메뉴 건너뛰기




Volumn 22, Issue 1 SPEC. ISS., 2006, Pages 102-117

Approximation by neural networks and learning theory

Author keywords

Entropy; Learning theory; Neural networks; Stochastic approximation

Indexed keywords

ESTIMATION; FUNCTIONS; LEARNING SYSTEMS; LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS; RANDOM PROCESSES;

EID: 30344432717     PISSN: 0885064X     EISSN: 10902708     Source Type: Journal    
DOI: 10.1016/j.jco.2005.09.001     Document Type: Article
Times cited : (55)

References (35)
  • 3
    • 0000610864 scopus 로고
    • α
    • M.S. Birman, and M.Z. Solomyak Piecewise polynomial approximations of functions of the classes W p α Mat. Sb. 73 1967 331 355 English translation in Math. USSR Sb (1967) 295-317. MR 36: 576
    • (1967) Mat. Sb. , vol.73 , pp. 331-355
    • Birman, M.S.1    Solomyak, M.Z.2
  • 4
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations on learning
    • F. Cucker, and S. Smale On the mathematical foundations on learning Bull. Amer. Math. Soc. 39 2001 1 49
    • (2001) Bull. Amer. Math. Soc. , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 9
    • 0000660999 scopus 로고
    • The sizes of compact subsets of Hilbert space and continuity of Gaussian processes
    • R.M. Dudley The sizes of compact subsets of Hilbert space and continuity of Gaussian processes J. Funct. Anal. 1 1967 290 330
    • (1967) J. Funct. Anal. , vol.1 , pp. 290-330
    • Dudley, R.M.1
  • 10
    • 0034419669 scopus 로고    scopus 로고
    • Regularization network and support vector machines
    • T. Evgeniou, M. Pontil, and T. Poggio Regularization network and support vector machines Adv. Comput. Math. 13 2000 1 50
    • (2000) Adv. Comput. Math. , vol.13 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 13
    • 0000996139 scopus 로고
    • Sphere packing numbers for subset of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension
    • D. Haussler Sphere packing numbers for subset of the Boolean n -cube with bounded Vapnik-Chervonenkis dimension J. Combin. Theory 69 1995 217 232
    • (1995) J. Combin. Theory , vol.69 , pp. 217-232
    • Haussler, D.1
  • 15
    • 30344453008 scopus 로고    scopus 로고
    • Some error estimates in learning theory
    • S. Konyagin, and V. Temlyakov Some error estimates in learning theory IMI Preprints 05 2004 1 18
    • (2004) IMI Preprints , vol.5 , pp. 1-18
    • Konyagin, S.1    Temlyakov, V.2
  • 16
    • 30344468683 scopus 로고    scopus 로고
    • The entropy in learning theory, error estimates
    • S. Konyagin, and V. Temlyakov The entropy in learning theory, error estimates IMI Preprints 09 2004 1 25
    • (2004) IMI Preprints , vol.9 , pp. 1-25
    • Konyagin, S.1    Temlyakov, V.2
  • 17
    • 0005375288 scopus 로고    scopus 로고
    • Pattern classification and learning theory
    • Springer Vena
    • G. Lugosi Pattern classification and learning theory Principles of Nonparametric Learning 2002 Springer Vena 5 62
    • (2002) Principles of Nonparametric Learning , pp. 5-62
    • Lugosi, G.1
  • 18
    • 33748700419 scopus 로고    scopus 로고
    • Pseudo-dimension and entropy of manifolds formed by affine-invariant dictionary
    • submitted for publication
    • V. Maiorov, Pseudo-dimension and entropy of manifolds formed by affine-invariant dictionary, Adv. Comput. Math., submitted for publication.
    • Adv. Comput. Math.
    • Maiorov, V.1
  • 19
    • 0034395382 scopus 로고    scopus 로고
    • On the near optimality of the stochastic approximation of smooth functions by neural networks
    • V. Maiorov, and R. Meir On the near optimality of the stochastic approximation of smooth functions by neural networks Adv. Comput. Math. 13 2000 79 103
    • (2000) Adv. Comput. Math. , vol.13 , pp. 79-103
    • Maiorov, V.1    Meir, R.2
  • 20
    • 0033732457 scopus 로고    scopus 로고
    • On the optimality of networks approximation using incremental algorithms
    • V. Maiorov, and R. Meir On the optimality of networks approximation using incremental algorithms IEEE Trans. Neural Networks 11 2000 323 337
