-
1
-
-
0031195377
-
Rate of convergence of some neural network operators to the unit-univariate case
-
Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. Journal of Mathematical Analysis and Applications 1997, 212:237-262.
-
(1997)
Journal of Mathematical Analysis and Applications
, vol.212
, pp. 237-262
-
-
Anastassiou, G.A.1
-
2
-
-
78751604033
-
Univariate hyperbolic tangent neural network approximation
-
Anastassiou G.A. Univariate hyperbolic tangent neural network approximation. Mathematical and Computer Modelling 2011, 53(5-6):1111-1132.
-
(2011)
Mathematical and Computer Modelling
, vol.53
, Issue.5-6
, pp. 1111-1132
-
-
Anastassiou, G.A.1
-
3
-
-
79651470747
-
Multivariate hyperbolic tangent neural network approximation
-
Anastassiou G.A. Multivariate hyperbolic tangent neural network approximation. Computers & Mathematics with Applications 2011, 61(4):809-821.
-
(2011)
Computers & Mathematics with Applications
, vol.61
, Issue.4
, pp. 809-821
-
-
Anastassiou, G.A.1
-
4
-
-
79951956614
-
Multivariate sigmoidal neural network approximation
-
Anastassiou G.A. Multivariate sigmoidal neural network approximation. Neural Networks 2011, 24:378-386.
-
(2011)
Neural Networks
, vol.24
, pp. 378-386
-
-
Anastassiou, G.A.1
-
5
-
-
84876301028
-
Intelligent systems: approximation by artificial neural networks
-
Springer-Verlag, Berlin
-
Anastassiou G.A. Intelligent systems: approximation by artificial neural networks. Intelligent systems reference library 2011, vol. 19. Springer-Verlag, Berlin.
-
(2011)
Intelligent systems reference library
, vol.19
-
-
Anastassiou, G.A.1
-
7
-
-
0026190194
-
A simple method to derive bounds on the size and to train multilayer neural networks
-
Antsaklis P.J., Sartori M.A. A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Transactions on Neural Networks 1991, 2(4):467-471.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.4
, pp. 467-471
-
-
Antsaklis, P.J.1
Sartori, M.A.2
-
8
-
-
0031673055
-
Feedforward neural networks with arbitrary bounded nonlinear activation functions
-
Babri H.A., Huang G.B. Feedforward neural networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks 1998, 9(1):224-229.
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, Issue.1
, pp. 224-229
-
-
Babri, H.A.1
Huang, G.B.2
-
9
-
-
33846326538
-
Kantorovich-type generalized sampling series in the setting of Orlicz spaces
-
Bardaro C., Butzer P.L., Stens R.L., Vinti G. Kantorovich-type generalized sampling series in the setting of Orlicz spaces. Sampling Theory in Signal and Image Processing 2007, 6(1):29-52.
-
(2007)
Sampling Theory in Signal and Image Processing
, vol.6
, Issue.1
, pp. 29-52
-
-
Bardaro, C.1
Butzer, P.L.2
Stens, R.L.3
Vinti, G.4
-
10
-
-
27844583054
-
Nonlinear integral operators and applications
-
De Gruyter, New York, Berlin
-
Bardaro C., Musielak J., Vinti G. Nonlinear integral operators and applications. Nonlinear analysis and applications 2003, Vol. 9. De Gruyter, New York, Berlin.
-
(2003)
Nonlinear analysis and applications
, vol.9
-
-
Bardaro, C.1
Musielak, J.2
Vinti, G.3
-
11
-
-
27844481668
-
A general approach to the convergence theorems of generalized sampling series
-
Bardaro C., Vinti G. A general approach to the convergence theorems of generalized sampling series. Applicable Analysis 1997, 64:203-217.
