메뉴 건너뛰기




Volumn 21, Issue 2, 2015, Pages 56-61

Drivers of the warburg phenotype

Author keywords

biosynthesis; glycolysis; hypoxia; microenvironment; oncogene; respiration; tumor suppressor; Warburg effect

Indexed keywords

ADENOSINE TRIPHOSPHATE; GLUCOSE; GLUCOSE TRANSPORTER 1; HEXOKINASE; HYPOXIA INDUCIBLE FACTOR; LACTIC ACID; MONOCARBOXYLATE TRANSPORTER; PHOSPHATIDYLINOSITOL 3 KINASE; PROTEIN P53; PYRUVATE KINASE;

EID: 84926662205     PISSN: 15289117     EISSN: 1540336X     Source Type: Journal    
DOI: 10.1097/PPO.0000000000000106     Document Type: Review
Times cited : (48)

References (49)
  • 1
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674.
    • (2011) Cell. , vol.144 , pp. 646-674
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science. 1956;123:309-314.
    • (1956) Science. , vol.123 , pp. 309-314
    • Warburg, O.1
  • 3
    • 0001221508 scopus 로고
    • On respiratory impairment in cancer cells
    • Warburg O. On respiratory impairment in cancer cells. Science. 1956;124: 269-270.
    • (1956) Science. , vol.124 , pp. 269-270
    • Warburg, O.1
  • 4
    • 0017173150 scopus 로고
    • The Warburg hypothesis fifty years later
    • Weinhouse S. TheWarburg hypothesis fifty years later. Z Krebsforsch Klin Onkol. 1976;87:115-126.
    • (1976) Z Krebsforsch Klin Onkol. , vol.87 , pp. 115-126
    • Weinhouse, S.1
  • 5
    • 77749334738 scopus 로고    scopus 로고
    • Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation
    • Fogal V, Richardson AD, Karmali PP, et al. Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol Cell Biol. 2010;30:1303-1318.
    • (2010) Mol Cell Biol. , vol.30 , pp. 1303-1318
    • Fogal, V.1    Richardson, A.D.2    Karmali, P.P.3
  • 6
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107:8788-8793.
    • (2010) Proc Natl Acad Sci U S A. , vol.107 , pp. 8788-8793
    • Weinberg, F.1    Hamanaka, R.2    Wheaton, W.W.3
  • 7
    • 84895809519 scopus 로고    scopus 로고
    • Cancer as a metabolic disease: Implications for novel therapeutics
    • Seyfried TN, Flores RE, Poff AM, et al. Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis. 2014;35:515-527.
    • (2014) Carcinogenesis. , vol.35 , pp. 515-527
    • Seyfried, T.N.1    Flores, R.E.2    Poff, A.M.3
  • 9
    • 0036717382 scopus 로고    scopus 로고
    • Molecular imaging of cancer with positron emission tomography
    • Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683-693.
    • (2002) Nat Rev Cancer. , vol.2 , pp. 683-693
    • Gambhir, S.S.1
  • 11
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-1033.
    • (2009) Science. , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 12
    • 35448940364 scopus 로고    scopus 로고
    • Adaptive landscapes and emergent phenotypes: Why do cancers have high glycolysis?
    • Gillies RJ, Gatenby RA. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J Bioenerg Biomembr. 2007;39:251-257.
    • (2007) J Bioenerg Biomembr , vol.39 , pp. 251-257
    • Gillies, R.J.1    Gatenby, R.A.2
  • 13
    • 85069238534 scopus 로고    scopus 로고
    • Separation of metabolic supply and demand: Aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane
    • Epstein T, Xu L, Gillies RJ, et al. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane. Cancer Metab. 2014;2:7.
    • (2014) Cancer Metab. , vol.2 , pp. 7
    • Epstein, T.1    Xu, L.2    Gillies, R.J.3
  • 14
    • 78650885452 scopus 로고    scopus 로고
    • The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway
    • Fang M, Shen Z, Huang S, et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell. 2010;143:711-724.
    • (2010) Cell. , vol.143 , pp. 711-724