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 323-337
    • Maiorov, V.1    Meir, R.2
  • 21
    • 0035333622 scopus 로고    scopus 로고
    • Lower bounds for multivariate approximation by affine-invariant dictionaries
    • V. Maiorov, and R. Meir Lower bounds for multivariate approximation by affine-invariant dictionaries IEEE Trans. Inform. Theory 47 2001 1569 1575
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 1569-1575
    • Maiorov, V.1    Meir, R.2
  • 22
    • 0032950772 scopus 로고    scopus 로고
    • Lower bounds for approximation by MLP neural networks
    • V. Maiorov, and A. Pinkus Lower bounds for approximation by MLP neural networks Neurocomputing 25 1999 81 91
    • (1999) Neurocomputing , vol.25 , pp. 81-91
    • Maiorov, V.1    Pinkus, A.2
  • 23
    • 0009142588 scopus 로고    scopus 로고
    • On the value of partial information for learning from examples
    • V. Maiorov, and J. Ratsaby On the value of partial information for learning from examples J. Complexity 13 1997 509 544
    • (1997) J. Complexity , vol.13 , pp. 509-544
    • Maiorov, V.1    Ratsaby, J.2
  • 26
    • 0037596458 scopus 로고    scopus 로고
    • Entropy and the combinatorial dimension
    • S. Mendelson, and R. Vershinin Entropy and the combinatorial dimension Invent. Math. 152 2003 37 55
    • (2003) Invent. Math. , vol.152 , pp. 37-55
    • Mendelson, S.1    Vershinin, R.2
  • 27
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Cambridge University Press, Cambridge
    • A. Pinkus, Approximation Theory of the MLP Model in Neural Networks, Acta Numerica, Cambridge University Press, Cambridge, 1999, pp. 1-52.
    • (1999) Acta Numerica , pp. 1-52
    • Pinkus, A.1
  • 28
    • 30344456180 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • T. Poggio, and S. Smale The mathematics of learning: dealing with data Manuscript 2003 1 16
    • (2003) Manuscript , pp. 1-16
    • Poggio, T.1    Smale, S.2
  • 29
    • 0001739142 scopus 로고    scopus 로고
    • The art of radial basis approximation in 1990
    • W.A. Light (Ed.) Oxford University Press, Oxford
    • M.J.D. Powell, The art of radial basis approximation in 1990, in: W.A. Light (Ed.), Advances in Numerical Analysis, vol. 2, Oxford University Press, Oxford, pp. 105-210.
    • Advances in Numerical Analysis , vol.2 , pp. 105-210
    • Powell, M.J.D.1
  • 30
    • 0003224933 scopus 로고    scopus 로고
    • Mathematical problems for the next century
    • V. Arnold, M. Atiyah, P. Lax, B. Vfzur (Eds.) AMS CMP 2000:13
    • S. Smale, in: V. Arnold, M. Atiyah, P. Lax, B. Vfzur (Eds.), Mathematical Problems for the next century, Mathematics: Frontiers and Perspectives, AMS, 2000, pp. 271-294. CMP 2000:13.
    • (2000) Mathematics: Frontiers and Perspectives , pp. 271-294
    • Smale, S.1
  • 31
    • 0001957366 scopus 로고
    • Sharper bounds for Gaussian and empirical processes
    • M. Talagrand Sharper bounds for Gaussian and empirical processes Ann. Probab. 22 1994 28 76
    • (1994) Ann. Probab. , vol.22 , pp. 28-76
    • Talagrand, M.1
  • 32
    • 30344456369 scopus 로고    scopus 로고
    • Optimal estimators in learning theory
    • V.N. Temlyakov Optimal estimators in learning theory IMI Preprints 23 2004 1 29
    • (2004) IMI Preprints , vol.23 , pp. 1-29
    • Temlyakov, V.N.1
  • 33
    • 30344433672 scopus 로고    scopus 로고
    • Approximation in learning theory
    • V.N. Temlyakov Approximation in learning theory IMI Preprints 5 2005 1 43
    • (2005) IMI Preprints , vol.5 , pp. 1-43
    • Temlyakov, V.N.1
  • 35
    • 0001954668 scopus 로고
    • Necessary and sufficient conditions for the uniform convergence of empirical means to their expectations
    • V. Vapnik, and A. Chervonenkis Necessary and sufficient conditions for the uniform convergence of empirical means to their expectations Theory Probab. Appl. 3 1981 532 553
    • (1981) Theory Probab. Appl. , vol.3 , pp. 532-553
    • Vapnik, V.1    Chervonenkis, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.