-
1
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674.
-
(2011)
Cell.
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science. 1956;123:309-314.
-
(1956)
Science.
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
3
-
-
0001221508
-
On respiratory impairment in cancer cells
-
Warburg O. On respiratory impairment in cancer cells. Science. 1956;124: 269-270.
-
(1956)
Science.
, vol.124
, pp. 269-270
-
-
Warburg, O.1
-
4
-
-
0017173150
-
The Warburg hypothesis fifty years later
-
Weinhouse S. TheWarburg hypothesis fifty years later. Z Krebsforsch Klin Onkol. 1976;87:115-126.
-
(1976)
Z Krebsforsch Klin Onkol.
, vol.87
, pp. 115-126
-
-
Weinhouse, S.1
-
5
-
-
77749334738
-
Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation
-
Fogal V, Richardson AD, Karmali PP, et al. Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol. 2010;30:1303-1318.
-
(2010)
Mol Cell Biol.
, vol.30
, pp. 1303-1318
-
-
Fogal, V.1
Richardson, A.D.2
Karmali, P.P.3
-
6
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107:8788-8793.
-
(2010)
Proc Natl Acad Sci U S A.
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
-
7
-
-
84895809519
-
Cancer as a metabolic disease: Implications for novel therapeutics
-
Seyfried TN, Flores RE, Poff AM, et al. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35:515-527.
-
(2014)
Carcinogenesis.
, vol.35
, pp. 515-527
-
-
Seyfried, T.N.1
Flores, R.E.2
Poff, A.M.3
-
9
-
-
0036717382
-
Molecular imaging of cancer with positron emission tomography
-
Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683-693.
-
(2002)
Nat Rev Cancer.
, vol.2
, pp. 683-693
-
-
Gambhir, S.S.1
-
11
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-1033.
-
(2009)
Science.
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
12
-
-
35448940364
-
Adaptive landscapes and emergent phenotypes: Why do cancers have high glycolysis?
-
Gillies RJ, Gatenby RA. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr. 2007;39:251-257.
-
(2007)
J Bioenerg Biomembr
, vol.39
, pp. 251-257
-
-
Gillies, R.J.1
Gatenby, R.A.2
-
13
-
-
85069238534
-
Separation of metabolic supply and demand: Aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane
-
Epstein T, Xu L, Gillies RJ, et al. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab. 2014;2:7.
-
(2014)
Cancer Metab.
, vol.2
, pp. 7
-
-
Epstein, T.1
Xu, L.2
Gillies, R.J.3
-
14
-
-
78650885452
-
The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway
-
Fang M, Shen Z, Huang S, et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell. 2010;143:711-724.
-
(2010)
Cell.
, vol.143
, pp. 711-724
-
-
Fang, M.1
Shen, Z.2
Huang, S.3
-
15
-
-
79251502952
-
ATP consumption promotes cancer metabolism
-
Israelsen WJ, vander Heiden MG. ATP consumption promotes cancer metabolism. Cell. 2010;143:669-671.
-
(2010)
Cell.
, vol.143
, pp. 669-671
-
-
Israelsen, W.J.1
Vander Heiden, M.G.2
-
16
-
-
0017153683
-
Aerobic glycolysis during lymphocyte proliferation
-
Wang T,Marquardt C, Foker J. Aerobic glycolysis during lymphocyte proliferation. Nature. 1976;261:702-705.
-
(1976)
Nature.
, vol.261
, pp. 702-705
-
-
Wang, T.1
Marquardt, C.2
Foker, J.3
-
17
-
-
77953785070
-
The metabolic life and times of a T-cell
-
Michalek RD, Rathmell JC. The metabolic life and times of a T-cell. Immunol Rev. 2010;236:190-202.
-
(2010)
Immunol Rev.
, vol.236
, pp. 190-202
-
-
Michalek, R.D.1
Rathmell, J.C.2
-
18
-
-
84964267895
-
Fatty acid metabolism in the regulation of T cell function
-
Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015;36:81-91.
-
(2015)
Trends Immunol.
, vol.36
, pp. 81-91
-
-
Lochner, M.1
Berod, L.2
Sparwasser, T.3
-
19
-
-
84913537162
-
Metabolic profiling and flux analysis of MEL-2 human embryonic stemcells during exponential growth at physiological and atmospheric oxygen concentrations
-
Turner J, Quek L-E, TitmarshD, et al. Metabolic profiling and flux analysis of MEL-2 human embryonic stemcells during exponential growth at physiological and atmospheric oxygen concentrations. PLoS One. 2014;9:e112757.
-
(2014)
PLoS One.
