메뉴 건너뛰기




Volumn 1, Issue 3, 2010, Pages 193-206

Drought forecasting using an aggregated drought index and artificial neural network

Author keywords

Aggregated drought index; Artificial neural network; Drought; Drought forecasting; Water resources management; Yarra river catchment

Indexed keywords

DROUGHT CONDITIONS; DROUGHT INDICES; DRY PERIODS; MULTI-STEP; RAINFALL DEFICIENCY; RIVER CATCHMENT; TIME STEP; WATER RESOURCES MANAGEMENT;

EID: 84875895891     PISSN: 20402244     EISSN: None     Source Type: Journal    
DOI: 10.2166/wcc.2010.000     Document Type: Article
Times cited : (31)

References (43)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000 Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrol. Eng. 5 (2), 115-123.
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 115-123
  • 2
    • 71149094442 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for drought forecasting
    • Bacanli, U. G., Firat, M. & Dikbas, F. 2009 Adaptive neuro-fuzzy inference system for drought forecasting. Stoch. Environ. Res. Risk Assess. 23 (8), 1143-1154.
    • (2009) Stoch. Environ. Res. Risk Assess , vol.23 , Issue.8 , pp. 1143-1154
    • Bacanli, U.G.1    Firat, M.2    Dikbas, F.3
  • 3
    • 47049097486 scopus 로고    scopus 로고
    • Toward long-lead operational forecasts of drought: An experimental study in the Murray-Darling River basin
    • Barros, A. P. & Bowden, G. J. 2008 Toward long-lead operational forecasts of drought: an experimental study in the Murray-Darling River basin. J. Hydrol. 357 (3-4), 349-367.
    • (2008) J. Hydrol , vol.357 , Issue.3-4 , pp. 349-367
    • Barros, A.P.1    Bowden, G.J.2
  • 4
    • 84863264488 scopus 로고    scopus 로고
    • Various drought indices for monitoring drought condition in Aravalli Terrain of India
    • Istanbul, Turkey
    • Bhuiyan, C. 2004 Various drought indices for monitoring drought condition in Aravalli Terrain of India. In Proc. of the XXth ISPRS Congress, Istanbul, Turkey, pp. 12-23.
    • (2004) Proc. of the XXth ISPRS Congress , pp. 12-23
    • Bhuiyan, C.1
  • 6
    • 0033190381 scopus 로고    scopus 로고
    • Objective quantification of drought severity and duration
    • Byun, H. R. & Wilhite, D. A. 1999 Objective quantification of drought severity and duration. J. Clim. 12 (9), 2747-2756.
    • (1999) J. Clim , vol.12 , Issue.9 , pp. 2747-2756
    • Byun, H.R.1    Wilhite, D.A.2
  • 7
    • 66249143052 scopus 로고    scopus 로고
    • Forecasting palmer index using neural networks and climatic indexes
    • Cutore, P., Mauro, G. D. & Cancelliere, A. 2009 Forecasting palmer index using neural networks and climatic indexes. J. Hydrol. Eng. 14 (6), 588-595.
    • (2009) J. Hydrol. Eng , vol.14 , Issue.6 , pp. 588-595
    • Cutore, P.1    Mauro, G.D.2    Cancelliere, A.3
  • 10
    • 0003245401 scopus 로고
    • Rainfall deciles as drought indicators
    • Commonwealth of Australia, Melbourne, Australia
    • Gibbs, W. J. & Maher, J. V. 1967 Rainfall deciles as drought indicators, Bureau of Meteorology Bulletin No. 48. Commonwealth of Australia, Melbourne, Australia.
    • (1967) Bureau of Meteorology Bulletin No. 48
    • Gibbs, W.J.1    Maher, J.V.2
  • 11
    • 84875876425 scopus 로고    scopus 로고
    • University of Nebraska-Lincoln, (accessed 24 February 2009)
    • Hayes, M. J. 2003 Drought Indices, National Drought Mitigation Center, University of Nebraska-Lincoln, http://www.drought.unl.edu/whatis/indices.htm#spi (accessed 24 February 2009).
    • (2003) Drought Indices, National Drought Mitigation Center
    • Hayes, M.J.1
  • 13
    • 0034787335 scopus 로고    scopus 로고
    • Using spatial interpolation to construct a comprehensive archive of Australian climate data
    • Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. 2001 Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Softw. 16 (4), 309-330.
    • (2001) Environ. Modell. Softw , vol.16 , Issue.4 , pp. 309-330
    • Jeffrey, S.J.1    Carter, J.O.2    Moodie, K.B.3    Beswick, A.R.4
  • 16
    • 0036700832 scopus 로고    scopus 로고
    • The quantification of drought: An evaluation of drought indices
    • Keyantash, J. & Dracup, J. A. 2002 The quantification of drought: an evaluation of drought indices. Bull. Am. Meteorol. Soc. 83 (8), 1167-1180.
