메뉴 건너뛰기




Volumn 29, Issue 1, 2011, Pages 11-25

Artificial neural networks approach in evapotranspiration modeling: A review

Author keywords

[No Author keywords available]

Indexed keywords

EVAPOTRANSPIRATION;

EID: 78650734426     PISSN: 03427188     EISSN: 14321319     Source Type: Journal    
DOI: 10.1007/s00271-010-0230-8     Document Type: Review
Times cited : (186)

References (56)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural network in hydrology. I: preliminary concepts
    • ASCE Task Committee on Application of Neural Networks in Hydrology
    • ASCE Task Committee on Application of Neural Networks in Hydrology (2000a) Artificial neural network in hydrology. I: preliminary concepts. J Hydrol Eng ASCE 5(2): 115-123.
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural network in hydrology. II: hydrologic application
    • ASCE Task Committee on Application of Neural Networks in Hydrology
    • ASCE Task Committee on Application of Neural Networks in Hydrology (2000b) Artificial neural network in hydrology. II: hydrologic application. J Hydrol Eng ASCE 5(2): 124-137.
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0034163592 scopus 로고    scopus 로고
    • Estimating daily pan evaporation with artificial neural networks
    • Bruton JM, McClendon RW, Hoogenboom G (2000) Estimating daily pan evaporation with artificial neural networks. Trans ASAE 43(2): 491-496.
    • (2000) Trans ASAE , vol.43 , Issue.2 , pp. 491-496
    • Bruton, J.M.1    McClendon, R.W.2    Hoogenboom, G.3
  • 5
    • 0032688155 scopus 로고    scopus 로고
    • River stage forecasting with a neural network model
    • Campolo M, Andreussi P, Sodalt A (1999) River stage forecasting with a neural network model. Water Res Res 35(4): 1191-1197.
    • (1999) Water Res Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Sodalt, A.3
  • 6
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu HK (2003) Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydro Sci J 48(3): 349-361.
    • (2003) Hydro Sci J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 8
    • 61749090181 scopus 로고    scopus 로고
    • Artificial neural network models for estimating regional reference evapotranspiration based on climate factors
    • Dai X, Shi H, Li Y, Ouyang Z, Huo Z (2009) Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrol Process 23(2009): 442-450.
    • (2009) Hydrol Process , vol.23 , pp. 442-450
    • Dai, X.1    Shi, H.2    Li, Y.3    Ouyang, Z.4    Huo, Z.5
  • 9
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural networks approach to rainfall-runoff modeling
    • Dawson WC, Wilby R (1998) An artificial neural networks approach to rainfall-runoff modeling. Hydrol Sci J 43(1): 47-66.
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 10
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137: 1-31.
    • (1992) J Hydrol , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 12
    • 0002370669 scopus 로고
    • Reference crop evapotranspiration from temperature
    • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2): 96-99.
    • (1985) Appl Eng Agric , vol.1 , Issue.2 , pp. 96-99
    • Hargreaves, G.H.1    Samani, Z.A.2
  • 13
    • 0000794253 scopus 로고    scopus 로고
    • Neural network model for parametric cost estimation of highway projects
    • Hegazy T, Ayed A (1998) Neural network model for parametric cost estimation of highway projects. J Constr Eng Manag ASCE 124(3): 210-218.
    • (1998) J Constr Eng Manag ASCE , vol.124 , Issue.3 , pp. 210-218
    • Hegazy, T.1    Ayed, A.2
  • 14
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • Jain SK, Nayak PC, Sudhir KP (2008) Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol Process 22(13): 2225-2234.
    • (2008) Hydrol Process , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudhir, K.P.3
  • 16
    • 0001948173 scopus 로고
    • Crop growth models
    • In: Hoffman GJ, Howel TA, Solomon KH (eds) ASAE Monograph, ASAE, St. Joseph, MI, USA
    • Jones JW, Ritchie JT (1990) Crop growth models. In: Hoffman GJ, Howel TA, Solomon KH (eds) Management of farm irrigation systems. ASAE Monograph no. 9, ASAE, St. Joseph, MI, USA, pp 63-89.