-
(1997)
Applicable Analysis
, vol.64
, pp. 203-217
-
-
Bardaro, C.1
Vinti, G.2
-
12
-
-
27844441875
-
An abstract approach to sampling type operators inspired by the work of P.L. Butzer - part I - linear operators
-
Bardaro C., Vinti G. An abstract approach to sampling type operators inspired by the work of P.L. Butzer - part I - linear operators. Sampling Theory in Signal and Image Processing 2003, 2(3):271-296.
-
(2003)
Sampling Theory in Signal and Image Processing
, vol.2
, Issue.3
, pp. 271-296
-
-
Bardaro, C.1
Vinti, G.2
-
13
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transaction on Information Theory 1993, 39(3):930-945.
-
(1993)
IEEE Transaction on Information Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.R.1
-
14
-
-
0003368808
-
Fourier analysis and approximation
-
Academic Press, New York-London
-
Butzer P.L., Nessel R.J. Fourier analysis and approximation. Pure and applied mathematics 1971, vol. 40. Academic Press, New York-London.
-
(1971)
Pure and applied mathematics
, vol.40
-
-
Butzer, P.L.1
Nessel, R.J.2
-
15
-
-
38249033946
-
Approximation of continuous and discontinuous functions by generalized sampling series
-
Butzer P.L., Ries S., Stens R.L. Approximation of continuous and discontinuous functions by generalized sampling series. Journal of Approximation Theory 1987, 50:25-39.
-
(1987)
Journal of Approximation Theory
, vol.50
, pp. 25-39
-
-
Butzer, P.L.1
Ries, S.2
Stens, R.L.3
-
16
-
-
67649743440
-
The approximation operators with sigmoidal functions
-
Cao F., Chen Z. The approximation operators with sigmoidal functions. Computers & Mathematics with Applications 2009, 58(4):758-765.
-
(2009)
Computers & Mathematics with Applications
, vol.58
, Issue.4
, pp. 758-765
-
-
Cao, F.1
Chen, Z.2
-
17
-
-
84863018410
-
The construction and approximation of a class of neural networks operators with ramp functions
-
Cao F., Chen Z. The construction and approximation of a class of neural networks operators with ramp functions. Journal of Computational Analysis and Applications 2012, 14(1):101-112.
-
(2012)
Journal of Computational Analysis and Applications
, vol.14
, Issue.1
, pp. 101-112
-
-
Cao, F.1
Chen, Z.2
-
18
-
-
0026727494
-
Approximation of a function and its derivative with a neural network
-
Cardaliaguet P., Euvrard G. Approximation of a function and its derivative with a neural network. Neural Networks 1992, 5(2):207-220.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 207-220
-
-
Cardaliaguet, P.1
Euvrard, G.2
-
19
-
-
77953536452
-
Approximation with neural networks activated by ramp sigmoids
-
Cheang G.H.L. Approximation with neural networks activated by ramp sigmoids. Journal of Approximation Theory 2010, 162:1450-1465.
-
(2010)
Journal of Approximation Theory
, vol.162
, pp. 1450-1465
-
-
Cheang, G.H.L.1
-
20
-
-
33646753999
-
On kernels and approximation orders
-
Marcel Dekker, New York, G. Anastassiou (Ed.)
-
Cheney E.W., Light W.A., Xu Y. On kernels and approximation orders. Approximation theory 1992, 227-242. Marcel Dekker, New York. G. Anastassiou (Ed.).
-
(1992)
Approximation theory
, pp. 227-242
-
-
Cheney, E.W.1
Light, W.A.2
Xu, Y.3
-
21
-
-
0039978085
-
Constructive methods of approximation by rigde functions and radial functions
-
Cheney E.W., Light W.A., Xu Y. Constructive methods of approximation by rigde functions and radial functions. Numerical Algorithms 1993, 4(2):205-223.
