메뉴 건너뛰기




Volumn 7, Issue 8, 2014, Pages 3577-3585

Spatial-spectral information-based semisupervised classification algorithm for hyperspectral imagery

Author keywords

Active learning (AL); classification; semisupervised; spatial information; support vector machine (SVM)

Indexed keywords

SUPPORT VECTOR MACHINES;

EID: 84908046089     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2333233     Document Type: Article
Times cited : (34)

References (36)
  • 1
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Univ. Wisconsin-Madison, Madison, WI, Tech. Rep.
    • X. J. Zhu, "Semi-supervised learning literature survey," Comput. Sci., Univ. Wisconsin-Madison, Madison, WI, Tech. Rep. 1530, 2005.
    • (2005) Comput. Sci , vol.1530
    • Zhu, X.J.1
  • 2
    • 67651155779 scopus 로고    scopus 로고
    • Integration of soft and hard classifications using extended support vector machines
    • Jul.
    • L. Wang and X. Jia, "Integration of soft and hard classifications using extended support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 543-547, Jul. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.3 , pp. 543-547
    • Wang, L.1    Jia, X.2
  • 3
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon
    • Sep.
    • B. M. Shahshahani and D. Landgrebe, "The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 5, pp. 1087-1095, Sep. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.2
  • 5
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • San Francisco, CA, USA
    • T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., San Francisco, CA, USA, 1999, pp. 200-209.
    • (1999) Proc. 16th Int. Conf. Mach. Learn , pp. 200-209
    • Joachims, T.1
  • 6
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive svm for semisupervised classification of remote-sensing images
    • Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 7
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graphbased hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. B. Marsheva, and D. Zhou, "Semi-supervised graphbased hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Marsheva, T.B.2    Zhou, D.3
  • 8
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • Feb
    • S. Melacci and M. Belkin, "Laplacian support vector machines trained in the primal," J. Mach. Learn. Res., vol. 12, no. 3, pp. 1149-1184, Feb. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , Issue.3 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 9
    • 84880282493 scopus 로고    scopus 로고
    • Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification
    • Jun.
    • M. Cui, S. Prasad, W. Li, and L. M. Bruce, "Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1688-1697, Jun. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.3 , pp. 1688-1697
    • Cui, M.1    Prasad, S.2    Li, W.3    Bruce, L.M.4
  • 10
    • 84890123096 scopus 로고    scopus 로고
    • Spatial-spectral kernel sparse representation for hyperspectral image classification
    • Dec.
    • J. Liu, Z. Wu, Z. Wei, L. Xiao, and L. Sun, "Spatial-spectral kernel sparse representation for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 6, pp. 2462-2471, Dec. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.6 , pp. 2462-2471
    • Liu, J.1    Wu, Z.2    Wei, Z.3    Xiao, L.4    Sun, L.5
  • 11
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using svms and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.4
  • 12
    • 64349105831 scopus 로고    scopus 로고
    • Managing the spectral-spatial mix in context classification using markov random fields
    • Apr.
    • J. A. Richards and X. Jia, "Managing the spectral-spatial mix in context classification using Markov random fields," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 311-314, Apr. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.2 , pp. 311-314
    • Richards, J.A.1    Jia, X.2
  • 13
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
    • Mar
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 14
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 15
    • 65049090023 scopus 로고    scopus 로고
    • A composite semisupervised svm for classification of hyperspectral images
    • Apr.
    • M. Marconcini, G. Camps-Valls, and L. Bruzzone, "A composite semisupervised SVM for classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 2, pp. 234-238, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 234-238
    • Marconcini, M.1    Camps-Valls, G.2    Bruzzone, L.3
  • 17
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm
    • Canada
    • F. Bach, G. Lanckriet, and M. Jordan, "Multiple kernel learning, conic duality, and the SMO algorithm," in Proc. Int. Conf. Mach. Learn., Banff, Canada, 2004, pp. 41-48.
    • (2004) Proc. Int. Conf. Mach. Learn., Banff , pp. 41-48
    • Bach, F.1    Lanckriet, G.2    Jordan, M.3
  • 18
    • 77958017904 scopus 로고    scopus 로고
    • Svm and mrf-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVM and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 19
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct.
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers," IEEE Trans. Syst. Man Cybern B, Cybern., vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst. Man Cybern B, Cybern. , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 20
    • 78650918992 scopus 로고    scopus 로고
    • Spatial information based support vector machine for hyperspectral image classification
