
, vol.4
-
-
Kozma, R.1
Pino, R.E.2
Paziena, G.E.3
-
10
-
-
84873630235
-
Towards artificial neurons and synapses: Materials point of view
-
D. S. Jeong, I. Kim, M. Ziegler, and H. Kohlstedt, "Towards artificial neurons and synapses: Materials point of view," RSC Adv., vol. 3, pp. 3169-3183, 2013.
-
(2013)
RSC Adv.
, vol.3
, pp. 3169-3183
-
-
Jeong, D.S.1
Kim, I.2
Ziegler, M.3
Kohlstedt, H.4
-
11
-
-
77951576344
-
Learning abilities achieved by a single solid-state atomic switch
-
S. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J. K. Gimzewski, and M. Aono, "Learning abilities achieved by a single solid-state atomic switch," Adv. Mater., vol. 22, p. 1831, 2010.
-
(2010)
Adv. Mater.
, vol.22
, pp. 1831
-
-
Hasegawa, S.1
Ohno, T.2
Terabe, K.3
Tsuruoka, T.4
Nakayama, T.5
Gimzewski, J.K.6
Aono, M.7
-
12
-
-
79960642436
-
Short-term plasticity and long-term potentiation mimicked in single inorganic synapses
-
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, "Short-term plasticity and long-term potentiation mimicked in single inorganic synapses," Nature Mater., vol. 10, p. 591, 2011.
-
(2011)
Nature Mater.
, vol.10
, pp. 591
-
-
Ohno, T.1
Hasegawa, T.2
Tsuruoka, T.3
Terabe, K.4
Gimzewski, J.K.5
Aono, M.6
-
13
-
-
77951026760
-
Nanoscale memristor device as synapse in neuromorphic systems
-
S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett., vol. 10, p. 1297, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 1297
-
-
Jo, S.H.1
Chang, T.2
Ebong, I.3
Bhadviya, B.B.4
Mazumder, P.5
Lu, W.6
-
14
-
-
84911907856
-
Multiprotocol-induced plasticity in artificial synapses
-
V. Kornijcuk, O. Kavehei, H. Lim, J. Y. Seok, S. K. Kim, I. Kim, W. S. Lee, B. J. Choi, and D. S. Jeong, "Multiprotocol-induced plasticity in artificial synapses," Nanoscale, vol. 6, pp. 15151-15160, 2014.
-
(2014)
Nanoscale
, vol.6
, pp. 15151-15160
-
-
Kornijcuk, V.1
Kavehei, O.2
Lim, H.3
Seok, J.Y.4
Kim, S.K.5
Kim, I.6
Lee, W.S.7
Choi, B.J.8
Jeong, D.S.9
-
15
-
-
84899056516
-
Enabling an Integrated Rate-Temporal Learning Scheme on Memristor
-
W. He, K. Huang, N. Ning, K. Ramanathan, G. Li, and Y. Jiang, Enabling an Integrated Rate-Temporal Learning Scheme on Memristor, Scientific Rep., 2014, vol. 4, p. 4755.
-
(2014)
Scientific Rep.
, vol.4
, pp. 4755
-
-
He, W.1
Huang, K.2
Ning, N.3
Ramanathan, K.4
Li, G.5
Jiang, Y.6
-
16
-
-
84900992903
-
Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems
-
Y. Li, Y. Zhong, J. Zhang, L. Xu, Q. Wang, and H. Sun, Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems, Scientific Rep., 2014, vol. 4, p. 4906, doi:10. 1038/srep04906.
-
(2014)
Scientific Rep.
, vol.4
, pp. 4906
-
-
Li, Y.1
Zhong, Y.2
Zhang, J.3
Xu, L.4
Wang, Q.5
Sun, H.6
-
17
-
-
79956129424
-
Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device
-
K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K. P. Biju, J. Kong, K. Lee, B. Lee, and H. Hwang, "Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device," Nanotechnol., vol. 22, p. 254023, 2011.
-
(2011)
Nanotechnol.
, vol.22
, pp. 254023
-
-
Seo, K.1
Kim, I.2
Jung, S.3
Jo, M.4
Park, S.5
Park, J.6
Shin, J.7
Biju, K.P.8
Kong, J.9
Lee, K.10
Lee, B.11
Hwang, H.12
-
18
-
-
84883517906
-
Synaptic electronics: Materials, devices and applications
-
D. Kuzum, S. Yu, and H.-S. P. Wong, "Synaptic electronics: Materials, devices and applications," Nanotechnol., vol. 24, p. 382001, 2013.
-
(2013)
Nanotechnol.
, vol.24
, pp. 382001
-
-
Kuzum, D.1
Yu, S.2
Wong, H.-S.P.3
-
19
-
-
84861089198
-
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
-
D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H.-S. Philip Wong, "Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing," Nano Lett., vol. 12, pp. 2179-2186, 2012.
