메뉴 건너뛰기




Volumn 67, Issue , 2015, Pages 28-36

Neural network operators: Constructive interpolation of multivariate functions

Author keywords

Irregular sampling scheme; Multivariate approximation; Multivariate interpolation; Neural networks operators; Order of approximation; Sigmoidal functions

Indexed keywords

NEURAL NETWORKS; THEOREM PROVING;

EID: 84926293410     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.02.002     Document Type: Article
Times cited : (56)

References (59)
  • 1
    • 0031195377 scopus 로고    scopus 로고
    • Rate of convergence of some neural network operators to the unit-univariate case
    • Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. Journal of Mathematical Analysis and Applications 1997, 212:237-262.
    • (1997) Journal of Mathematical Analysis and Applications , vol.212 , pp. 237-262
    • Anastassiou, G.A.1
  • 2
    • 78751604033 scopus 로고    scopus 로고
    • Univariate hyperbolic tangent neural network approximation
    • Anastassiou G.A. Univariate hyperbolic tangent neural network approximation. Mathematical and Computer Modelling 2011, 53(5-6):1111-1132.
    • (2011) Mathematical and Computer Modelling , vol.53 , Issue.5-6 , pp. 1111-1132
    • Anastassiou, G.A.1
  • 3
    • 79651470747 scopus 로고    scopus 로고
    • Multivariate hyperbolic tangent neural network approximation
    • Anastassiou G.A. Multivariate hyperbolic tangent neural network approximation. Computers & Mathematics with Applications 2011, 61(4):809-821.
    • (2011) Computers & Mathematics with Applications , vol.61 , Issue.4 , pp. 809-821
    • Anastassiou, G.A.1
  • 4
    • 79951956614 scopus 로고    scopus 로고
    • Multivariate sigmoidal neural network approximation
    • Anastassiou G.A. Multivariate sigmoidal neural network approximation. Neural Networks 2011, 24:378-386.
    • (2011) Neural Networks , vol.24 , pp. 378-386
    • Anastassiou, G.A.1
  • 5
    • 84876301028 scopus 로고    scopus 로고
    • Intelligent systems: approximation by artificial neural networks
    • Springer-Verlag, Berlin
    • Anastassiou G.A. Intelligent systems: approximation by artificial neural networks. Intelligent systems reference library 2011, vol. 19. Springer-Verlag, Berlin.
    • (2011) Intelligent systems reference library , vol.19
    • Anastassiou, G.A.1
  • 7
    • 0026190194 scopus 로고
    • A simple method to derive bounds on the size and to train multilayer neural networks
    • Antsaklis P.J., Sartori M.A. A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Transactions on Neural Networks 1991, 2(4):467-471.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.4 , pp. 467-471
    • Antsaklis, P.J.1    Sartori, M.A.2
  • 8
    • 0031673055 scopus 로고    scopus 로고
    • Feedforward neural networks with arbitrary bounded nonlinear activation functions
    • Babri H.A., Huang G.B. Feedforward neural networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks 1998, 9(1):224-229.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.1 , pp. 224-229
    • Babri, H.A.1    Huang, G.B.2
  • 11
    • 27844481668 scopus 로고    scopus 로고
    • A general approach to the convergence theorems of generalized sampling series
    • Bardaro C., Vinti G. A general approach to the convergence theorems of generalized sampling series. Applicable Analysis 1997, 64:203-217.
    • (1997) Applicable Analysis , vol.64 , pp. 203-217
    • Bardaro, C.1    Vinti, G.2
  • 12
    • 27844441875 scopus 로고    scopus 로고
    • An abstract approach to sampling type operators inspired by the work of P.L. Butzer - part I - linear operators
    • Bardaro C., Vinti G. An abstract approach to sampling type operators inspired by the work of P.L. Butzer - part I - linear operators. Sampling Theory in Signal and Image Processing 2003, 2(3):271-296.
    • (2003) Sampling Theory in Signal and Image Processing , vol.2 , Issue.3 , pp. 271-296
    • Bardaro, C.1    Vinti, G.2
  • 13
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transaction on Information Theory 1993, 39(3):930-945.
    • (1993) IEEE Transaction on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 14
    • 0003368808 scopus 로고
    • Fourier analysis and approximation
    • Academic Press, New York-London
    • Butzer P.L., Nessel R.J. Fourier analysis and approximation. Pure and applied mathematics 1971, vol. 40. Academic Press, New York-London.
    • (1971) Pure and applied mathematics , vol.40
    • Butzer, P.L.1    Nessel, R.J.2
  • 15
    • 38249033946 scopus 로고
    • Approximation of continuous and discontinuous functions by generalized sampling series
    • Butzer P.L., Ries S., Stens R.L. Approximation of continuous and discontinuous functions by generalized sampling series. Journal of Approximation Theory 1987, 50:25-39.
