-
1
-
-
0346146246
-
Function learning from interpolation
-
London School of Economics
-
M. Anthony, Function learning from interpolation, London School of Economics, -Mathematics Preprint Series-73, 1994.
-
(1994)
Mathematics Preprint Series
, vol.73
-
-
Anthony, M.1
-
3
-
-
0033747328
-
Single iteration training algorithm for multilayer feedforward neural networks
-
J. Barhen, R. Cogswell, and V. Protopopescu Single iteration training algorithm for multilayer feedforward neural networks Neural Process. Lett. 11 2000 113 129
-
(2000)
Neural Process. Lett.
, vol.11
, pp. 113-129
-
-
Barhen, J.1
Cogswell, R.2
Protopopescu, V.3
-
4
-
-
0026727494
-
Approximation of a function and its derivative with a neural network
-
P. Cardaliaguet, and G. Euvrard Approximation of a function and its derivative with a neural network Neural Networks 5 1992 207 220
-
(1992)
Neural Networks
, vol.5
, pp. 207-220
-
-
Cardaliaguet, P.1
Euvrard, G.2
-
5
-
-
9644285073
-
A constructive proof and an Extension of Cybenko's approximation theorem
-
Computing Science and Statistics Springer, Berlin
-
T. Chen, H. Chen, R.-W. Liu, A constructive proof and an Extension of Cybenko's approximation theorem, in: Computing Science and Statistics, Proceedings of the 22nd Symposium on the Interface, Springer, Berlin, 1991, pp. 163-168.
-
(1991)
Proceedings of the 22nd Symposium on the Interface
, pp. 163-168
-
-
Chen, T.1
Chen, H.2
Liu, R.-W.3
-
7
-
-
27844503288
-
Limitations of the approximation capabilities of neural networks with one hidden layer
-
C.K. Chui, X. Li, and H.N. Mhaskar Limitations of the approximation capabilities of neural networks with one hidden layer Adv. Comput. Math. 5 1996 233 243
-
(1996)
Adv. Comput. Math.
, vol.5
, pp. 233-243
-
-
Chui, C.K.1
Li, X.2
Mhaskar, H.N.3
-
8
-
-
51249165422
-
Degree of approximation by superpositions of a sigmoidal function
-
Ch. Debao Degree of approximation by superpositions of a sigmoidal function Approx. Theory & its Appl. 9 1993 17 28
-
(1993)
Approx. Theory & Its Appl.
, vol.9
, pp. 17-28
-
-
Debao, Ch.1
-
10
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
K. Hornik, M. Stinchcombe, and H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359 366
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
11
-
-
0031673055
-
Feedforward neural networks with arbitrary bounded nonlinear activation functions
-
G.B. Huang, and H.A. Babri Feedforward neural networks with arbitrary bounded nonlinear activation functions IEEE Trans. Neural Networks 9-1 1998 224 229
-
(1998)
IEEE Trans. Neural Networks
, vol.9
, Issue.1
, pp. 224-229
-
-
Huang, G.B.1
Babri, H.A.2
-
12
-
-
21344441889
-
Nonlinearity creates linear independence
-
Y. Ito Nonlinearity creates linear independence Adv. Comput. Math. 5 1996 189 203
-
(1996)
Adv. Comput. Math.
, vol.5
, pp. 189-203
-
-
Ito, Y.1
-
13
-
-
0042162507
-
Independence of unscaled basis functions and finite mappings by neural networks
-
Y. Ito Independence of unscaled basis functions and finite mappings by neural networks Math. Sci. 26 2001 117 126
-
(2001)
Math. Sci.
, vol.26
, pp. 117-126
-
-
Ito, Y.1
-
14
-
-
0009625590
-
Superposition of linearly independent functions and finite mappings by neural networks
-
Y. Ito, and K. Saito Superposition of linearly independent functions and finite mappings by neural networks Math. Sci. 21 1996 27 33
-
(1996)
Math. Sci.
, vol.21
, pp. 27-33
-
-
Ito, Y.1
Saito, K.2
-
17
-
-
0036644587
-
Interpolation by ridge polynomials and its application in neural networks
-
X. Li Interpolation by ridge polynomials and its application in neural networks J. Comput. Appl. Math. 144 2002 197 209
-
(2002)
J. Comput. Appl. Math.
, vol.144
, pp. 197-209
-
-
Li, X.1
-
18
-
-
77950603295
-
Neural networks for localized approximation of real functions
-
Neural Networks for Signal Processing 6-9 September IEEE, 1993
-
H.N. Mhaskar, Neural networks for localized approximation of real functions, in: Neural Networks for Signal Processing, Proceedings of the 1993 IEEE-SP Workshop, 6-9 September 1993, IEEE, 1993, pp. 190-196.
-
(1993)
Proceedings of the 1993 IEEE-SP Workshop
, pp. 190-196
-
-
Mhaskar, H.N.1
-
19
-
-
0000358945
-
Approximation by superposition of sigmoidal and radial basis functions
-
H.N. Mhaskar, and Ch.A. Michelli Approximation by superposition of sigmoidal and radial basis functions Adv. Appl. Math. 13 1992 350 373
-
(1992)
Adv. Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Michelli, Ch.A.2
-
20
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica (1999) 143-195.
-
(1999)
Acta Numerica
, pp. 143-195
-
-
Pinkus, A.1
-
22
-
-
0026190194
-
A simple method to derive bounds on the size and to train multilayer neural networks
-
M.A. Sartori, and P.J. Antsaklis A simple method to derive bounds on the size and to train multilayer neural networks IEEE Trans. Neural Networks 2-4 1991 467 471
-
(1991)
IEEE Trans. Neural Networks
, vol.2-4
, pp. 467-471
-
-
Sartori, M.A.1
Antsaklis, P.J.2
-
24
-
-
0026904597
-
Feedforward nets for interpolation and classification
-
E.D. Sontag Feedforward nets for interpolation and classification J. Comp. Syst. Sci. 45 1992 20 48
-
(1992)
J. Comp. Syst. Sci.
, vol.45
, pp. 20-48
-
-
Sontag, E.D.1
-
26
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network
-
S. Tamura, and M. Tateishi Capabilities of a four-layered feedforward neural network IEEE Trans. Neural Networks 8-2 1997 251 255
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
|