-
(1993)
Numerical Algorithms
, vol.4
, Issue.2
, pp. 205-223
-
-
Cheney, E.W.1
Light, W.A.2
Xu, Y.3
-
22
-
-
84921054675
-
Enhancement of thermographic images as tool for structural analysis in earthquake engineering
-
Cluni F., Costarelli D., Minotti A.M., Vinti G. Enhancement of thermographic images as tool for structural analysis in earthquake engineering. NDT & E International 2015, 70:60-72.
-
(2015)
NDT & E International
, vol.70
, pp. 60-72
-
-
Cluni, F.1
Costarelli, D.2
Minotti, A.M.3
Vinti, G.4
-
23
-
-
84923851309
-
Applications of sampling Kantorovich operators to thermographic images for seismic engineering
-
Cluni F., Costarelli D., Minotti A.M., Vinti G. Applications of sampling Kantorovich operators to thermographic images for seismic engineering. Journal of Computational Analysis and Applications 2015, 19(4):602-617.
-
(2015)
Journal of Computational Analysis and Applications
, vol.19
, Issue.4
, pp. 602-617
-
-
Cluni, F.1
Costarelli, D.2
Minotti, A.M.3
Vinti, G.4
-
25
-
-
84902360925
-
Interpolation by neural network operators activated by ramp functions
-
Costarelli D. Interpolation by neural network operators activated by ramp functions. Journal of Mathematical Analysis and Application 2014, 419:574-582.
-
(2014)
Journal of Mathematical Analysis and Application
, vol.419
, pp. 574-582
-
-
Costarelli, D.1
-
26
-
-
84882972393
-
Constructive approximation by superposition of sigmoidal functions
-
Costarelli D., Spigler R. Constructive approximation by superposition of sigmoidal functions. Analysis in Theory and Applications 2013, 29(2):169-196.
-
(2013)
Analysis in Theory and Applications
, vol.29
, Issue.2
, pp. 169-196
-
-
Costarelli, D.1
Spigler, R.2
-
27
-
-
84883037302
-
Solving Volterra integral equations of the second kind by sigmoidal functions approximations
-
Costarelli D., Spigler R. Solving Volterra integral equations of the second kind by sigmoidal functions approximations. J. Integral Equations Appl. 2013, 25(2):193-222.
-
(2013)
J. Integral Equations Appl.
, vol.25
, Issue.2
, pp. 193-222
-
-
Costarelli, D.1
Spigler, R.2
-
28
-
-
84876320512
-
Approximation results for neural network operators activated by sigmoidal functions
-
Costarelli D., Spigler R. Approximation results for neural network operators activated by sigmoidal functions. Neural Networks 2013, 44:101-106.
-
(2013)
Neural Networks
, vol.44
, pp. 101-106
-
-
Costarelli, D.1
Spigler, R.2
-
29
-
-
84883048212
-
Multivariate neural network operators with sigmoidal activation functions
-
Costarelli D., Spigler R. Multivariate neural network operators with sigmoidal activation functions. Neural Networks 2013, 48:72-77.
-
(2013)
Neural Networks
, vol.48
, pp. 72-77
-
-
Costarelli, D.1
Spigler, R.2
-
30
-
-
84898686004
-
A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions
-
Costarelli D., Spigler R. A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. J. Integral Equations Appl. 2014, 26(1):15-52.
-
(2014)
J. Integral Equations Appl.
, vol.26
, Issue.1
, pp. 15-52
-
-
Costarelli, D.1
Spigler, R.2
-
31
-
-
84903833787
-
Convergence of a family of neural network operators of the Kantorovich type
-
Costarelli D., Spigler R. Convergence of a family of neural network operators of the Kantorovich type. Journal of Approximation Theory 2014, 185:80-90.
-
(2014)
Journal of Approximation Theory
, vol.185
, pp. 80-90
-
-
Costarelli, D.1
Spigler, R.2
-
32
-
-
84926311345
-
Approximation by series of sigmoidal functions with applications to neural networks
-
Costarelli D., Spigler R. Approximation by series of sigmoidal functions with applications to neural networks. Annali di Matematica Pura ed Applicata 2015, 194(1):289-306. 10.1007/s10231-013-0378-y.
