메뉴 건너뛰기




Volumn 44, Issue , 2013, Pages 101-106

Approximation results for neural network operators activated by sigmoidal functions

Author keywords

Lipschitz classes; Neural networks operators; Order of approximation; Sigmoidal functions; Uniform approximation

Indexed keywords

APPROXIMATION RESULTS; HYPERBOLIC TANGENT FUNCTION; LIPSCHITZ; MULTIVARIATE FUNCTION; ORDER OF APPROXIMATION; SIGMOIDAL FUNCTIONS; UNIFORM APPROXIMATION; UNIFORM CONVERGENCE;

EID: 84876320512     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.03.015     Document Type: Article
Times cited : (146)

References (36)
  • 1
    • 0031195377 scopus 로고    scopus 로고
    • Rate of convergence of some neural network operators to the unit-univariate case
    • Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. Journal of Mathematical Analysis and Applications 1997, 212:237-262.
    • (1997) Journal of Mathematical Analysis and Applications , vol.212 , pp. 237-262
    • Anastassiou, G.A.1
  • 2
    • 84876301028 scopus 로고    scopus 로고
    • Intelligent systems: approximation by artificial neural networks
    • Springer-Verlag, Berlin
    • Anastassiou G.A. Intelligent systems: approximation by artificial neural networks. Intelligent systems reference library 2011, vol. 19. Springer-Verlag, Berlin.
    • (2011) Intelligent systems reference library , vol.19
    • Anastassiou, G.A.1
  • 3
    • 79651470747 scopus 로고    scopus 로고
    • Multivariate hyperbolic tangent neural network approximation
    • Anastassiou G.A. Multivariate hyperbolic tangent neural network approximation. Computers & Mathematics with Applications 2011, 61(4):809-821.
    • (2011) Computers & Mathematics with Applications , vol.61 , Issue.4 , pp. 809-821
    • Anastassiou, G.A.1
  • 4
    • 79951956614 scopus 로고    scopus 로고
    • Multivariate sigmoidal neural network approximation
    • Anastassiou G.A. Multivariate sigmoidal neural network approximation. Neural Networks 2011, 24:378-386.
    • (2011) Neural Networks , vol.24 , pp. 378-386
    • Anastassiou, G.A.1
  • 5
    • 78751604033 scopus 로고    scopus 로고
    • Univariate hyperbolic tangent neural network approximation
    • Anastassiou G.A. Univariate hyperbolic tangent neural network approximation. Mathematical and Computer Modelling 2011, 53(5-6):1111-1132.
    • (2011) Mathematical and Computer Modelling , vol.53 , Issue.5-6 , pp. 1111-1132
    • Anastassiou, G.A.1
  • 7
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 1993, 39(3):930-945.
    • (1993) IEEE Transactions on Information Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 9
    • 67649743440 scopus 로고    scopus 로고
    • The approximation operators with sigmoidal functions
    • Cao F., Chen Z. The approximation operators with sigmoidal functions. Computers & Mathematics with Applications 2009, 58(4):758-765.
    • (2009) Computers & Mathematics with Applications , vol.58 , Issue.4 , pp. 758-765
    • Cao, F.1    Chen, Z.2
  • 10
    • 84863018410 scopus 로고    scopus 로고
    • The construction and approximation of a class of neural networks operators with ramp functions
    • Cao F., Chen Z. The construction and approximation of a class of neural networks operators with ramp functions. Journal of Computational Analysis and Applications 2012, 14(1):101-112.
    • (2012) Journal of Computational Analysis and Applications , vol.14 , Issue.1 , pp. 101-112
    • Cao, F.1    Chen, Z.2
  • 11
    • 77953536452 scopus 로고    scopus 로고
    • Approximation with neural networks activated by ramp sigmoids
    • Cheang Gerald H.L. Approximation with neural networks activated by ramp sigmoids. Journal of Approximation Theory 2010, 162:1450-1465.
    • (2010) Journal of Approximation Theory , vol.162 , pp. 1450-1465
    • Cheang Gerald, H.L.1
  • 12
    • 51249165422 scopus 로고
    • Degree of approximation by superpositions of a sigmoidal function
    • Chen D. Degree of approximation by superpositions of a sigmoidal function. Approximation Theory and its Applications 1993, 9(3):17-28.