    • Honolulu, HI, USA
    • B. C. Kuo, C. S. Huang, C. C. Hung, Y. L. Liu, and I. L. Chen, "Spatial information based support vector machine for hyperspectral image classification," in Proc. Int. Geosci. Remote Sens. Symp. (IGARSS), Honolulu, HI, USA, 2010, pp. 832-835.
    • (2010) Proc. Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 832-835
    • Kuo, B.C.1    Huang, C.S.2    Hung, C.C.3    Liu, Y.L.4    Chen, I.L.5
  • 21
    • 67651166635 scopus 로고    scopus 로고
    • A novel context-sensitive semisupervised svm classifier robust to mislabeled training samples
    • Jul.
    • L. Bruzzone and C. Persello, "A novel context-sensitive semisupervised SVM classifier robust to mislabeled training samples," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2142-2154, Jul. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2142-2154
    • Bruzzone, L.1    Persello, C.2
  • 22
    • 84899912972 scopus 로고    scopus 로고
    • Spectral-spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification
    • Apr
    • C. Chen et al., "Spectral-spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1047-1059, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1047-1059
    • Chen, C.1
  • 24
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 25
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 26
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • Stanford, CA, USA
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," in Proc. 17th Int. Conf. Mach. Learn., Stanford, CA, USA, 2000, pp. 839-846.
    • (2000) Proc. 17th Int. Conf. Mach. Learn , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 27
    • 0038399423 scopus 로고    scopus 로고
    • Query learning with large margin classifiers
    • Stanford, CA, USA
    • C. Campbell, N. Cristianini, and A. Smola, "Query learning with large margin classifiers," in Proc. Int. Conf. Mach. Learn., Stanford, CA, USA, 2000, pp. 111-118.
    • (2000) Proc. Int. Conf. Mach. Learn , pp. 111-118
    • Campbell, C.1    Cristianini, N.2    Smola, A.3
  • 28
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • Apr.
    • M. Ferecatu and N. Boujemaa, "Interactive remote-sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 29
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Aug.
    • Y. Freund, H. Seung, E. Shamir, and N. Tishby, "Selective sampling using the query by committee algorithm," Mach. Learn., vol. 28, no. 2-3, pp. 133-168, Aug. 1997.
    • (1997) Mach. Learn. , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.2    Shamir, E.3    Tishby, N.4
  • 30
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Cambridge, MA, USA: MIT Press
    • J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," in Advances in Large Margin Classifies. Cambridge, MA, USA: MIT Press, 1999.
    • (1999) Advances in Large Margin Classifies
    • Platt, J.C.1
  • 31
    • 34548160247 scopus 로고    scopus 로고
    • A note on platt's probabilistic outputs for support vector machines
    • Oct.
    • H. T. Lin, C. J. Lin, and R. C. Weng, "A note on Platt's probabilistic outputs for support vector machines," Mach. Learn., vol. 68, no. 3, pp. 267-276, Oct. 2007.
    • (2007) Mach. Learn. , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.T.1    Lin, C.J.2    Weng, R.C.3
  • 32
    • 37149040539 scopus 로고    scopus 로고
    • Weighted posterior probability output for support vector machines
    • X. Zhang and X. Xiao, "Weighted posterior probability output for support vector machines," J. Tsinghua Univ. (Sci. Technol.), vol. 47, no. 10, pp. 1689-1691, 2007.
    • (2007) J. Tsinghua Univ. (Sci. Technol.) , vol.47 , Issue.10 , pp. 1689-1691
    • Zhang, X.1    Xiao, X.2
  • 33
    • 33748469875 scopus 로고    scopus 로고
    • Mutualboost learning for selecting gabor features for face recognition
    • Apr.
    • L. Shen and L. Ba, "MutualBoost learning for selecting Gabor features for face recognition," Pattern Recognit., vol. 27, no. 15, pp. 1758-1767, Apr. 2006.
    • (2006) Pattern Recognit. , vol.27 , Issue.15 , pp. 1758-1767
    • Shen, L.1    Ba, L.2
  • 34
    • 33645066726 scopus 로고
    • Large sample standard errors of kappa and weighted kappa
    • Nov.
    • J. L. Fleiss, J. Cohen, and B. S. Everitt, "Large sample standard errors of kappa and weighted kappa," Psychol. Bull., vol. 72, no. 5, pp. 323-327, Nov. 1969.
    • (1969) Psychol. Bull. , vol.72 , Issue.5 , pp. 323-327
    • Fleiss, J.L.1    Cohen, J.2    Everitt, B.S.3
  • 35
    • 0023486388 scopus 로고
    • Correct formulation of the kappa coefficient of agreement in remote sensing
    • W. D. Hudson and C. W. Ramm, "Correct formulation of the Kappa coefficient of agreement in remote sensing," Photogramm. Eng. Remote Sens., vol. 53, no. 4, pp. 421-422, 1987.
    • (1987) Photogramm. Eng. Remote Sens. , vol.53 , Issue.4 , pp. 421-422
    • Hudson, W.D.1    Ramm, C.W.2
  • 36
    • 0037334607 scopus 로고    scopus 로고
    • Sampling method and sample placement: How do they affect the accuracy of remotely sensed maps?"
    • Mar.
    • L. Plourde and R. G. Congalton, "Sampling method and sample placement: How do they affect the accuracy of remotely sensed maps?" Photogramm. Eng. Remote Sens., vol. 69, no. 3, pp. 289-297, Mar. 2003.
    • (2003) Photogramm. Eng. Remote Sens. , vol.69 , Issue.3 , pp. 289-297
    • Plourde, L.1    Congalton, R.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.