    • (2002) Bull. Am. Meteorol. Soc , vol.83 , Issue.8 , pp. 1167-1180
    • Keyantash, J.1    Dracup, J.A.2
  • 17
    • 6344285762 scopus 로고    scopus 로고
    • An aggregate drought index: Assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage
    • (W09304)
    • Keyantash, J. A. & Dracup, J. A. 2004 An aggregate drought index: assessing drought severity based on fluctuations in the hydrologic cycle and surface water storage. Water Resour. Res. 40 (W09304).
    • (2004) Water Resour. Res , vol.40
    • Keyantash, J.A.1    Dracup, J.A.2
  • 18
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim, T. W. & Valdes, J. B. 2003 Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 8 (6), 319-328.
    • (2003) J. Hydrol. Eng , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 19
    • 0029413502 scopus 로고
    • Neural nets for modelling rainfallrunoff transformations
    • Lorrai, M. & Sechi, G. M. 1995 Neural nets for modelling rainfallrunoff transformations. Water Resour. Manage. 9 (4), 299-313.
    • (1995) Water Resour. Manage , vol.9 , Issue.4 , pp. 299-313
    • Lorrai, M.1    Sechi, G.M.2
  • 20
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study
    • Maier, H. R. & Dandy, G. C. 1998 The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environ. Modell. Softw. 13 (2), 193-209.
    • (1998) Environ. Modell. Softw , vol.13 , Issue.2 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 21
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Softw. 15 (1), 101-124.
    • (2000) Environ. Modell. Softw , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 22
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier, H. R., Jain, A., Dandy, G. C. &Sudheer, K. P. 2010 Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Modell. Softw. 25 (8), 891-909.
    • (2010) Environ. Modell. Softw , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 23
    • 0001895140 scopus 로고
    • The relationship of drought frequency and duration to time scales
    • Anaheim, California
    • McKee, T. B., Doesken, N. J. & Kleist, J. 1993 The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology, Anaheim, California, pp. 179-184.
    • (1993) Proc. 8th Conference On Applied Climatology , pp. 179-184
    • McKee, T.B.1    Doesken, N.J.2    Kleist, J.3
  • 24
    • 29144477214 scopus 로고    scopus 로고
    • Drought forecasting using stochastic models
    • Mishra, A. K. & Desai, V. R. 2005 Drought forecasting using stochastic models. Stoch. Environ. Res. Risk Assess. 19 (5), 326-339.
    • (2005) Stoch. Environ. Res. Risk Assess , vol.19 , Issue.5 , pp. 326-339
    • Mishra, A.K.1    Desai, V.R.2
  • 25
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feedforward recursive neural network
    • Mishra, A. K. & Desai, V. R. 2006 Drought forecasting using feedforward recursive neural network. Ecol. Model. 198 (1-2), 127-138.
    • (2006) Ecol. Model , vol.198 , Issue.1-2 , pp. 127-138
    • Mishra, A.K.1    Desai, V.R.2
  • 26
    • 77956191461 scopus 로고    scopus 로고
    • A review of drought concepts
    • Mishra, A. K. & Singh, V. P. 2010 A review of drought concepts. J. Hydrol. 391 (1-2), 202-216.
    • (2010) J. Hydrol , vol.391 , Issue.1-2 , pp. 202-216
    • Mishra, A.K.1    Singh, V.P.2
  • 27
    • 36348930024 scopus 로고    scopus 로고
    • Drought forecasting using a hybrid stochastic and neural network model
    • Mishra, A. K., Desai, V. R. & Singh, V. P. 2007 Drought forecasting using a hybrid stochastic and neural network model. J. Hydrol. Eng. 12 (6), 626-638.
    • (2007) J. Hydrol. Eng , vol.12 , Issue.6 , pp. 626-638
    • Mishra, A.K.1    Desai, V.R.2    Singh, V.P.3
  • 28
    • 43449097508 scopus 로고    scopus 로고
    • SPI-based drought category prediction using loglinear models
    • Moreira, E. E., Coelho, C. A., Paulo, A. A., Pereira, L. S. & Mexia, J. T. 2008 SPI-based drought category prediction using loglinear models. J. Hydrol. 354 (1-4), 116-130.
    • (2008) J. Hydrol , vol.354 , Issue.1-4 , pp. 116-130
    • Moreira, E.E.1    Coelho, C.A.2    Paulo, A.A.3    Pereira, L.S.4    Mexia, J.T.5
  • 29
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid, S., Smakhtin, V. & Bagherzadeh, K. 2007 Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Climatol. 27 (15), 2103-2111.