    • (1993) Approximation Theory and its Applications , vol.9 , Issue.3 , pp. 17-28
    • Chen, D.1
  • 13
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • Chui C.K., Li X. Approximation by ridge functions and neural networks with one hidden layer. Journal of Approximation Theory 1992, 70:131-141.
    • (1992) Journal of Approximation Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 14
    • 84876329615 scopus 로고    scopus 로고
    • Approximation by series of sigmoidal functions with applications to neural networks
    • (submitted for publication-a).
    • Costarelli, D., & Spigler, R. (2012). Approximation by series of sigmoidal functions with applications to neural networks (submitted for publication-a).
    • (2012)
    • Costarelli, D.1    Spigler, R.2
  • 15
    • 84876302433 scopus 로고    scopus 로고
    • Constructive approximation by superposition of sigmoidal functions
    • (submitted for publication-b).
    • Costarelli, D., & Spigler, R. (2012). Constructive approximation by superposition of sigmoidal functions (submitted for publication-b).
    • (2012)
    • Costarelli, D.1    Spigler, R.2
  • 16
    • 84876330814 scopus 로고    scopus 로고
    • A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions
    • (in press-a).
    • Costarelli, D., & Spigler, R. (2013). A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. Journal of Integral Equations and Applications (in press-a).
    • (2013) Journal of Integral Equations and Applications
    • Costarelli, D.1    Spigler, R.2
  • 17
    • 84883037302 scopus 로고    scopus 로고
    • Solving Volterra integral equations of the 2nd kind by sigmoidal functions approximations
    • (in press-b).
    • Costarelli, D., & Spigler, R. (2013). Solving Volterra integral equations of the 2nd kind by sigmoidal functions approximations. Journal of Integral Equations and Applications (in press-b).
    • (2013) Journal of Integral Equations and Applications
    • Costarelli, D.1    Spigler, R.2
  • 18
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems 1989, 2:303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 19
    • 0042892216 scopus 로고
    • Univariant approximation by superpositions of a sigmoidal function
    • Gao B., Xu Y. Univariant approximation by superpositions of a sigmoidal function. Journal of Mathematical Analysis and Applications 1993, 178:221-226.
    • (1993) Journal of Mathematical Analysis and Applications , vol.178 , pp. 221-226
    • Gao, B.1    Xu, Y.2
  • 20
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • Chapman & Hall, London, R.J. Mammone (Ed.)
    • Girosi F., Anzellotti G. Rates of convergence for radial basis functions and neural networks. Artificial neural networks for speech and vision 1993, 97-113. Chapman & Hall, London. R.J. Mammone (Ed.).
    • (1993) Artificial neural networks for speech and vision , pp. 97-113
    • Girosi, F.1    Anzellotti, G.2
  • 21
    • 84856479895 scopus 로고    scopus 로고
    • A comparison between fixed-basis and variable-basis schemes for function approximation and functional optimization
    • ID 806945
    • Gnecco G. A comparison between fixed-basis and variable-basis schemes for function approximation and functional optimization. Journal of Applied Mathematics 2012, 17. ID 806945.
    • (2012) Journal of Applied Mathematics , pp. 17
    • Gnecco, G.1
  • 22
    • 78650896759 scopus 로고    scopus 로고
    • On a variational norm tailored to variable-basis approximation schemes
    • Gnecco G., Sanguineti M. On a variational norm tailored to variable-basis approximation schemes. IEEE Transactions on Information Theory 2011, 57:549-558.
    • (2011) IEEE Transactions on Information Theory , vol.57 , pp. 549-558
    • Gnecco, G.1    Sanguineti, M.2
  • 23
    • 31244437685 scopus 로고    scopus 로고
    • Approximation order to a function in C(R) by superposition of a sigmoidal function
