-
1
-
-
0031195377
-
Rate of convergence of some neural network operators to the unit-univariate case
-
G.A. Anastassiou, Rate of convergence of some neural network operators to the unit-univariate case, J. Math. Anal. Appli. 212 (1997), 237-262.
-
(1997)
J. Math. Anal. Appli.
, vol.212
, pp. 237-262
-
-
Anastassiou, G.A.1
-
3
-
-
78751609431
-
Basic Inequalities, Revisited
-
New Series, Fasc
-
G.A. Anastassiou, Basic Inequalities, Revisited, Mathematica Balkanica, New Series, Vol. 24, Fasc. 1-2 (2010), 59-84.
-
(2010)
Mathematica Balkanica
, vol.24
, Issue.1-2
, pp. 59-84
-
-
Anastassiou, G.A.1
-
4
-
-
0027599793
-
Universal approximation bounds for superpositions of a sig- moidal function
-
A.R. Barron, Universal approximation bounds for superpositions of a sig- moidal function, IEEE Trans. Inform. Theory, 39 (1993), 930-945.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 930-945
-
-
Barron, A.R.1
-
6
-
-
38649094938
-
The estimate for approximation error of neural networks: A constructive approach
-
F.L. Cao, T.F. Xie and Z.B. Xu, The estimate for approximation error of neural networks: a constructive approach, Neurocomputing, 71 (2008), 626-630.
-
(2008)
Neurocomputing
, vol.71
, pp. 626-630
-
-
Cao, F.L.1
Xie, T.F.2
Xu, Z.B.3
-
7
-
-
0029343809
-
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its applications to a dynamic system
-
T.P. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its applications to a dynamic system, IEEE Trans. Neural Networks, 6 (1995), 911-917.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 911-917
-
-
Chen, T.P.1
Chen, H.2
-
9
-
-
0000378922
-
Approximation by ridge functions and neural networks with one hidden layer
-
C.K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden layer, J. Approx. Theory, 70 (1992), 131-141.
-
(1992)
J. Approx. Theory
, vol.70
, pp. 131-141
-
-
Chui, C.K.1
Li, X.2
-
10
-
-
0024861871
-
Approximation by superpositions of sigmoidal function
-
G. Cybenko, Approximation by superpositions of sigmoidal function, Math. of Control Signals and System, 2 (1989), 303-314.
-
(1989)
Math. of Control Signals and System
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
11
-
-
13844255524
-
Smooth function approximation using neural networks
-
S. Ferrari and R.F. Stengel, Smooth function approximation using neural networks, IEEE Trans. Neural Networks, 16 (2005), 24-38.
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, pp. 24-38
-
-
Ferrari, S.1
Stengel, R.F.2
-
12
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
K.I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks, 2 (1989), 183-192.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.I.1
-
13
-
-
9644287964
-
An approximation by neural networks with a fixed weight
-
N. Hahm and B.I. Hong, An approximation by neural networks with a fixed weight, Computers & Math. with Appli., 47 (2004), 1897-1903.
-
(2004)
Computers & Math. with Appli.
, vol.47
, pp. 1897-1903
-
-
Hahm, N.1
Hong, B.I.2
-
14
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchombe, M.2
White, H.3
-
15
-
-
0025627940
-
Universal approximation of an unknown mapping and its derivatives using multilayer feedforward net- works
-
K. Hornik, M. Stinchombe and H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward net- works, Neural Networks, 3 (1990), 551-560.
-
(1990)
Neural Networks
, vol.3
, pp. 551-560
-
-
Hornik, K.1
Stinchombe, M.2
White, H.3
-
16
-
-
55549136164
-
-
Reprint, Science Press, Beijing
-
N. Hritonenko and Y. Yatsenko, Mathematical modeling in economics, ecol- ogy and the environment, Reprint, Science Press, Beijing, pp. 92-93, 2006.
-
(2006)
Mathematical Modeling in Economics, Ecol- Ogy and The Environment
, pp. 92-93
-
-
Hritonenko, N.1
Yatsenko, Y.2
-
17
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
M. Leshno, V.Y. Lin, A. Pinks and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, 6 (1993), 861-867.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinks, A.3
Schocken, S.4
-
20
-
-
0001574595
-
Uniform approximation by neural networks
-
Y. Makovoz, Uniform approximation by neural networks, J. Approx. The- ory, 95 (1998), 215-228.
-
(1998)
J. Approx. The- Ory
, vol.95
, pp. 215-228
-
-
Makovoz, Y.1
-
21
-
-
0000358945
-
Approximation by superposition of a sigmoidal function
-
H.N. Mhaskar and C.A. Micchelli, Approximation by superposition of a sigmoidal function, Adv. Applied Math., 13 (1992), 350-373.
-
(1992)
Adv. Applied Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
22
-
-
0000194429
-
Degree of approximation by neural net- works with a single hidden layer
-
H.N. Mhaskar and C.A. Micchelli, Degree of approximation by neural net- works with a single hidden layer, Adv. Applied Math., 16 (1995), 151-183.
-
(1995)
Adv. Applied Math.
, vol.16
, pp. 151-183
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
23
-
-
0032144406
-
Constructive function approximation by three-layer artificial neu- ral networks
-
S. Suzuki, Constructive function approximation by three-layer artificial neu- ral networks, Neural Networks, 11 (1998), 1049-1058.
-
(1998)
Neural Networks
, vol.11
, pp. 1049-1058
-
-
Suzuki, S.1
-
25
-
-
24344496437
-
The essential order of approximation for neural networks
-
Ser. F
-
Z.B. Xu and F.L. Cao, The essential order of approximation for neural networks, Science in China (Ser. F), 47 (2004), 97-112.
-
(2004)
Science in China
, vol.47
, pp. 97-112
-
-
Xu, Z.B.1
Cao, F.L.2
|