메뉴 건너뛰기




Volumn 188, Issue 2, 2006, Pages 283-308

Constructive approximate interpolation by neural networks

Author keywords

Approximate interpolation; Neural networks; Uniform approximation

Indexed keywords

APPROXIMATION THEORY; INTERPOLATION;

EID: 28244460747     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2005.04.019     Document Type: Article
Times cited : (90)

References (26)
  • 1
    • 0346146246 scopus 로고
    • Function learning from interpolation
    • London School of Economics
    • M. Anthony, Function learning from interpolation, London School of Economics, -Mathematics Preprint Series-73, 1994.
    • (1994) Mathematics Preprint Series , vol.73
    • Anthony, M.1
  • 3
    • 0033747328 scopus 로고    scopus 로고
    • Single iteration training algorithm for multilayer feedforward neural networks
    • J. Barhen, R. Cogswell, and V. Protopopescu Single iteration training algorithm for multilayer feedforward neural networks Neural Process. Lett. 11 2000 113 129
    • (2000) Neural Process. Lett. , vol.11 , pp. 113-129
    • Barhen, J.1    Cogswell, R.2    Protopopescu, V.3
  • 4
    • 0026727494 scopus 로고
    • Approximation of a function and its derivative with a neural network
    • P. Cardaliaguet, and G. Euvrard Approximation of a function and its derivative with a neural network Neural Networks 5 1992 207 220
    • (1992) Neural Networks , vol.5 , pp. 207-220
    • Cardaliaguet, P.1    Euvrard, G.2
  • 5
    • 9644285073 scopus 로고
    • A constructive proof and an Extension of Cybenko's approximation theorem
    • Computing Science and Statistics Springer, Berlin
    • T. Chen, H. Chen, R.-W. Liu, A constructive proof and an Extension of Cybenko's approximation theorem, in: Computing Science and Statistics, Proceedings of the 22nd Symposium on the Interface, Springer, Berlin, 1991, pp. 163-168.
    • (1991) Proceedings of the 22nd Symposium on the Interface , pp. 163-168
    • Chen, T.1    Chen, H.2    Liu, R.-W.3
  • 7
    • 27844503288 scopus 로고    scopus 로고
    • Limitations of the approximation capabilities of neural networks with one hidden layer
    • C.K. Chui, X. Li, and H.N. Mhaskar Limitations of the approximation capabilities of neural networks with one hidden layer Adv. Comput. Math. 5 1996 233 243
    • (1996) Adv. Comput. Math. , vol.5 , pp. 233-243
    • Chui, C.K.1    Li, X.2    Mhaskar, H.N.3
  • 8
    • 51249165422 scopus 로고
    • Degree of approximation by superpositions of a sigmoidal function
    • Ch. Debao Degree of approximation by superpositions of a sigmoidal function Approx. Theory & its Appl. 9 1993 17 28
    • (1993) Approx. Theory & Its Appl. , vol.9 , pp. 17-28
    • Debao, Ch.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0031673055 scopus 로고    scopus 로고
    • Feedforward neural networks with arbitrary bounded nonlinear activation functions
    • G.B. Huang, and H.A. Babri Feedforward neural networks with arbitrary bounded nonlinear activation functions IEEE Trans. Neural Networks 9-1 1998 224 229
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 12
    • 21344441889 scopus 로고    scopus 로고
    • Nonlinearity creates linear independence
    • Y. Ito Nonlinearity creates linear independence Adv. Comput. Math. 5 1996 189 203
    • (1996) Adv. Comput. Math. , vol.5 , pp. 189-203
    • Ito, Y.1
  • 13
    • 0042162507 scopus 로고    scopus 로고
    • Independence of unscaled basis functions and finite mappings by neural networks
    • Y. Ito Independence of unscaled basis functions and finite mappings by neural networks Math. Sci. 26 2001 117 126
    • (2001) Math. Sci. , vol.26 , pp. 117-126
    • Ito, Y.1
  • 14
    • 0009625590 scopus 로고    scopus 로고
    • Superposition of linearly independent functions and finite mappings by neural networks
    • Y. Ito, and K. Saito Superposition of linearly independent functions and finite mappings by neural networks Math. Sci. 21 1996 27 33
    • (1996) Math. Sci. , vol.21 , pp. 27-33
    • Ito, Y.1    Saito, K.2
  • 17
    • 0036644587 scopus 로고    scopus 로고
    • Interpolation by ridge polynomials and its application in neural networks
    • X. Li Interpolation by ridge polynomials and its application in neural networks J. Comput. Appl. Math. 144 2002 197 209
    • (2002) J. Comput. Appl. Math. , vol.144 , pp. 197-209
    • Li, X.1
  • 18
    • 77950603295 scopus 로고
    • Neural networks for localized approximation of real functions
    • Neural Networks for Signal Processing 6-9 September IEEE, 1993
    • H.N. Mhaskar, Neural networks for localized approximation of real functions, in: Neural Networks for Signal Processing, Proceedings of the 1993 IEEE-SP Workshop, 6-9 September 1993, IEEE, 1993, pp. 190-196.
    • (1993) Proceedings of the 1993 IEEE-SP Workshop , pp. 190-196
    • Mhaskar, H.N.1
  • 19
    • 0000358945 scopus 로고
    • Approximation by superposition of sigmoidal and radial basis functions
    • H.N. Mhaskar, and Ch.A. Michelli Approximation by superposition of sigmoidal and radial basis functions Adv. Appl. Math. 13 1992 350 373
    • (1992) Adv. Appl. Math. , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Michelli, Ch.A.2
  • 20
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica (1999) 143-195.
    • (1999) Acta Numerica , pp. 143-195
    • Pinkus, A.1
  • 22
    • 0026190194 scopus 로고
    • A simple method to derive bounds on the size and to train multilayer neural networks
    • M.A. Sartori, and P.J. Antsaklis A simple method to derive bounds on the size and to train multilayer neural networks IEEE Trans. Neural Networks 2-4 1991 467 471
    • (1991) IEEE Trans. Neural Networks , vol.2-4 , pp. 467-471
    • Sartori, M.A.1    Antsaklis, P.J.2
  • 24
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • E.D. Sontag Feedforward nets for interpolation and classification J. Comp. Syst. Sci. 45 1992 20 48
    • (1992) J. Comp. Syst. Sci. , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 26
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network
    • S. Tamura, and M. Tateishi Capabilities of a four-layered feedforward neural network IEEE Trans. Neural Networks 8-2 1997 251 255
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.