    • Hahm N., Hong B. Approximation order to a function in C(R) by superposition of a sigmoidal function. Applied Mathematics Letters 2002, 15:591-597.
    • (2002) Applied Mathematics Letters , vol.15 , pp. 591-597
    • Hahm, N.1    Hong, B.2
  • 25
    • 70350222271 scopus 로고    scopus 로고
    • An integral upper bound for neural network approximation
    • Kainen P.C., Kurková V. An integral upper bound for neural network approximation. Neural Computation 2009, 21:2970-2989.
    • (2009) Neural Computation , vol.21 , pp. 2970-2989
    • Kainen, P.C.1    Kurková, V.2
  • 26
    • 84863873369 scopus 로고    scopus 로고
    • Complexity estimates based on integral transforms induced by computational units
    • Kurková V. Complexity estimates based on integral transforms induced by computational units. Neural Networks 2012, 33:160-167.
    • (2012) Neural Networks , vol.33 , pp. 160-167
    • Kurková, V.1
  • 27
    • 0011595675 scopus 로고
    • Constructive multivariate approximation with sigmoidal functions and applications to neural networks
    • Birkhäuser Verlag, Basel, Boston, Berlin
    • Lenze B. Constructive multivariate approximation with sigmoidal functions and applications to neural networks. Numer. methods approx. theory 1992, 155-175. Birkhäuser Verlag, Basel, Boston, Berlin.
    • (1992) Numer. methods approx. theory , pp. 155-175
    • Lenze, B.1
  • 29
    • 10644262975 scopus 로고    scopus 로고
    • Approximation of functions of finite variation by superpositions of a sigmoidal function
    • Lewicki G., Marino G. Approximation of functions of finite variation by superpositions of a sigmoidal function. Applied Mathematics Letters 2004, 17:1147-1152.
    • (2004) Applied Mathematics Letters , vol.17 , pp. 1147-1152
    • Lewicki, G.1    Marino, G.2
  • 30
    • 0030221938 scopus 로고    scopus 로고
    • Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer
    • Li X. Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer. Neurocomputing 1996, 12:327-343.
    • (1996) Neurocomputing , vol.12 , pp. 327-343
    • Li, X.1
  • 31
    • 0034561156 scopus 로고    scopus 로고
    • Approximation by radial basis and neural networks
    • Li X., Micchelli C.A. Approximation by radial basis and neural networks. Numerical Algorithms 2000, 25:241-262.
    • (2000) Numerical Algorithms , vol.25 , pp. 241-262
    • Li, X.1    Micchelli, C.A.2
  • 32
    • 17544373132 scopus 로고
    • Ridge functions, sigmoidal functions and neural networks
    • Academic Press Boston, Boston, MA
    • Light W. Ridge functions, sigmoidal functions and neural networks. Approximation theory VII (Austin, TX, 1992) 1993, 163-206. Academic Press Boston, Boston, MA.
    • (1993) Approximation theory VII (Austin, TX, 1992) , pp. 163-206
    • Light, W.1
  • 33
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Makovoz Y. Uniform approximation by neural networks. Journal of Approximation Theory 1998, 95(2):215-228.
    • (1998) Journal of Approximation Theory , vol.95 , Issue.2 , pp. 215-228
    • Makovoz, Y.1
  • 34
    • 0000358945 scopus 로고
    • Approximation by superposition of sigmoidal and radial basis functions
    • Mhaskar H.N., Micchelli C.A. Approximation by superposition of sigmoidal and radial basis functions. Advances in Applied Mathematics 1992, 13:350-373.
    • (1992) Advances in Applied Mathematics , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 35
    • 0000194429 scopus 로고
    • Degree of approximation by neural and translation networks with a single hidden layer
    • Mhaskar H.N., Micchelli C.A. Degree of approximation by neural and translation networks with a single hidden layer. Advances in Applied Mathematics 1995, 16:151-183.
    • (1995) Advances in Applied Mathematics , vol.16 , pp. 151-183
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 36
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numerica 1999, 8:143-195.
    • (1999) Acta Numerica , vol.8 , pp. 143-195
    • Pinkus, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.