-
(2012)
Nano Lett.
, vol.12
, pp. 2179-2186
-
-
Kuzum, D.1
Jeyasingh, R.G.D.2
Lee, B.3
Philip Wong, H.-S.4
-
20
-
-
84878952572
-
STDP and STDP variations with memristors for spiking neuromorphic learning systems
-
T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-Barranco, "STDP and STDP variations with memristors for spiking neuromorphic learning systems," Front. Neurosci., vol. 7, 2013.
-
(2013)
Front. Neurosci.
, vol.7
-
-
Serrano-Gotarredona, T.1
Masquelier, T.2
Prodromakis, T.3
Indiveri, G.4
Linares-Barranco, B.5
-
22
-
-
84860660887
-
On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex
-
C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco, T. Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, "On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex," Front. Neurosci., vol. 5, p. 26, 2011.
-
(2011)
Front. Neurosci.
, vol.5
, pp. 26
-
-
Zamarreño-Ramos, C.1
Camuñas-Mesa, L.A.2
Pérez-Carrasco, J.A.3
Masquelier, T.4
Serrano-Gotarredona, T.5
Linares-Barranco, B.6
-
23
-
-
85028224005
-
-
Feb. complete issue
-
MRS Bulletin, Feb. 2012, vol. 37, complete issue.
-
(2012)
MRS Bulletin
, vol.37
-
-
-
24
-
-
35748974883
-
Nanoionics-based resistive switching memories
-
R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Mater., vol. 6, p. 833, 2007.
-
(2007)
Nature Mater.
, vol.6
, pp. 833
-
-
Waser, R.1
Aono, M.2
-
25
-
-
55849107152
-
An organic/Si nanowire hybrid field configurable transistor
-
Q. Lai, Z. Li, L. Zhang, X. Li, W. F. Stickle, Z. Zhu, Z. Gu, T. I. Kamins, R. S. Williams, and Y. Chen, "An organic/Si nanowire hybrid field configurable transistor," Nano Lett., vol. 8, p. 876, 2008.
-
(2008)
Nano Lett.
, vol.8
, pp. 876
-
-
Lai, Q.1
Li, Z.2
Zhang, L.3
Li, X.4
Stickle, W.F.5
Zhu, Z.6
Gu, Z.7
Kamins, T.I.8
Williams, R.S.9
Chen, Y.10
-
26
-
-
78449291907
-
Graphene oxide thin films for flexible nonvolatile memory applications
-
H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, "Graphene oxide thin films for flexible nonvolatile memory applications," Nano Lett., vol. 10, p. 4381, 2010.
-
(2010)
Nano Lett.
, vol.10
, pp. 4381
-
-
Jeong, H.Y.1
Kim, J.Y.2
Kim, J.W.3
Hwang, J.O.4
Kim, J.E.5
Lee, J.Y.6
Yoon, T.H.7
Cho, B.J.8
Kim, S.O.9
Ruoff, R.S.10
Choi, S.Y.11
-
27
-
-
84871762797
-
Memristive operation mode of floating gate transistors: A two-terminal MemFlash-cell
-
M. Ziegler, M. Oberländer, D. Schroeder, W. H. Krautschneider, and H. Kohlstedt, "Memristive operation mode of floating gate transistors: A two-terminal MemFlash-cell," Appl. Phys. Lett., vol. 101, p. 263504, 2012.
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 263504
-
-
Ziegler, M.1
Oberländer, M.2
Schroeder, D.3
Krautschneider, W.H.4
Kohlstedt, H.5
-
28
-
-
84888356867
-
Mimic synaptic behavior with a single floating gate transistor: A MemFlash synapse
-
M. Ziegler and H. Kohlstedt, "Mimic synaptic behavior with a single floating gate transistor: A MemFlash synapse," J. Appl. Phys., vol. 114, p. 194506, 2013.
-
(2013)
J. Appl. Phys.
, vol.114
, pp. 194506
-
-
Ziegler, M.1
Kohlstedt, H.2
-
29
-
-
84907202506
-
MemFlash device: Floating gate transistors as memristive devices for neuromorphic computing
-
C. Riggert, M. Ziegler, D. Schroeder, W. H. Krautschneider, and H. Kohlstedt, "MemFlash device: Floating gate transistors as memristive devices for neuromorphic computing," Semicond. Sci. Technol., vol. 29, p. 104011, 2014.
-
(2014)
Semicond. Sci. Technol.
, vol.29
, pp. 104011
-
-
Riggert, C.1
Ziegler, M.2
Schroeder, D.3
Krautschneider, W.H.4
Kohlstedt, H.5
-
30
-
-
43049126833
-
The missing memristor found
-
D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, p. 80, 2008.