    • (1987) Journal of Approximation Theory , vol.50 , pp. 25-39
    • Butzer, P.L.1    Ries, S.2    Stens, R.L.3
  • 16
    • 67649743440 scopus 로고    scopus 로고
    • The approximation operators with sigmoidal functions
    • Cao F., Chen Z. The approximation operators with sigmoidal functions. Computers & Mathematics with Applications 2009, 58(4):758-765.
    • (2009) Computers & Mathematics with Applications , vol.58 , Issue.4 , pp. 758-765
    • Cao, F.1    Chen, Z.2
  • 17
    • 84863018410 scopus 로고    scopus 로고
    • The construction and approximation of a class of neural networks operators with ramp functions
    • Cao F., Chen Z. The construction and approximation of a class of neural networks operators with ramp functions. Journal of Computational Analysis and Applications 2012, 14(1):101-112.
    • (2012) Journal of Computational Analysis and Applications , vol.14 , Issue.1 , pp. 101-112
    • Cao, F.1    Chen, Z.2
  • 18
    • 0026727494 scopus 로고
    • Approximation of a function and its derivative with a neural network
    • Cardaliaguet P., Euvrard G. Approximation of a function and its derivative with a neural network. Neural Networks 1992, 5(2):207-220.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 207-220
    • Cardaliaguet, P.1    Euvrard, G.2
  • 19
    • 77953536452 scopus 로고    scopus 로고
    • Approximation with neural networks activated by ramp sigmoids
    • Cheang G.H.L. Approximation with neural networks activated by ramp sigmoids. Journal of Approximation Theory 2010, 162:1450-1465.
    • (2010) Journal of Approximation Theory , vol.162 , pp. 1450-1465
    • Cheang, G.H.L.1
  • 20
    • 33646753999 scopus 로고
    • On kernels and approximation orders
    • Marcel Dekker, New York, G. Anastassiou (Ed.)
    • Cheney E.W., Light W.A., Xu Y. On kernels and approximation orders. Approximation theory 1992, 227-242. Marcel Dekker, New York. G. Anastassiou (Ed.).
    • (1992) Approximation theory , pp. 227-242
    • Cheney, E.W.1    Light, W.A.2    Xu, Y.3
  • 21
    • 0039978085 scopus 로고
    • Constructive methods of approximation by rigde functions and radial functions
    • Cheney E.W., Light W.A., Xu Y. Constructive methods of approximation by rigde functions and radial functions. Numerical Algorithms 1993, 4(2):205-223.
    • (1993) Numerical Algorithms , vol.4 , Issue.2 , pp. 205-223
    • Cheney, E.W.1    Light, W.A.2    Xu, Y.3
  • 22
    • 84921054675 scopus 로고    scopus 로고
    • Enhancement of thermographic images as tool for structural analysis in earthquake engineering
    • Cluni F., Costarelli D., Minotti A.M., Vinti G. Enhancement of thermographic images as tool for structural analysis in earthquake engineering. NDT & E International 2015, 70:60-72.
    • (2015) NDT & E International , vol.70 , pp. 60-72
    • Cluni, F.1    Costarelli, D.2    Minotti, A.M.3    Vinti, G.4
  • 25
    • 84902360925 scopus 로고    scopus 로고
    • Interpolation by neural network operators activated by ramp functions
    • Costarelli D. Interpolation by neural network operators activated by ramp functions. Journal of Mathematical Analysis and Application 2014, 419:574-582.
    • (2014) Journal of Mathematical Analysis and Application , vol.419 , pp. 574-582
    • Costarelli, D.1
  • 26
    • 84882972393 scopus 로고    scopus 로고
    • Constructive approximation by superposition of sigmoidal functions
    • Costarelli D., Spigler R. Constructive approximation by superposition of sigmoidal functions. Analysis in Theory and Applications 2013, 29(2):169-196.
    • (2013) Analysis in Theory and Applications , vol.29 , Issue.2 , pp. 169-196
    • Costarelli, D.1    Spigler, R.2
  • 27
    • 84883037302 scopus 로고    scopus 로고
    • Solving Volterra integral equations of the second kind by sigmoidal functions approximations
    • Costarelli D., Spigler R. Solving Volterra integral equations of the second kind by sigmoidal functions approximations. J. Integral Equations Appl. 2013, 25(2):193-222.
    • (2013) J. Integral Equations Appl. , vol.25 , Issue.2 , pp. 193-222
    • Costarelli, D.1    Spigler, R.2
  • 28
    • 84876320512 scopus 로고    scopus 로고
    • Approximation results for neural network operators activated by sigmoidal functions
    • Costarelli D., Spigler R. Approximation results for neural network operators activated by sigmoidal functions. Neural Networks 2013, 44:101-106.
    • (2013) Neural Networks , vol.44 , pp. 101-106
    • Costarelli, D.1    Spigler, R.2
  • 29
    • 84883048212 scopus 로고    scopus 로고
    • Multivariate neural network operators with sigmoidal activation functions