    • (1990) Management of farm irrigation systems , Issue.9 , pp. 63-89
    • Jones, J.W.1    Ritchie, J.T.2
  • 17
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • Keskin ME, Terzi O (2006) Artificial neural network models of daily pan evaporation. J Hydrol Eng 11(1): 65-70.
    • (2006) J Hydrol Eng , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, O.2
  • 18
    • 39649125438 scopus 로고    scopus 로고
    • Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment
    • Khoob AR (2008a) Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3): 253-259.
    • (2008) Irrig Sci , vol.26 , Issue.3 , pp. 253-259
    • Khoob, A.R.1
  • 19
    • 54849427050 scopus 로고    scopus 로고
    • Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
    • Khoob AR (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment. Irrig Sci 27(1): 35-39.
    • (2008) Irrig Sci , vol.27 , Issue.1 , pp. 35-39
    • Khoob, A.R.1
  • 20
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351: 299-317.
    • (2008) J Hydrol , vol.351 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 21
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modeling
    • Kisi O (2006) Generalized regression neural networks for evapotranspiration modeling. Hydrol Sci J 51(6): 1092-1105.
    • (2006) Hydrol Sci J , vol.51 , Issue.6 , pp. 1092-1105
    • Kisi, O.1
  • 22
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modeling from climatic data using a neural computing technique
    • Kisi O (2007) Evapotranspiration modeling from climatic data using a neural computing technique. Hydrol Process 21(14): 1925-1934.
    • (2007) Hydrol Process , vol.21 , Issue.14 , pp. 1925-1934
    • Kisi, O.1
  • 23
    • 48649099727 scopus 로고    scopus 로고
    • The potential of different ANN techniques in evapotranspiration modeling
    • Kisi O (2008) The potential of different ANN techniques in evapotranspiration modeling. Hydrol Process 22: 2449-2460.
    • (2008) Hydrol Process , vol.22 , pp. 2449-2460
    • Kisi, O.1
  • 24
    • 61749102355 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks
    • Kisi O (2009) Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrol Process 23: 213-223.
    • (2009) Hydrol Process , vol.23 , pp. 213-223
    • Kisi, O.1
  • 25
    • 77949279267 scopus 로고    scopus 로고
    • Fuzzy genetic approach for modeling reference evapotranspiration
    • Kisi O (2010) Fuzzy genetic approach for modeling reference evapotranspiration. J Irrig Drain Eng 136(3): 175-183.
    • (2010) J Irrig Drain Eng , vol.136 , Issue.3 , pp. 175-183
    • Kisi, O.1
  • 26
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modeling using support vector machine
    • Kisi O, Cimen M (2009) Evapotranspiration modeling using support vector machine. Hydrol Sci J 54(5): 918-928.
    • (2009) Hydrol Sci J , vol.54 , Issue.5 , pp. 918-928
    • Kisi, O.1    Cimen, M.2
  • 27
    • 34547116654 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy computing technique for evapotranspiration modeling
    • Kisi O, Ozturk O (2007) Adaptive neuro-fuzzy computing technique for evapotranspiration modeling. ASCE J Irrig Drain Eng 133(4): 368-379.
    • (2007) ASCE J Irrig Drain Eng , vol.133 , Issue.4 , pp. 368-379
    • Kisi, O.1    Ozturk, O.2
  • 29
    • 50249103269 scopus 로고    scopus 로고
    • Comparative study of conventional and artificial neural network-based ETo estimation models
    • Kumar M, Bandyopadhyay A, Rahguwanshi NS, Singh R (2008) Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig Sci 26(6): 531-545.
    • (2008) Irrig Sci , vol.26 , Issue.6 , pp. 531-545
    • Kumar, M.1    Bandyopadhyay, A.2    Rahguwanshi, N.S.3    Singh, R.4
  • 30
    • 58549086361 scopus 로고    scopus 로고
    • Development and validation of GANN model for evapotranspiration estimation
    • Kumar M, Raghuwanshi NS, Singh R (2009) Development and validation of GANN model for evapotranspiration estimation. J Hydrol Eng ASCE 44(2): 131-140.
    • (2009) J Hydrol Eng ASCE , vol.44 , Issue.2 , pp. 131-140
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3
  • 31
    • 42049121124 scopus 로고    scopus 로고
    • Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the basque country (Northern Spain)