    • Fang, M.1    Shen, Z.2    Huang, S.3
  • 15
    • 79251502952 scopus 로고    scopus 로고
    • ATP consumption promotes cancer metabolism
    • Israelsen WJ, vander Heiden MG. ATP consumption promotes cancer metabolism. Cell. 2010;143:669-671.
    • (2010) Cell. , vol.143 , pp. 669-671
    • Israelsen, W.J.1    Vander Heiden, M.G.2
  • 16
    • 0017153683 scopus 로고
    • Aerobic glycolysis during lymphocyte proliferation
    • Wang T,Marquardt C, Foker J. Aerobic glycolysis during lymphocyte proliferation. Nature. 1976;261:702-705.
    • (1976) Nature. , vol.261 , pp. 702-705
    • Wang, T.1    Marquardt, C.2    Foker, J.3
  • 17
    • 77953785070 scopus 로고    scopus 로고
    • The metabolic life and times of a T-cell
    • Michalek RD, Rathmell JC. The metabolic life and times of a T-cell. Immunol Rev. 2010;236:190-202.
    • (2010) Immunol Rev. , vol.236 , pp. 190-202
    • Michalek, R.D.1    Rathmell, J.C.2
  • 18
    • 84964267895 scopus 로고    scopus 로고
    • Fatty acid metabolism in the regulation of T cell function
    • Lochner M, Berod L, Sparwasser T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 2015;36:81-91.
    • (2015) Trends Immunol. , vol.36 , pp. 81-91
    • Lochner, M.1    Berod, L.2    Sparwasser, T.3
  • 19
    • 84913537162 scopus 로고    scopus 로고
    • Metabolic profiling and flux analysis of MEL-2 human embryonic stemcells during exponential growth at physiological and atmospheric oxygen concentrations
    • Turner J, Quek L-E, TitmarshD, et al. Metabolic profiling and flux analysis of MEL-2 human embryonic stemcells during exponential growth at physiological and atmospheric oxygen concentrations. PLoS One. 2014;9:e112757.
    • (2014) PLoS One. , vol.9 , pp. e112757
    • Turner, J.1    Quek, L.-E.2    Titmarsh, D.3
  • 20
    • 34347387832 scopus 로고    scopus 로고
    • Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity
    • Chen Z, Odstrcil EA, Tu BP, et al. Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science. 2007;316:1916-1919.
    • (2007) Science. , vol.316 , pp. 1916-1919
    • Chen, Z.1    Odstrcil, E.A.2    Tu, B.P.3
  • 21
    • 84864870977 scopus 로고    scopus 로고
    • Metabolic differentiation in the embryonic retina
    • Agathocleous M, Love NK, Randlett O, et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol. 2012;14:859-864.
    • (2012) Nat Cell Biol. , vol.14 , pp. 859-864
    • Agathocleous, M.1    Love, N.K.2    Randlett, O.3
  • 22
    • 80053916176 scopus 로고    scopus 로고
    • Metabolic regulation of hematopoietic stem cells in the hypoxic niche
    • Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011;9:298-310.
    • (2011) Cell Stem Cell. , vol.9 , pp. 298-310
    • Suda, T.1    Takubo, K.2    Semenza, G.L.3
  • 23
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12:49-61.
    • (2013) Cell Stem Cell. , vol.12 , pp. 49-61
    • Takubo, K.1    Nagamatsu, G.2    Kobayashi, C.I.3
  • 24
    • 34248359065 scopus 로고    scopus 로고
    • Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
    • Parmar K, Mauch P, Vergilio J-A, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104:5431-5436.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , pp. 5431-5436
    • Parmar, K.1    Mauch, P.2    Vergilio, J.-A.3
  • 25
    • 84982182491 scopus 로고    scopus 로고
    • Maintenance ofmouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism
    • Liu X, Zheng H, YuW-M, et al. Maintenance ofmouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism. Blood. 2015;125: 1562-1565.
    • (2015) Blood. , vol.125 , pp. 1562-1565
    • Liu, X.1    Zheng, H.2    Yu, W.-M.3
  • 26
    • 84905921360 scopus 로고    scopus 로고
    • Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification
    • Oburoglu L, Tardito S, Fritz V, et al. Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification. Cell Stem Cell. 2014;15(2):169-184.
    • (2014) Cell Stem Cell. , vol.15 , Issue.2 , pp. 169-184
    • Oburoglu, L.1    Tardito, S.2    Fritz, V.3
  • 27
    • 76049100577 scopus 로고    scopus 로고
    • HIF-1: Upstream and downstream of cancer metabolism
    • Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51-56.
    • (2010) Curr Opin Genet Dev. , vol.20 , pp. 51-56
    • Semenza, G.L.1
  • 28
    • 33644622570 scopus 로고    scopus 로고
    • HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption
    • Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3:187-197.
    • (2006) Cell Metab. , vol.3 , pp. 187-197
    • Papandreou, I.1    Cairns, R.A.2    Fontana, L.3
  • 29
    • 84906719808 scopus 로고    scopus 로고
    • Hypoxic regulation of metabolism offers new opportunities for anticancer therapy
    • Denko NC. Hypoxic regulation of metabolism offers new opportunities for anticancer therapy. Expert Rev Anticancer Ther. 2014;14:979-981.
    • (2014) Expert Rev Anticancer Ther. , vol.14 , pp. 979-981
    • Denko, N.C.1
  • 30
    • 60549111398 scopus 로고    scopus 로고
    • Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis
    • Robey RB, Hay N. Is Akt the "Warburg kinase"?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol. 2009;19:25-31.
    • (2009) Semin Cancer Biol. , vol.19 , pp. 25-31
    • Robey, R.B.1    Hay, N.2
  • 32
    • 33745149291 scopus 로고    scopus 로고
    • P53 regulates mitochondrial respiration
    • Matoba S, Kang J-G, Patino WD, et al. p53 regulates mitochondrial respiration. Science. 2006;312:1650-1653.
    • (2006) Science. , vol.312 , pp. 1650-1653
    • Matoba, S.1    Kang, J.-G.2    Patino, W.D.3
  • 33
    • 79951699777 scopus 로고    scopus 로고
    • Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme
    • Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208:313-326.
    • (2011) J Exp Med. , vol.208 , pp. 313-326
    • Wolf, A.1    Agnihotri, S.2    Micallef, J.3
  • 34
    • 84922503253 scopus 로고    scopus 로고
    • Hexokinase 2-mediated Warburg effect is required for PTEN-and p53-deficiency-driven prostate cancer growth
    • Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN-and p53-deficiency-driven prostate cancer growth. Cell Rep. 2014;8:1461-1474.
    • (2014) Cell Rep. , vol.8 , pp. 1461-1474
    • Wang, L.1    Xiong, H.2    Wu, F.3
  • 35
    • 84881557242 scopus 로고    scopus 로고
    • Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
    • Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24:213-228.
    • (2013) Cancer Cell. , vol.24 , pp. 213-228
    • Patra, K.C.1    Wang, Q.2    Bhaskar, P.T.3
  • 36
    • 40749163248 scopus 로고    scopus 로고
    • TheM2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
    • Christofk HR, vander HeidenMG, HarrisMH, et al. TheM2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230-233.
    • (2008) Nature. , vol.452 , pp. 230-233
    • Christofk, H.R.1    Vander Heiden, M.G.2    Harris, M.H.3
  • 37
    • 77956674635 scopus 로고    scopus 로고
    • Evidence for an alternative glycolytic pathway in rapidly proliferating cells
    • vander HeidenMG, Locasale JW, Swanson KD, et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 2010;329: 1492-1499.
    • (2010) Science. , vol.329 , pp. 1492-1499
    • Vander Heiden, M.G.1    Locasale, J.W.2    Swanson, K.D.3
  • 38
    • 80052731244 scopus 로고    scopus 로고
    • No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis
    • Bluemlein K, Grüning N-M, Feichtinger RG, et al. No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis. Oncotarget. 2011;2:393-400.
    • (2011) Oncotarget. , vol.2 , pp. 393-400
    • Bluemlein, K.1    Grüning, N.-M.2    Feichtinger, R.G.3
  • 39
    • 79957567239 scopus 로고    scopus 로고
    • Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1
    • Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732-744.
    • (2011) Cell. , vol.145 , pp. 732-744
    • Luo, W.1    Hu, H.2    Chang, R.3
  • 40
    • 84905097406 scopus 로고    scopus 로고
    • Pyruvate kinase M2 and cancer: An updated assessment
    • Iqbal MA, Gupta V, Gopinath P, et al. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 2014;588:2685-2692.
    • (2014) FEBS Lett. , vol.588 , pp. 2685-2692
    • Iqbal, M.A.1    Gupta, V.2    Gopinath, P.3
  • 41
    • 33644614520 scopus 로고    scopus 로고
    • HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia
    • Kim J-W, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177-185.
    • (2006) Cell Metab. , vol.3 , pp. 177-185
    • Kim, J.-W.1    Tchernyshyov, I.2    Semenza, G.L.3
  • 42
    • 57749111596 scopus 로고    scopus 로고
    • Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond
    • Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009; 121:29-40.
    • (2009) Pharmacol Ther. , vol.121 , pp. 29-40
    • Ganapathy, V.1    Thangaraju, M.2    Prasad, P.D.3
  • 43
    • 42949176742 scopus 로고    scopus 로고
    • Survival of cancer cells is maintained by EGFR independent of its kinase activity
    • Weihua Z, Tsan R, HuangW-C, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008;13: 385-393.
    • (2008) Cancer Cell. , vol.13 , pp. 385-393
    • Weihua, Z.1    Tsan, R.2    Huang, W.-C.3
  • 44
    • 84863553135 scopus 로고    scopus 로고
    • Identification and functional expression of the mitochondrial pyruvate carrier
    • Herzig S, Raemy E, Montessuit S, et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012;337:93-96.
    • (2012) Science. , vol.337 , pp. 93-96
    • Herzig, S.1    Raemy, E.2    Montessuit, S.3
  • 45
    • 84863552418 scopus 로고    scopus 로고
    • A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
    • Bricker DK, Taylor EB, Schell JC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;337:96-100.
    • (2012) Science. , vol.337 , pp. 96-100
    • Bricker, D.K.1    Taylor, E.B.2    Schell, J.C.3
  • 46
    • 84864655754 scopus 로고    scopus 로고
    • The mitochondrial pyruvate carrier: Has it been unearthed at last?
    • Halestrap AP. The mitochondrial pyruvate carrier: has it been unearthed at last? Cell Metab. 2012;16:141-143.
    • (2012) Cell Metab , vol.16 , pp. 141-143
    • Halestrap, A.P.1
  • 47
    • 84922445353 scopus 로고    scopus 로고
    • A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth
    • Schell JC, Olson KA, Jiang L, et al. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell. 2014;56:400-413.
    • (2014) Mol Cell. , vol.56 , pp. 400-413
    • Schell, J.C.1    Olson, K.A.2    Jiang, L.3
  • 48
    • 57449097020 scopus 로고    scopus 로고
    • Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice
    • Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118: 3930-3942.
    • (2008) J Clin Invest. , vol.118 , pp. 3930-3942
    • Sonveaux, P.1    Végran, F.2    Schroeder, T.3
  • 49
    • 82555175819 scopus 로고    scopus 로고
    • Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations
    • Ewald JC, Reich S, Baumann S, et al. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations. PLoS One. 2011;6:e28245.
    • (2011) PLoS One. , vol.6 , pp. e28245
    • Ewald, J.C.1    Reich, S.2    Baumann, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.