-
(2008)
Nature
, vol.453
, pp. 80
-
-
Strukov, D.B.1
Snider, G.S.2
Stewart, D.R.3
Williams, R.S.4
-
31
-
-
0015127532
-
Memristor - The missing circuit element
-
L. O. Chua, "Memristor - The missing circuit element," IEEE Trans. Circuit Theory, vol. 18, p. 507, 1971.
-
(1971)
IEEE Trans. Circuit Theory
, vol.18
, pp. 507
-
-
Chua, L.O.1
-
32
-
-
0020074887
-
Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex
-
E. L. Bienenstock, L. N. Cooper, and P. W. Munro, "Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex," J. Neurosci., vol. 2, p. 32, 1982.
-
(1982)
J. Neurosci.
, vol.2
, pp. 32
-
-
Bienenstock, E.L.1
Cooper, L.N.2
Munro, P.W.3
-
33
-
-
84883632633
-
Short-term memory of TiO-based electrochemical capacitors: Empirical analysis with adoption of a sliding threshold
-
Sept.
-
H. Lim, I. Kim, J.-S. Kim, C. S. Hwang, and D. S. Jeong, "Short-term memory of TiO-based electrochemical capacitors: Empirical analysis with adoption of a sliding threshold," Nanotechnol., vol. 24, p. 384005, Sept. 2013.
-
(2013)
Nanotechnol.
, vol.24
, pp. 384005
-
-
Lim, H.1
Kim, I.2
Kim, J.-S.3
Hwang, C.S.4
Jeong, D.S.5
-
34
-
-
84871816187
-
-
Ph.D. dissertation, Christian-Albrechts-University of Kiel, Kiel, Gemany
-
L. Nebrich, "Entwicklung Eines Makromodells Für Die Schaltungs-Und Zuverlässigkeitssimulation Von EEPROM-Zellen Im Erhöhten Temperaturbereich," Ph.D. dissertation, Christian-Albrechts-University of Kiel, Kiel, Gemany, 2001.
-
(2001)
Entwicklung Eines Makromodells Für Die Schaltungs-Und Zuverlässigkeitssimulation von EEPROM-Zellen im Erhöhten Temperaturbereich
-
-
Nebrich, L.1
-
35
-
-
78649885498
-
Interface-engineered amorphous TiO-based resistive memory devices
-
Nov.
-
H. J. Jeong, J. Y. Lee, and S.-Y. Choi, "Interface-engineered amorphous TiO-based resistive memory devices," Adv. Func. Mater., vol. 20, p. 3912, Nov. 2010.
-
(2010)
Adv. Func. Mater.
, vol.20
, pp. 3912
-
-
Jeong, H.J.1
Lee, J.Y.2
Choi, S.-Y.3
-
36
-
-
79959342648
-
Synaptic behaviors and modeling of a metal oxide memristive device
-
T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, "Synaptic behaviors and modeling of a metal oxide memristive device," Appl. Phys. Mater. Sci. Process., vol. 102, pp. 857-863, 2011.
-
(2011)
Appl. Phys. Mater. Sci. Process.
, vol.102
, pp. 857-863
-
-
Chang, T.1
Jo, S.-H.2
Kim, K.-H.3
Sheridan, P.4
Gaba, S.5
Lu, W.6
-
37
-
-
70350457460
-
SPICE model of memristor with non-linear dopant drift
-
Z. Biolek, D. Biolek, and V. Biolkova, "SPICE model of memristor with non-linear dopant drift," Radioeng., vol. 18, no. 2, pp. 210-214, 2009.
-
(2009)
Radioeng.
, vol.18
, Issue.2
, pp. 210-214
-
-
Biolek, Z.1
Biolek, D.2
Biolkova, V.3
-
38
-
-
84900021688
-
Modular structure of compact model for memristive devices
-
L. Zheng, S. Shin, and S.-M. S. Kang, "Modular structure of compact model for memristive devices," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, p. 1390, 2014.
-
(2014)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.61
, pp. 1390
-
-
Zheng, L.1
Shin, S.2
Kang, S.-M.S.3
-
39
-
-
84893855405
-
A SPICE model of resistive random access memory for large-scale memory array simulation
-
H. Li, P. Huang, B. Gao, B. Chen, X. Liu, and J. Kang, "A SPICE model of resistive random access memory for large-scale memory array simulation," IEEE Electron Device Lett., vol. 35, p. 211, 2014.
-
(2014)
IEEE Electron Device Lett.
, vol.35
, pp. 211
-
-
Li, H.1
Huang, P.2
Gao, B.3
Chen, B.4
Liu, X.5
Kang, J.6
-
40
-
-
80052924441
-
On the stochastic nature of resistive switching in Cu doped Ge Se based memory devices
-
R. Soni et al., "On the stochastic nature of resistive switching in Cu doped Ge Se based memory devices," J. Appl. Phys., vol. 110, p. 054509, 2011.
