메뉴 건너뛰기




Volumn 14, Issue 4, 2012, Pages 659-690

Univariate sigmoidal neural network approximation

Author keywords

Complex approximation; Modulus of continuiuty; Neural network approximation; Quasi interpolation operator; Sigmoidal function

Indexed keywords


EID: 84856712031     PISSN: 15211398     EISSN: 15729206     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (112)

References (25)
  • 1
    • 0031195377 scopus 로고    scopus 로고
    • Rate of convergence of some neural network operators to the unit-univariate case
    • G.A. Anastassiou, Rate of convergence of some neural network operators to the unit-univariate case, J. Math. Anal. Appli. 212 (1997), 237-262.
    • (1997) J. Math. Anal. Appli. , vol.212 , pp. 237-262
    • Anastassiou, G.A.1
  • 3
    • 78751609431 scopus 로고    scopus 로고
    • Basic Inequalities, Revisited
    • New Series, Fasc
    • G.A. Anastassiou, Basic Inequalities, Revisited, Mathematica Balkanica, New Series, Vol. 24, Fasc. 1-2 (2010), 59-84.
    • (2010) Mathematica Balkanica , vol.24 , Issue.1-2 , pp. 59-84
    • Anastassiou, G.A.1
  • 4
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sig- moidal function
    • A.R. Barron, Universal approximation bounds for superpositions of a sig- moidal function, IEEE Trans. Inform. Theory, 39 (1993), 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 6
    • 38649094938 scopus 로고    scopus 로고
    • The estimate for approximation error of neural networks: A constructive approach
    • F.L. Cao, T.F. Xie and Z.B. Xu, The estimate for approximation error of neural networks: a constructive approach, Neurocomputing, 71 (2008), 626-630.
    • (2008) Neurocomputing , vol.71 , pp. 626-630
    • Cao, F.L.1    Xie, T.F.2    Xu, Z.B.3
  • 7
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its applications to a dynamic system
    • T.P. Chen and H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its applications to a dynamic system, IEEE Trans. Neural Networks, 6 (1995), 911-917.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 911-917
    • Chen, T.P.1    Chen, H.2
  • 8
  • 9
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • C.K. Chui and X. Li, Approximation by ridge functions and neural networks with one hidden layer, J. Approx. Theory, 70 (1992), 131-141.
    • (1992) J. Approx. Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 10
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • G. Cybenko, Approximation by superpositions of sigmoidal function, Math. of Control Signals and System, 2 (1989), 303-314.
    • (1989) Math. of Control Signals and System , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 11
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • S. Ferrari and R.F. Stengel, Smooth function approximation using neural networks, IEEE Trans. Neural Networks, 16 (2005), 24-38.
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 12
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K.I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks, 2 (1989), 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 13
    • 9644287964 scopus 로고    scopus 로고
    • An approximation by neural networks with a fixed weight
    • N. Hahm and B.I. Hong, An approximation by neural networks with a fixed weight, Computers & Math. with Appli., 47 (2004), 1897-1903.
    • (2004) Computers & Math. with Appli. , vol.47 , pp. 1897-1903
    • Hahm, N.1    Hong, B.I.2
  • 14
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 15
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward net- works
    • K. Hornik, M. Stinchombe and H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward net- works, Neural Networks, 3 (1990), 551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 17
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V.Y. Lin, A. Pinks and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, 6 (1993), 861-867.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinks, A.3    Schocken, S.4
  • 20
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Y. Makovoz, Uniform approximation by neural networks, J. Approx. The- ory, 95 (1998), 215-228.
    • (1998) J. Approx. The- Ory , vol.95 , pp. 215-228
    • Makovoz, Y.1
  • 21
    • 0000358945 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • H.N. Mhaskar and C.A. Micchelli, Approximation by superposition of a sigmoidal function, Adv. Applied Math., 13 (1992), 350-373.
    • (1992) Adv. Applied Math. , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 22
    • 0000194429 scopus 로고
    • Degree of approximation by neural net- works with a single hidden layer
    • H.N. Mhaskar and C.A. Micchelli, Degree of approximation by neural net- works with a single hidden layer, Adv. Applied Math., 16 (1995), 151-183.
    • (1995) Adv. Applied Math. , vol.16 , pp. 151-183
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 23
    • 0032144406 scopus 로고    scopus 로고
    • Constructive function approximation by three-layer artificial neu- ral networks
    • S. Suzuki, Constructive function approximation by three-layer artificial neu- ral networks, Neural Networks, 11 (1998), 1049-1058.
    • (1998) Neural Networks , vol.11 , pp. 1049-1058
    • Suzuki, S.1
  • 25
    • 24344496437 scopus 로고    scopus 로고
    • The essential order of approximation for neural networks
    • Ser. F
    • Z.B. Xu and F.L. Cao, The essential order of approximation for neural networks, Science in China (Ser. F), 47 (2004), 97-112.
    • (2004) Science in China , vol.47 , pp. 97-112
    • Xu, Z.B.1    Cao, F.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.