    • (2007) Int. J. Climatol , vol.27 , Issue.15 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 30
    • 33847229800 scopus 로고    scopus 로고
    • Influence of inflows modeling on management simulation of water resources system
    • Ochoa-Rivera, J. C., Andreu, J. & García-Bartual, R. 2007 Influence of inflows modeling on management simulation of water resources system. J. Water Res. Plann. ASCE 133 (2), 106-116.
    • (2007) J. Water Res. Plann. ASCE , vol.133 , Issue.2 , pp. 106-116
    • Ochoa-Rivera, J.C.1    Andreu, J.2    García-Bartual, R.3
  • 32
    • 0036059051 scopus 로고    scopus 로고
    • Challenges in drought research: Some perspectives and future directions
    • Panu, U. S. & Sharma, T. C. 2002 Challenges in drought research: some perspectives and future directions. Hydrol. Sci. J. 47, S19-S30.
    • (2002) Hydrol. Sci. J , vol.47
    • Panu, U.S.1    Sharma, T.C.2
  • 33
    • 34548510359 scopus 로고    scopus 로고
    • Prediction of SPI drought class transitions using markov chains
    • Paulo, A. A. & Pereira, L. S. 2007 Prediction of SPI drought class transitions using markov chains. Water Resour. Manage. 21 (10), 1813-1827.
    • (2007) Water Resour. Manage , vol.21 , Issue.10 , pp. 1813-1827
    • Paulo, A.A.1    Pereira, L.S.2
  • 34
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • (ed. D. E. Rumelhart & J. L. McClelland), Foundations MIT-Press, Cambridge, Massachusetts
    • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. 1986 Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition (ed. D. E. Rumelhart & J. L. McClelland), Vol. 1, pp. 318-362. Foundations MIT-Press, Cambridge, Massachusetts.
    • (1986) Parallel Distributed Processing: Explorations In the Microstructure of Cognition , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 35
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall - runoff model using an artificial neural network
    • Sajikumar, N. & Thandaveswara, B. S. 1999 A non-linear rainfall - runoff model using an artificial neural network. J. Hydrol. 216 (1-2), 32-55.
    • (1999) J. Hydrol , vol.216 , Issue.1-2 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 38
    • 0242490446 scopus 로고    scopus 로고
    • Drought indicators and triggers: A stochastic approach to evaluation
    • Steinemann, A. 2003 Drought indicators and triggers: a stochastic approach to evaluation. J. Am. Water Resour. Assoc. 39 (5), 1217-1233.
    • (2003) J. Am. Water Resour. Assoc , vol.39 , Issue.5 , pp. 1217-1233
    • Steinemann, A.1
  • 39
    • 79952338554 scopus 로고    scopus 로고
    • Implications of the 1997-2006 drought on water resources planning for Melbourne
    • Adelaide, Australia
    • Tan, K. S. & Rhodes, B. G. 2008 Implications of the 1997-2006 drought on water resources planning for Melbourne. In Proc. 31st Hydrology and Water Resources Symp., Adelaide, Australia, pp. 2016-2027.
    • (2008) Proc. 31st Hydrology and Water Resources Symp , pp. 2016-2027
    • Tan, K.S.1    Rhodes, B.G.2
  • 40
    • 0000148490 scopus 로고
    • Precipitation averages for large areas
    • Thiessen, A. H. 1911 Precipitation averages for large areas. Mon. Weather Rev. 39 (7), 1082-1084.
    • (1911) Mon. Weather Rev , vol.39 , Issue.7 , pp. 1082-1084
    • Thiessen, A.H.1
  • 41
    • 58049201701 scopus 로고    scopus 로고
    • Comparison of structural deterioration models for stormwater drainage pipes
    • Tran, D. H., Perera, B. J. C. & Ng, A. W. M. 2009 Comparison of structural deterioration models for stormwater drainage pipes. Comput. Aided Civ. Infrastruct. Eng. 24 (2), 145-156.
    • (2009) Comput. Aided Civ. Infrastruct. Eng , vol.24 , Issue.2 , pp. 145-156
    • Tran, D.H.1    Perera, B.J.C.2    Ng, A.W.M.3
  • 43
    • 0002680807 scopus 로고    scopus 로고
    • Drought as a natural hazard: Concepts and definitions
    • (ed. Wilhite, D. A), Routledge, New York
    • Wilhite, D. A. 2000 Drought as a natural hazard: Concepts and definitions. In Hazards Disasters Series (ed. Wilhite, D. A), pp. 3-18. Routledge, New York.
    • (2000) Hazards Disasters Series , pp. 3-18
    • Wilhite, D.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.