    • Costarelli D., Spigler R. Multivariate neural network operators with sigmoidal activation functions. Neural Networks 2013, 48:72-77.
    • (2013) Neural Networks , vol.48 , pp. 72-77
    • Costarelli, D.1    Spigler, R.2
  • 30
    • 84898686004 scopus 로고    scopus 로고
    • A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions
    • Costarelli D., Spigler R. A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. J. Integral Equations Appl. 2014, 26(1):15-52.
    • (2014) J. Integral Equations Appl. , vol.26 , Issue.1 , pp. 15-52
    • Costarelli, D.1    Spigler, R.2
  • 31
    • 84903833787 scopus 로고    scopus 로고
    • Convergence of a family of neural network operators of the Kantorovich type
    • Costarelli D., Spigler R. Convergence of a family of neural network operators of the Kantorovich type. Journal of Approximation Theory 2014, 185:80-90.
    • (2014) Journal of Approximation Theory , vol.185 , pp. 80-90
    • Costarelli, D.1    Spigler, R.2
  • 32
    • 84926311345 scopus 로고    scopus 로고
    • Approximation by series of sigmoidal functions with applications to neural networks
    • Costarelli D., Spigler R. Approximation by series of sigmoidal functions with applications to neural networks. Annali di Matematica Pura ed Applicata 2015, 194(1):289-306. 10.1007/s10231-013-0378-y.
    • (2015) Annali di Matematica Pura ed Applicata , vol.194 , Issue.1 , pp. 289-306
    • Costarelli, D.1    Spigler, R.2
  • 33
    • 84874596412 scopus 로고    scopus 로고
    • Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces
    • Costarelli D., Vinti G. Approximation by multivariate generalized sampling Kantorovich operators in the setting of Orlicz spaces. Bollettino della Unione Matematica Italiana. Serie 9 2011, IV:445-468.
    • (2011) Bollettino della Unione Matematica Italiana. Serie 9 , vol.4 , pp. 445-468
    • Costarelli, D.1    Vinti, G.2
  • 34
    • 84880406518 scopus 로고    scopus 로고
    • Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing
    • Costarelli D., Vinti G. Approximation by nonlinear multivariate sampling-Kantorovich type operators and applications to image processing. Numerical Functional Analysis and Optimization 2013, 34(8):819-844.
    • (2013) Numerical Functional Analysis and Optimization , vol.34 , Issue.8 , pp. 819-844
    • Costarelli, D.1    Vinti, G.2
  • 36
    • 84923838138 scopus 로고    scopus 로고
    • Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces
    • Costarelli D., Vinti G. Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces. Journal of Integral Equations and Applications 2014, 26(4):455-481.
    • (2014) Journal of Integral Equations and Applications , vol.26 , Issue.4 , pp. 455-481
    • Costarelli, D.1    Vinti, G.2
  • 37
    • 84926305206 scopus 로고    scopus 로고
    • Sampling Kantorovich operators and their applications to approximation problems and to digital image processing
    • Florence, Italy November 22-24, 2014. Recent advances in applied mathematics, modelling and simulation.
    • D. Costarelli, G. Vinti, (2014c). Sampling Kantorovich operators and their applications to approximation problems and to digital image processing. In Proceedings of 8th international conference on applied mathematics, simulation, modelling (ASM'14), Florence, Italy November 22-24, 2014. Recent advances in applied mathematics, modelling and simulation (pp. 256-260).
    • (2014) Proceedings of 8th international conference on applied mathematics, simulation, modelling (ASM'14) , pp. 256-260
    • Costarelli, D.1    Vinti, G.2
  • 38
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 1989, 2:303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 40
    • 0038686384 scopus 로고    scopus 로고
    • Approximation by neural network with a bounded number of nodes at each level
    • Gripenberg G. Approximation by neural network with a bounded number of nodes at each level. Journal of Approximation Theory 2003, 122(2):260-266.
    • (2003) Journal of Approximation Theory , vol.122 , Issue.2 , pp. 260-266
    • Gripenberg, G.1
  • 41
    • 31244437685 scopus 로고    scopus 로고
    • Approximation order to a function in C-(R) by superposition of a sigmoidal function
    • Hahm N., Hong B. Approximation order to a function in C-(R) by superposition of a sigmoidal function. Applied Mathematics Letters 2002, 15:591-597.
    • (2002) Applied Mathematics Letters , vol.15 , pp. 591-597
    • Hahm, N.1    Hong, B.2
  • 42
    • 84899078982 scopus 로고    scopus 로고
    • On the approximation by neural networks with bounded number of neurons in hidden layers
    • Ismailov V.E. On the approximation by neural networks with bounded number of neurons in hidden layers. Journal of Mathematical Analysis and Applications 2014, 417(2):963-969.