-
(2015)
Annali di Matematica Pura ed Applicata
, vol.194
, Issue.1
, pp. 289-306
-
-
Costarelli, D.1
Spigler, R.2
-
33
-
-
84874596412
-
Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces
-
Costarelli D., Vinti G. Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces. Bollettino della Unione Matematica Italiana. Serie 9 2011, IV:445-468.
-
(2011)
Bollettino della Unione Matematica Italiana. Serie 9
, vol.4
, pp. 445-468
-
-
Costarelli, D.1
Vinti, G.2
-
34
-
-
84880406518
-
Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing
-
Costarelli D., Vinti G. Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing. Numerical Functional Analysis and Optimization 2013, 34(8):819-844.
-
(2013)
Numerical Functional Analysis and Optimization
, vol.34
, Issue.8
, pp. 819-844
-
-
Costarelli, D.1
Vinti, G.2
-
36
-
-
84923838138
-
Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces
-
Costarelli D., Vinti G. Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces. Journal of Integral Equations and Applications 2014, 26(4):455-481.
-
(2014)
Journal of Integral Equations and Applications
, vol.26
, Issue.4
, pp. 455-481
-
-
Costarelli, D.1
Vinti, G.2
-
37
-
-
84926305206
-
Sampling Kantorovich operators and their applications to approximation problems and to digital image processing
-
Florence, Italy November 22-24, 2014. Recent advances in applied mathematics, modelling and simulation.
-
D. Costarelli, G. Vinti, (2014c). Sampling Kantorovich operators and their applications to approximation problems and to digital image processing. In Proceedings of 8th international conference on applied mathematics, simulation, modelling (ASM'14), Florence, Italy November 22-24, 2014. Recent advances in applied mathematics, modelling and simulation (pp. 256-260).
-
(2014)
Proceedings of 8th international conference on applied mathematics, simulation, modelling (ASM'14)
, pp. 256-260
-
-
Costarelli, D.1
Vinti, G.2
-
38
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 1989, 2:303-314.
-
(1989)
Mathematics of Control, Signals, and Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
40
-
-
0038686384
-
Approximation by neural network with a bounded number of nodes at each level
-
Gripenberg G. Approximation by neural network with a bounded number of nodes at each level. Journal of Approximation Theory 2003, 122(2):260-266.
-
(2003)
Journal of Approximation Theory
, vol.122
, Issue.2
, pp. 260-266
-
-
Gripenberg, G.1
-
41
-
-
31244437685
-
Approximation order to a function in C-(R) by superposition of a sigmoidal function
-
Hahm N., Hong B. Approximation order to a function in C-(R) by superposition of a sigmoidal function. Applied Mathematics Letters 2002, 15:591-597.
-
(2002)
Applied Mathematics Letters
, vol.15
, pp. 591-597
-
-
Hahm, N.1
Hong, B.2
-
42
-
-
84899078982
-
On the approximation by neural networks with bounded number of neurons in hidden layers
-
Ismailov V.E. On the approximation by neural networks with bounded number of neurons in hidden layers. Journal of Mathematical Analysis and Applications 2014, 417(2):963-969.
-
(2014)
Journal of Mathematical Analysis and Applications
, vol.417
, Issue.2
, pp. 963-969
-
-
Ismailov, V.E.1
-
43
-
-
21344441889
-
Nonlinearity creates linear independence
-
Ito Y. Nonlinearity creates linear independence. Advances in Computational Mathematics 1996, 5:189-203.
-
(1996)
Advances in Computational Mathematics
, vol.5
, pp. 189-203
-
-
Ito, Y.1
-
44
-
-
0042162507
-
Independence of unscaled basis functions and finite mappings by neural networks
-
Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. The Mathematical Scientist 2001, 26:117-126.