    • Landeras G, Ortiz-Barredo A, Lopez JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the basque country (Northern Spain). Agric Water Manag 95(5): 553-565.
    • (2008) Agric Water Manag , vol.95 , Issue.5 , pp. 553-565
    • Landeras, G.1    Ortiz-Barredo, A.2    Lopez, J.J.3
  • 33
    • 0001298583 scopus 로고
    • Automatic Learning Rate Maximization by On-Line Estimation of the Hessian's Eigenvectors
    • S. J. Hanson, J. D. Cowan, and C. L. Giles (Eds.), San Mateo, CA: Morgan Kaufmann
    • LeCun Y, Simard PY, Pearlmetter B (1993) Automatic Learning Rate Maximization by On-Line Estimation of the Hessian's Eigenvectors. In: Hanson SJ, Cowan JD, Giles CL (eds) Advances in neural information processing systems 5. Morgan Kaufmann, San Mateo, CA, pp 156-163.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 156-163
    • Lecun, Y.1    Simard, P.Y.2    Pearlmetter, B.3
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and application
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environ Model Softw 15: 101-124.
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 0032043525 scopus 로고    scopus 로고
    • The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression
    • Markham IS, Rakes TR (1998) The effect of sample size and variability of data on the comparative performance of artificial neural networks and regression. Comput Ops Res 25(4): 251-263.
    • (1998) Comput Ops Res , vol.25 , Issue.4 , pp. 251-263
    • Markham, I.S.1    Rakes, T.R.2
  • 36
  • 37
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques
    • Moghaddamnia A, Gousheh MG, Piri J, Amin S, Han D (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Res 32: 88-97.
    • (2009) Adv Water Res , vol.32 , pp. 88-97
    • Moghaddamnia, A.1    Gousheh, M.G.2    Piri, J.3    Amin, S.4    Han, D.5
  • 38
    • 0013833806 scopus 로고
    • Evaporation and Environment
    • XIXth Symposium, Soc. For Exp. Biol. Swansea, Cambridge University Press, New York
    • Monteith JL (1965) Evaporation and Environment. Proceedings of the state and movement of water in living organisms. XIXth Symposium, Soc. For Exp. Biol. Swansea, Cambridge University Press, New York, pp 205-234.
    • (1965) Proceedings of the state and movement of water in living organisms , pp. 205-234
    • Monteith, J.L.1
  • 39
    • 0035727321 scopus 로고    scopus 로고
    • Optimization of fuzzy evapotranspiration model through neural training with input-output examples
    • Odhiambo LO, Yoder RE, Yoder DC, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6): 1625-1633.
    • (2001) Trans ASAE , vol.44 , Issue.6 , pp. 1625-1633
    • Odhiambo, L.O.1    Yoder, R.E.2    Yoder, D.C.3    Hines, J.W.4
  • 40
    • 84898987060 scopus 로고    scopus 로고
    • Using Curvature Information for Fast Stochastic Search
    • M. C. Mozer, M. I. Jordan, and T. Petsche (Eds.), Cambridge: The MIT Press
    • Orr GB, Leen TK (1997) Using Curvature Information for Fast Stochastic Search. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. The MIT Press, Cambridge, pp 606-612.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 606-612
    • Orr, G.B.1    Leen, T.K.2
  • 41
    • 34249799297 scopus 로고    scopus 로고
    • Modelling the dynamics of the evapotranspiration process using genetic programming
    • Parsuraman K, Elshorbgy A, Carey SK (2007) Modelling the dynamics of the evapotranspiration process using genetic programming. Hydro Sci 52(3): 563-578.
    • (2007) Hydro Sci , vol.52 , Issue.3 , pp. 563-578
    • Parsuraman, K.1    Elshorbgy, A.2    Carey, S.K.3
  • 42
    • 84957790817 scopus 로고
    • Natural evaporation from open water, bare soil and grass
    • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond 193: 120-146.
    • (1948) Proc R Soc Lond , vol.193 , pp. 120-146
    • Penman, H.L.1
  • 43
    • 0003467205 scopus 로고    scopus 로고
    • ++ neural networks and fuzzy logic
    • Connaught Place, New Delhi-110001
    • ++ neural networks and fuzzy logic. BPB Publications, B-14, Connaught Place, New Delhi-110001, pp 380-381.
    • (1996) BPB Publications, B-14 , pp. 380-381
    • Rao, V.1    Rao, H.2
  • 45
    • 78650728076 scopus 로고