, vol.9
, pp. e112757
-
-
Turner, J.1
Quek, L.-E.2
Titmarsh, D.3
-
20
-
-
34347387832
-
Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity
-
Chen Z, Odstrcil EA, Tu BP, et al. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science. 2007;316:1916-1919.
-
(2007)
Science.
, vol.316
, pp. 1916-1919
-
-
Chen, Z.1
Odstrcil, E.A.2
Tu, B.P.3
-
21
-
-
84864870977
-
Metabolic differentiation in the embryonic retina
-
Agathocleous M, Love NK, Randlett O, et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol. 2012;14:859-864.
-
(2012)
Nat Cell Biol.
, vol.14
, pp. 859-864
-
-
Agathocleous, M.1
Love, N.K.2
Randlett, O.3
-
22
-
-
80053916176
-
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
-
Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011;9:298-310.
-
(2011)
Cell Stem Cell.
, vol.9
, pp. 298-310
-
-
Suda, T.1
Takubo, K.2
Semenza, G.L.3
-
23
-
-
84872011926
-
Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
-
Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12:49-61.
-
(2013)
Cell Stem Cell.
, vol.12
, pp. 49-61
-
-
Takubo, K.1
Nagamatsu, G.2
Kobayashi, C.I.3
-
24
-
-
34248359065
-
Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
-
Parmar K, Mauch P, Vergilio J-A, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104:5431-5436.
-
(2007)
Proc Natl Acad Sci U S A.
, vol.104
, pp. 5431-5436
-
-
Parmar, K.1
Mauch, P.2
Vergilio, J.-A.3
-
25
-
-
84982182491
-
Maintenance ofmouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism
-
Liu X, Zheng H, YuW-M, et al. Maintenance ofmouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood. 2015;125: 1562-1565.
-
(2015)
Blood.
, vol.125
, pp. 1562-1565
-
-
Liu, X.1
Zheng, H.2
Yu, W.-M.3
-
26
-
-
84905921360
-
Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification
-
Oburoglu L, Tardito S, Fritz V, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell. 2014;15(2):169-184.
-
(2014)
Cell Stem Cell.
, vol.15
, Issue.2
, pp. 169-184
-
-
Oburoglu, L.1
Tardito, S.2
Fritz, V.3
-
27
-
-
76049100577
-
HIF-1: Upstream and downstream of cancer metabolism
-
Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51-56.
-
(2010)
Curr Opin Genet Dev.
, vol.20
, pp. 51-56
-
-
Semenza, G.L.1
-
28
-
-
33644622570
-
HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
-
Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3:187-197.
-
(2006)
Cell Metab.
, vol.3
, pp. 187-197
-
-
Papandreou, I.1
Cairns, R.A.2
Fontana, L.3
-
29
-
-
84906719808
-
Hypoxic regulation of metabolism offers new opportunities for anticancer therapy
-
Denko NC. Hypoxic regulation of metabolism offers new opportunities for anticancer therapy. Expert Rev Anticancer Ther. 2014;14:979-981.
-
(2014)
Expert Rev Anticancer Ther.
, vol.14
, pp. 979-981
-
-
Denko, N.C.1
-
30
-
-
60549111398
-
Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis
-
Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009;19:25-31.
-
(2009)
Semin Cancer Biol.
, vol.19
, pp. 25-31
-
-
Robey, R.B.1
Hay, N.2
-
31
-
-
84904973235
-
TIGAR, TIGAR, burning bright
-
Lee P, Vousden KH, Cheung EC. TIGAR, TIGAR, burning bright. Cancer Metab. 2014;2:1.
-
(2014)
Cancer Metab.
, vol.2
, pp. 1
-
-
Lee, P.1
Vousden, K.H.2
Cheung, E.C.3
-
32
-
-
33745149291
-
P53 regulates mitochondrial respiration
-
Matoba S, Kang J-G, Patino WD, et al. p53 regulates mitochondrial respiration. Science. 2006;312:1650-1653.
-
(2006)
Science.
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
Kang, J.-G.2
Patino, W.D.3
-
33
-
-
79951699777
-
Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
-
Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208:313-326.
-
(2011)
J Exp Med.
, vol.208
, pp. 313-326
-
-
Wolf, A.1
Agnihotri, S.2
Micallef, J.3
-
34
-
-
84922503253
-
Hexokinase 2-mediated Warburg effect is required for PTEN-and p53-deficiency-driven prostate cancer growth
-
Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN-and p53-deficiency-driven prostate cancer growth. Cell Rep. 2014;8:1461-1474.
-
(2014)
Cell Rep.