    • (2014) Journal of Mathematical Analysis and Applications , vol.417 , Issue.2 , pp. 963-969
    • Ismailov, V.E.1
  • 43
    • 21344441889 scopus 로고    scopus 로고
    • Nonlinearity creates linear independence
    • Ito Y. Nonlinearity creates linear independence. Advances in Computational Mathematics 1996, 5:189-203.
    • (1996) Advances in Computational Mathematics , vol.5 , pp. 189-203
    • Ito, Y.1
  • 44
    • 0042162507 scopus 로고    scopus 로고
    • Independence of unscaled basis functions and finite mappings by neural networks
    • Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. The Mathematical Scientist 2001, 26:117-126.
    • (2001) The Mathematical Scientist , vol.26 , pp. 117-126
    • Ito, Y.1
  • 45
    • 0009625590 scopus 로고    scopus 로고
    • Superposition of linearly independent functions and finite mappings by neural networks
    • Ito Y., Saito K. Superposition of linearly independent functions and finite mappings by neural networks. The Mathematical Scientist 1996, 21:27-33.
    • (1996) The Mathematical Scientist , vol.21 , pp. 27-33
    • Ito, Y.1    Saito, K.2
  • 46
    • 70350222271 scopus 로고    scopus 로고
    • An integral upper bound for neural network approximation
    • Kainen P.C., Kurková V. An integral upper bound for neural network approximation. Neural Computation 2009, 21:2970-2989.
    • (2009) Neural Computation , vol.21 , pp. 2970-2989
    • Kainen, P.C.1    Kurková, V.2
  • 47
    • 84863873369 scopus 로고    scopus 로고
    • Complexity estimates based on integral transforms induced by computational units
    • Kurková V. Complexity estimates based on integral transforms induced by computational units. Neural Networks 2012, 33:160-167.
    • (2012) Neural Networks , vol.33 , pp. 160-167
    • Kurková, V.1
  • 48
    • 0011595675 scopus 로고
    • Constructive multivariate approximation with sigmoidal functions and applications to neural networks
    • Birkhauser Verlag, Basel, Boston, Berlin
    • Lenze B. Constructive multivariate approximation with sigmoidal functions and applications to neural networks. Numerical methods of approximation theory 1992, 155-175. Birkhauser Verlag, Basel, Boston, Berlin.
    • (1992) Numerical methods of approximation theory , pp. 155-175
    • Lenze, B.1
  • 51
    • 30344432717 scopus 로고    scopus 로고
    • Approximation by neural networks and learning theory
    • Maiorov V. Approximation by neural networks and learning theory. Journal of Complexity 2006, 22(1):102-117.
    • (2006) Journal of Complexity , vol.22 , Issue.1 , pp. 102-117
    • Maiorov, V.1
  • 52
    • 0030119952 scopus 로고    scopus 로고
    • Random approximants and neural networks
    • Makovoz Y. Random approximants and neural networks. Journal of Approximation Theory 1996, 85:98-109.
    • (1996) Journal of Approximation Theory , vol.85 , pp. 98-109
    • Makovoz, Y.1
  • 53
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Makovoz Y. Uniform approximation by neural networks. Journal of Approximation Theory 1998, 95(2):215-228.
    • (1998) Journal of Approximation Theory , vol.95 , Issue.2 , pp. 215-228
    • Makovoz, Y.1
  • 54
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numerica 1999, 8:143-195.
    • (1999) Acta Numerica , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 56
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • Sontag E.D. Feedforward nets for interpolation and classification. Journal of Computer and System Sciences 1992, 45:20-48.
    • (1992) Journal of Computer and System Sciences , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 57
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network
    • Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network. IEEE Transactions on Neural Networks 1997, 8(2):251-255.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 58
    • 27844511616 scopus 로고    scopus 로고
    • A general approximation result for nonlinear integral operators and applications to signal processing
    • Vinti G. A general approximation result for nonlinear integral operators and applications to signal processing. Applicable Analysis 2001, 79:217-238.
    • (2001) Applicable Analysis , vol.79 , pp. 217-238
    • Vinti, G.1
  • 59
    • 84874638760 scopus 로고    scopus 로고
    • A unifying approach to convergence of linear sampling type operators in Orlicz spaces
    • Vinti G., Zampogni L. A unifying approach to convergence of linear sampling type operators in Orlicz spaces. Advances in Differential Equations 2011, 16(5-6):573-600.
    • (2011) Advances in Differential Equations , vol.16 , Issue.5-6 , pp. 573-600
    • Vinti, G.1    Zampogni, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.