-
(2011)
J. Appl. Phys.
, vol.110
, pp. 054509
-
-
Soni, R.1
-
41
-
-
84863714996
-
An electronic version of Pavlov's dog
-
M. Ziegler, R. Soni, T. Patelczyk, M. Ignatow, T. Bartsch, P. Meuffels, and H. Kohlstedt, "An electronic version of Pavlov's dog," Adv. Func. Mater., vol. 22, pp. 2744-2749, 2012.
-
(2012)
Adv. Func. Mater.
, vol.22
, pp. 2744-2749
-
-
Ziegler, M.1
Soni, R.2
Patelczyk, T.3
Ignatow, M.4
Bartsch, T.5
Meuffels, P.6
Kohlstedt, H.7
-
42
-
-
84893736641
-
An electronic implementation of amoeba anticipation
-
M. Ziegler, K. Ochs, M. Hansen, and H. Kohlstedt, "An electronic implementation of amoeba anticipation," Appl. Phys. A., vol. 114, pp. 565-570, 2014.
-
(2014)
Appl. Phys. A.
, vol.114
, pp. 565-570
-
-
Ziegler, M.1
Ochs, K.2
Hansen, M.3
Kohlstedt, H.4
-
43
-
-
70249115683
-
Memristive model of amoeba learning
-
Y. V. Pershin, S. La Fontaine, and M. Di Ventra, "Memristive model of amoeba learning," Phys. Rev. E, vol. 80, p. 021926, 2009.
-
(2009)
Phys. Rev. e
, vol.80
, pp. 021926
-
-
Pershin, Y.V.1
La Fontaine, S.2
Di Ventra, M.3
-
44
-
-
84877794440
-
Pavlov's dog associative learning demonstrated on synaptic-like organic transistors
-
O. Bichler, W. Zhao, F. Alibart, S. Pleutin, S. Lenfant, D. Vuillaume, and C. Gamrat, "Pavlov's dog associative learning demonstrated on synaptic-like organic transistors," Neural Comput., vol. 25, p. 549, 2013.
-
(2013)
Neural Comput.
, vol.25
, pp. 549
-
-
Bichler, O.1
Zhao, W.2
Alibart, F.3
Pleutin, S.4
Lenfant, S.5
Vuillaume, D.6
Gamrat, C.7
-
45
-
-
84904736414
-
Stochastic learning in oxide binary synaptic device for neuromorphic computing
-
S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, "Stochastic learning in oxide binary synaptic device for neuromorphic computing," Front. Neurosci., vol. 7, p. 186, 2013.
-
(2013)
Front. Neurosci.
, vol.7
, pp. 186
-
-
Yu, S.1
Gao, B.2
Fang, Z.3
Yu, H.4
Kang, J.5
Wong, H.-S.P.6
-
46
-
-
84875158827
-
A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation
-
S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, "A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation," Adv. Mater., vol. 25, pp. 1774-1779, 2013.
-
(2013)
Adv. Mater.
, vol.25
, pp. 1774-1779
-
-
Yu, S.1
Gao, B.2
Fang, Z.3
Yu, H.4
Kang, J.5
Wong, H.-S.P.6
-
47
-
-
84883494649
-
Spike-timing dependent plasticity in a transistor-selected resistive switching memory
-
384012
-
S. Ambrogio, S. Balatti, F. Nardi, S. Facchinetti, and D. Ielmini, "Spike-timing dependent plasticity in a transistor-selected resistive switching memory," Nanotechnol., vol. 24, no. 384012, 2013.
-
(2013)
Nanotechnol.
, vol.24
-
-
Ambrogio, S.1
Balatti, S.2
Nardi, F.3
Facchinetti, S.4
Ielmini, D.5
-
48
-
-
80054729052
-
Simulation of a memristorbased spiking neural network immune to device variations
-
Aug.
-
D. Querlioz, O. Bichler, and C. Gamrat, "Simulation of a memristorbased spiking neural network immune to device variations," in Proc. Int. Joint Conf. Neural Networks, Aug. 2011, pp. 1775-1781.
-
(2011)
Proc. Int. Joint Conf. Neural Networks
, pp. 1775-1781
-
-
Querlioz, D.1
Bichler, O.2
Gamrat, C.3
-
49
-
-
1242335725
-
Flash memories
-
Weinheim, Germany: Wiley, ch. 26
-
V. Zhirnov and T. Mikolajick, , R. Waser, Ed., "Flash memories," in Nanoelectronics and Information Technology. Weinheim, Germany: Wiley, 2012, ch. 26, p. 621.
-
(2012)
Nanoelectronics and Information Technology
, pp. 621
-
-
Zhirnov, V.1
Mikolajick, T.2
Waser, R.3
|