    • SNNS (1995) User manual, version 4. 1, report no. 6/95. University of Stuttgart, Germany
    • SNNS (1995) User manual, version 4. 1, report no. 6/95. Institute for Parallel and Distributed High Performance Systems. University of Stuttgart, Germany.
    • (1995) Institute for Parallel and Distributed High Performance Systems
  • 46
    • 0004328787 scopus 로고
    • Estimating reference evapotranspiration with hourly data
    • Chap. VII. In: R. Snyder et al. (eds) University of California-Davis. Land, Air and Water Resources Paper no. 10013, California, USA
    • Snyder R, Pruitt W (1985) Estimating reference evapotranspiration with hourly data, Chap. VII. In: R. Snyder et al. (eds) California irrigation management information system final report. University of California-Davis. Land, Air and Water Resources Paper no. 10013, California, USA.
    • (1985) California irrigation management information system final report
    • Snyder, R.1    Pruitt, W.2
  • 47
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Rangan M, Saheb SM (2002) Modelling evaporation using an artificial neural network algorithm. Hydrol Process 16: 3189-3202.
    • (2002) Hydrol Process , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, M.3    Saheb, S.M.4
  • 48
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited data using neural computing technique
    • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited data using neural computing technique. J Irrig Drain Eng ASCE 129(3): 214-218.
    • (2003) J Irrig Drain Eng ASCE , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 50
    • 23044444044 scopus 로고    scopus 로고
    • Temperature-based approaches for estimating reference evapotranspiration
    • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng ASCE 131(4): 316-323.
    • (2005) J Irrig Drain Eng ASCE , vol.131 , Issue.4 , pp. 316-323
    • Trajkovic, S.1
  • 51
    • 62249130774 scopus 로고    scopus 로고
    • Comparison of radial basis function networks and empirical equations for converting from pan evaporation to reference evapotranspiration
    • Trajkovic S (2009) Comparison of radial basis function networks and empirical equations for converting from pan evaporation to reference evapotranspiration. Hydrol Process 23(2009): 874-880.
    • (2009) Hydrol Process , vol.23 , pp. 874-880
    • Trajkovic, S.1
  • 52
    • 0034234155 scopus 로고    scopus 로고
    • Estimation of FAO Blaney-Criddle b factor by RBF network
    • Trajkovic S, Stankovic M, Todorovic B (2000) Estimation of FAO Blaney-Criddle b factor by RBF network. J Irrig Drain Eng ASCE 126(4): 268-270.
    • (2000) J Irrig Drain Eng ASCE , vol.126 , Issue.4 , pp. 268-270
    • Trajkovic, S.1    Stankovic, M.2    Todorovic, B.3
  • 53
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting reference evapotranspiration by artificial neural networks
    • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting reference evapotranspiration by artificial neural networks. J Irrig Drain Eng ASCE 129(6): 454-457.
    • (2003) J Irrig Drain Eng ASCE , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 54
    • 76549126637 scopus 로고    scopus 로고
    • Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian Zone
    • Traore S, Wang Y, Kerh T (2010) Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian Zone. Agric Water Manage 97: 707-714.
    • (2010) Agric Water Manage , vol.97 , pp. 707-714
    • Traore, S.1    Wang, Y.2    Kerh, T.3
  • 55
    • 0005061735 scopus 로고    scopus 로고
    • Quantity estimation of building with logarithm-neuron networks
    • Yeh IC (1998) Quantity estimation of building with logarithm-neuron networks. J Constr Eng Manage ASCE 124(5): 210-218.
    • (1998) J Constr Eng Manage ASCE , vol.124 , Issue.5 , pp. 210-218
    • Yeh, I.C.1
  • 56
    • 33947362356 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network and minimum climatological data
    • Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2): 83-89.
    • (2007) J Irrig Drain Eng , vol.133 , Issue.2 , pp. 83-89
    • Zanetti, S.S.1    Sousa, E.F.2    Oliveira, V.P.S.3    Almeida, F.T.4    Bernardo, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.