, vol.8
, pp. 1461-1474
-
-
Wang, L.1
Xiong, H.2
Wu, F.3
-
35
-
-
84881557242
-
Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
-
Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24:213-228.
-
(2013)
Cancer Cell.
, vol.24
, pp. 213-228
-
-
Patra, K.C.1
Wang, Q.2
Bhaskar, P.T.3
-
36
-
-
40749163248
-
TheM2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
-
Christofk HR, vander HeidenMG, HarrisMH, et al. TheM2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230-233.
-
(2008)
Nature.
, vol.452
, pp. 230-233
-
-
Christofk, H.R.1
Vander Heiden, M.G.2
Harris, M.H.3
-
37
-
-
77956674635
-
Evidence for an alternative glycolytic pathway in rapidly proliferating cells
-
vander HeidenMG, Locasale JW, Swanson KD, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010;329: 1492-1499.
-
(2010)
Science.
, vol.329
, pp. 1492-1499
-
-
Vander Heiden, M.G.1
Locasale, J.W.2
Swanson, K.D.3
-
38
-
-
80052731244
-
No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis
-
Bluemlein K, Grüning N-M, Feichtinger RG, et al. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget. 2011;2:393-400.
-
(2011)
Oncotarget.
, vol.2
, pp. 393-400
-
-
Bluemlein, K.1
Grüning, N.-M.2
Feichtinger, R.G.3
-
39
-
-
79957567239
-
Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1
-
Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732-744.
-
(2011)
Cell.
, vol.145
, pp. 732-744
-
-
Luo, W.1
Hu, H.2
Chang, R.3
-
40
-
-
84905097406
-
Pyruvate kinase M2 and cancer: An updated assessment
-
Iqbal MA, Gupta V, Gopinath P, et al. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 2014;588:2685-2692.
-
(2014)
FEBS Lett.
, vol.588
, pp. 2685-2692
-
-
Iqbal, M.A.1
Gupta, V.2
Gopinath, P.3
-
41
-
-
33644614520
-
HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
-
Kim J-W, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177-185.
-
(2006)
Cell Metab.
, vol.3
, pp. 177-185
-
-
Kim, J.-W.1
Tchernyshyov, I.2
Semenza, G.L.3
-
42
-
-
57749111596
-
Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond
-
Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009; 121:29-40.
-
(2009)
Pharmacol Ther.
, vol.121
, pp. 29-40
-
-
Ganapathy, V.1
Thangaraju, M.2
Prasad, P.D.3
-
43
-
-
42949176742
-
Survival of cancer cells is maintained by EGFR independent of its kinase activity
-
Weihua Z, Tsan R, HuangW-C, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008;13: 385-393.
-
(2008)
Cancer Cell.
, vol.13
, pp. 385-393
-
-
Weihua, Z.1
Tsan, R.2
Huang, W.-C.3
-
44
-
-
84863553135
-
Identification and functional expression of the mitochondrial pyruvate carrier
-
Herzig S, Raemy E, Montessuit S, et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012;337:93-96.
-
(2012)
Science.
, vol.337
, pp. 93-96
-
-
Herzig, S.1
Raemy, E.2
Montessuit, S.3
-
45
-
-
84863552418
-
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
-
Bricker DK, Taylor EB, Schell JC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;337:96-100.
-
(2012)
Science.
, vol.337
, pp. 96-100
-
-
Bricker, D.K.1
Taylor, E.B.2
Schell, J.C.3
-
46
-
-
84864655754
-
The mitochondrial pyruvate carrier: Has it been unearthed at last?
-
Halestrap AP. The mitochondrial pyruvate carrier: has it been unearthed at last? Cell Metab. 2012;16:141-143.
-
(2012)
Cell Metab
, vol.16
, pp. 141-143
-
-
Halestrap, A.P.1
-
47
-
-
84922445353
-
A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth
-
Schell JC, Olson KA, Jiang L, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell. 2014;56:400-413.
-
(2014)
Mol Cell.
, vol.56
, pp. 400-413
-
-
Schell, J.C.1
Olson, K.A.2
Jiang, L.3
-
48
-
-
57449097020
-
Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
-
Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118: 3930-3942.
-
(2008)
J Clin Invest.
, vol.118
, pp. 3930-3942
-
-
Sonveaux, P.1
Végran, F.2
Schroeder, T.3
-
49
-
-
82555175819
-
Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations
-
Ewald JC, Reich S, Baumann S, et al. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLoS One. 2011;6:e28245.
-
(2011)
PLoS One.
, vol.6
, pp. e28245
-
-
Ewald, J.C.1
Reich, S.2
Baumann, S.3
|