-
(2001)
The Mathematical Scientist
, vol.26
, pp. 117-126
-
-
Ito, Y.1
-
45
-
-
0009625590
-
Superposition of linearly independent functions and finite mappings by neural networks
-
Ito Y., Saito K. Superposition of linearly independent functions and finite mappings by neural networks. The Mathematical Scientist 1996, 21:27-33.
-
(1996)
The Mathematical Scientist
, vol.21
, pp. 27-33
-
-
Ito, Y.1
Saito, K.2
-
46
-
-
70350222271
-
An integral upper bound for neural network approximation
-
Kainen P.C., Kurková V. An integral upper bound for neural network approximation. Neural Computation 2009, 21:2970-2989.
-
(2009)
Neural Computation
, vol.21
, pp. 2970-2989
-
-
Kainen, P.C.1
Kurková, V.2
-
47
-
-
84863873369
-
Complexity estimates based on integral transforms induced by computational units
-
Kurková V. Complexity estimates based on integral transforms induced by computational units. Neural Networks 2012, 33:160-167.
-
(2012)
Neural Networks
, vol.33
, pp. 160-167
-
-
Kurková, V.1
-
48
-
-
0011595675
-
Constructive multivariate approximation with sigmoidal functions and applications to neural networks
-
Birkhauser Verlag, Basel, Boston, Berlin
-
Lenze B. Constructive multivariate approximation with sigmoidal functions and applications to neural networks. Numerical methods of approximation theory 1992, 155-175. Birkhauser Verlag, Basel, Boston, Berlin.
-
(1992)
Numerical methods of approximation theory
, pp. 155-175
-
-
Lenze, B.1
-
51
-
-
30344432717
-
Approximation by neural networks and learning theory
-
Maiorov V. Approximation by neural networks and learning theory. Journal of Complexity 2006, 22(1):102-117.
-
(2006)
Journal of Complexity
, vol.22
, Issue.1
, pp. 102-117
-
-
Maiorov, V.1
-
52
-
-
0030119952
-
Random approximants and neural networks
-
Makovoz Y. Random approximants and neural networks. Journal of Approximation Theory 1996, 85:98-109.
-
(1996)
Journal of Approximation Theory
, vol.85
, pp. 98-109
-
-
Makovoz, Y.1
-
53
-
-
0001574595
-
Uniform approximation by neural networks
-
Makovoz Y. Uniform approximation by neural networks. Journal of Approximation Theory 1998, 95(2):215-228.
-
(1998)
Journal of Approximation Theory
, vol.95
, Issue.2
, pp. 215-228
-
-
Makovoz, Y.1
-
54
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numerica 1999, 8:143-195.
-
(1999)
Acta Numerica
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
56
-
-
0026904597
-
Feedforward nets for interpolation and classification
-
Sontag E.D. Feedforward nets for interpolation and classification. Journal of Computer and System Sciences 1992, 45:20-48.
-
(1992)
Journal of Computer and System Sciences
, vol.45
, pp. 20-48
-
-
Sontag, E.D.1
-
57
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network
-
Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network. IEEE Transactions on Neural Networks 1997, 8(2):251-255.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
-
58
-
-
27844511616
-
A general approximation result for nonlinear integral operators and applications to signal processing
-
Vinti G. A general approximation result for nonlinear integral operators and applications to signal processing. Applicable Analysis 2001, 79:217-238.
-
(2001)
Applicable Analysis
, vol.79
, pp. 217-238
-
-
Vinti, G.1
-
59
-
-
84874638760
-
A unifying approach to convergence of linear sampling type operators in Orlicz spaces
-
Vinti G., Zampogni L. A unifying approach to convergence of linear sampling type operators in Orlicz spaces. Advances in Differential Equations 2011, 16(5-6):573-600.
-
(2011)
Advances in Differential Equations
, vol.16
, Issue.5-6
, pp. 573-600
-
-
Vinti, G.1
Zampogni, L.2
|