-
1
-
-
84872011926
-
Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
-
Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49-61.
-
(2013)
Cell Stem Cell
, vol.12
, Issue.1
, pp. 49-61
-
-
Takubo, K.1
Nagamatsu, G.2
Kobayashi, C.I.3
-
2
-
-
84871001227
-
Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
-
Kocabas F, Zheng J, Thet S, et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood. 2012;120(25):4963-4972.
-
(2012)
Blood
, vol.120
, Issue.25
, pp. 4963-4972
-
-
Kocabas, F.1
Zheng, J.2
Thet, S.3
-
3
-
-
84868632060
-
A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
-
Ito K, Carracedo A, Weiss D, et al. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18(9):1350-1358.
-
(2012)
Nat Med
, vol.18
, Issue.9
, pp. 1350-1358
-
-
Ito, K.1
Carracedo, A.2
Weiss, D.3
-
4
-
-
77956205122
-
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
-
Simsek T, Kocabas F, Zheng J, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380-390.
-
(2010)
Cell Stem Cell
, vol.7
, Issue.3
, pp. 380-390
-
-
Simsek, T.1
Kocabas, F.2
Zheng, J.3
-
5
-
-
80053916176
-
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
-
Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011;9(4):298-310.
-
(2011)
Cell Stem Cell
, vol.9
, Issue.4
, pp. 298-310
-
-
Suda, T.1
Takubo, K.2
Semenza, G.L.3
-
6
-
-
84993905019
-
Stem cells: A metabolic switch
-
Baumann K. Stem cells: A metabolic switch. Nat Rev Mol Cell Biol. 2013;14(2):64-65.
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, Issue.2
, pp. 64-65
-
-
Baumann, K.1
-
7
-
-
84872037830
-
Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
-
Yu WM, Liu X, Shen J, et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell. 2013;12(1):62-74.
-
(2013)
Cell Stem Cell
, vol.12
, Issue.1
, pp. 62-74
-
-
Yu, W.M.1
Liu, X.2
Shen, J.3
-
8
-
-
22544454482
-
Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells
-
Pagliarini DJ, Wiley SE, Kimple ME, et al. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic beta cells. Mol Cell. 2005;19(2):197-207.
-
(2005)
Mol Cell
, vol.19
, Issue.2
, pp. 197-207
-
-
Pagliarini, D.J.1
Wiley, S.E.2
Kimple, M.E.3
-
9
-
-
83255187891
-
A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells
-
Shen J, Liu X, Yu WM, et al. A critical role of mitochondrial phosphatase Ptpmt1 in embryogenesis reveals a mitochondrial metabolic stress-induced differentiation checkpoint in embryonic stem cells. Mol Cell Biol. 2011;31(24):4902-4916.
-
(2011)
Mol Cell Biol
, vol.31
, Issue.24
, pp. 4902-4916
-
-
Shen, J.1
Liu, X.2
Yu, W.M.3
-
10
-
-
77951030506
-
Pharmacological targeting of the mitochondrial phosphatase PTPMT1
-
Doughty-Shenton D, Joseph JD, Zhang J, et al. Pharmacological targeting of the mitochondrial phosphatase PTPMT1. J Pharmacol Exp Ther. 2010;333(2):584-592.
-
(2010)
J Pharmacol Exp Ther
, vol.333
, Issue.2
, pp. 584-592
-
-
Doughty-Shenton, D.1
Joseph, J.D.2
Zhang, J.3
-
11
-
-
21244463426
-
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
-
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109-1121.
-
(2005)
Cell
, vol.121
, Issue.7
, pp. 1109-1121
-
-
Kiel, M.J.1
Yilmaz, O.H.2
Iwashita, T.3
Yilmaz, O.H.4
Terhorst, C.5
Morrison, S.J.6
-
12
-
-
84892610064
-
The bone marrow niche for haematopoietic stem cells
-
Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327-334.
-
(2014)
Nature
, vol.505
, Issue.7483
, pp. 327-334
-
-
Morrison, S.J.1
Scadden, D.T.2
-
13
-
-
84896929687
-
Metabolic requirements for the maintenance of self-renewing stem cells
-
Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15(4):243-256.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, Issue.4
, pp. 243-256
-
-
Ito, K.1
Suda, T.2
-
14
-
-
0034629129
-
Hematopoietic stem cell quiescence maintained by p21cip1/waf1
-
Cheng T, Rodrigues N, Shen H, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287(5459):1804-1808.
-
(2000)
Science
, vol.287
, Issue.5459
, pp. 1804-1808
-
-
Cheng, T.1
Rodrigues, N.2
Shen, H.3
-
15
-
-
80052289298
-
p57 is required for quiescence and maintenance of adult hematopoietic stem cells
-
Matsumoto A, Takeishi S, Kanie T, et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2011;9(3):262-271.
-
(2011)
Cell Stem Cell
, vol.9
, Issue.3
, pp. 262-271
-
-
Matsumoto, A.1
Takeishi, S.2
Kanie, T.3
-
16
-
-
80052281899
-
p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70
-
Zou P, Yoshihara H, Hosokawa K, et al. p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell. 2011;9(3):247-261.
-
(2011)
Cell Stem Cell
, vol.9
, Issue.3
, pp. 247-261
-
-
Zou, P.1
Yoshihara, H.2
Hosokawa, K.3
-
17
-
-
84858782079
-
AMPK: A nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251-262.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, Issue.4
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
18
-
-
0035929359
-
Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line
-
Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun. 2001;287(2):562-567.
-
(2001)
Biochem Biophys Res Commun
, vol.287
, Issue.2
, pp. 562-567
-
-
Imamura, K.1
Ogura, T.2
Kishimoto, A.3
Kaminishi, M.4
Esumi, H.5
-
19
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, Plas DR, Kubek S, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283-293.
-
(2005)
Mol Cell
, vol.18
, Issue.3
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
-
20
-
-
63849206613
-
AMP-activated protein kinase in the regulation of hepatic energy metabolism: From physiology to therapeutic perspectives
-
Viollet B, Guigas B, Leclerc J, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf). 2009;196(1):81-98.
-
(2009)
Acta Physiol (Oxf)
, vol.196
, Issue.1
, pp. 81-98
-
-
Viollet, B.1
Guigas, B.2
Leclerc, J.3
-
21
-
-
36549040859
-
The selectivity of protein kinase inhibitors: A further update
-
Bain J, Plater L, Elliott M, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408(3):297-315.
-
(2007)
Biochem J
, vol.408
, Issue.3
, pp. 297-315
-
-
Bain, J.1
Plater, L.2
Elliott, M.3
-
22
-
-
82455209029
-
Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status
-
Stephenne X, Foretz M, Taleux N, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia. 2011;54(12):3101-3110.
-
(2011)
Diabetologia
, vol.54
, Issue.12
, pp. 3101-3110
-
-
Stephenne, X.1
Foretz, M.2
Taleux, N.3
-
23
-
-
78649811793
-
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
-
Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 2010;468(7324):653-658.
-
(2010)
Nature
, vol.468
, Issue.7324
, pp. 653-658
-
-
Nakada, D.1
Saunders, T.L.2
Morrison, S.J.3
-
24
-
-
78649874959
-
Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells
-
Gan B, Hu J, Jiang S, et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature. 2010;468(7324):701-704.
-
(2010)
Nature
, vol.468
, Issue.7324
, pp. 701-704
-
-
Gan, B.1
Hu, J.2
Jiang, S.3
-
25
-
-
78649851511
-
The Lkb1 metabolic sensor maintains haematopoietic stem cell survival
-
Gurumurthy S, Xie SZ, Alagesan B, et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature. 2010;468(7324):659-663.
-
(2010)
Nature
, vol.468
, Issue.7324
, pp. 659-663
-
-
Gurumurthy, S.1
Xie, S.Z.2
Alagesan, B.3
|