메뉴 건너뛰기




Volumn 419, Issue 1, 2014, Pages 574-582

Interpolation by neural network operators activated by ramp functions

Author keywords

Interpolation; Neural network operators; Order of approximation; Ramp function; Sigmoidal functions; Uniform approximation

Indexed keywords


EID: 84902360925     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2014.05.013     Document Type: Article
Times cited : (43)

References (43)
  • 1
    • 0031195377 scopus 로고    scopus 로고
    • Rate of convergence of some neural network operators to the unit-univariate case
    • Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. J. Math. Anal. Appl. 1997, 212:237-262.
    • (1997) J. Math. Anal. Appl. , vol.212 , pp. 237-262
    • Anastassiou, G.A.1
  • 2
    • 78751604033 scopus 로고    scopus 로고
    • Univariate hyperbolic tangent neural network approximation
    • Anastassiou G.A. Univariate hyperbolic tangent neural network approximation. Math. Comput. Modelling 2011, 53(5-6):1111-1132.
    • (2011) Math. Comput. Modelling , vol.53 , Issue.5-6 , pp. 1111-1132
    • Anastassiou, G.A.1
  • 3
    • 79651470747 scopus 로고    scopus 로고
    • Multivariate hyperbolic tangent neural network approximation
    • Anastassiou G.A. Multivariate hyperbolic tangent neural network approximation. Comput. Math. Appl. 2011, 61(4):809-821.
    • (2011) Comput. Math. Appl. , vol.61 , Issue.4 , pp. 809-821
    • Anastassiou, G.A.1
  • 4
    • 79951956614 scopus 로고    scopus 로고
    • Multivariate sigmoidal neural network approximation
    • Anastassiou G.A. Multivariate sigmoidal neural network approximation. Neural Networks 2011, 24:378-386.
    • (2011) Neural Networks , vol.24 , pp. 378-386
    • Anastassiou, G.A.1
  • 5
    • 84876301028 scopus 로고    scopus 로고
    • Intelligent Systems: Approximation by Artificial Neural Networks
    • Springer-Verlag, Berlin
    • Anastassiou G.A. Intelligent Systems: Approximation by Artificial Neural Networks. Intell. Syst. Ref. Libr. 2011, vol. 19. Springer-Verlag, Berlin.
    • (2011) Intell. Syst. Ref. Libr. , vol.19
    • Anastassiou, G.A.1
  • 6
    • 84856712031 scopus 로고    scopus 로고
    • Univariate sigmoidal neural network approximation
    • Anastassiou G.A. Univariate sigmoidal neural network approximation. J. Comput. Anal. Appl. 2012, 14(4):659-690.
    • (2012) J. Comput. Anal. Appl. , vol.14 , Issue.4 , pp. 659-690
    • Anastassiou, G.A.1
  • 7
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • Chapman & Hall, London, R.J. Mammone (Ed.)
    • Anzellotti G., Girosi F. Rates of convergence for radial basis functions and neural networks. Artificial Neural Networks for Speech and Vision 1993, 97-113. Chapman & Hall, London. R.J. Mammone (Ed.).
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-113
    • Anzellotti, G.1    Girosi, F.2
  • 9
    • 27844481668 scopus 로고    scopus 로고
    • A general approach to the convergence theorems of generalized sampling series
    • Bardaro C., Vinti G. A general approach to the convergence theorems of generalized sampling series. Appl. Anal. 1997, 64:203-217.
    • (1997) Appl. Anal. , vol.64 , pp. 203-217
    • Bardaro, C.1    Vinti, G.2
  • 10
    • 27844441875 scopus 로고    scopus 로고
    • An abstract approach to sampling type operators inspired by the work of P.L. Butzer. Part I: linear operators
    • Bardaro C., Vinti G. An abstract approach to sampling type operators inspired by the work of P.L. Butzer. Part I: linear operators. Sampl. Theory Signal Image Process. 2003, 2(3):271-296.
    • (2003) Sampl. Theory Signal Image Process. , vol.2 , Issue.3 , pp. 271-296
    • Bardaro, C.1    Vinti, G.2
  • 11
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 1993, 39(3):930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 12
    • 0003368808 scopus 로고
    • Fourier Analysis and Approximation
    • Academic Press, New York, London
    • Butzer P.L., Nessel R.J. Fourier Analysis and Approximation. Pure Appl. Math. 1971, vol. 40. Academic Press, New York, London.
    • (1971) Pure Appl. Math. , vol.40
    • Butzer, P.L.1    Nessel, R.J.2
  • 13
    • 38249033946 scopus 로고
    • Approximation of continuous and discontinuous functions by generalized sampling series
    • Butzer P.L., Ries S., Stens R.L. Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 1987, 50:25-39.
    • (1987) J. Approx. Theory , vol.50 , pp. 25-39
    • Butzer, P.L.1    Ries, S.2    Stens, R.L.3
  • 14
    • 67649743440 scopus 로고    scopus 로고
    • The approximation operators with sigmoidal functions
    • Cao F., Chen Z. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009, 58(4):758-765.
    • (2009) Comput. Math. Appl. , vol.58 , Issue.4 , pp. 758-765
    • Cao, F.1    Chen, Z.2
  • 15
    • 84863018410 scopus 로고    scopus 로고
    • The construction and approximation of a class of neural networks operators with ramp functions
    • Cao F., Chen Z. The construction and approximation of a class of neural networks operators with ramp functions. J. Comput. Anal. Appl. 2012, 14(1):101-112.
    • (2012) J. Comput. Anal. Appl. , vol.14 , Issue.1 , pp. 101-112
    • Cao, F.1    Chen, Z.2
  • 16
    • 0026727494 scopus 로고
    • Approximation of a function and its derivative with a neural network
    • Cardaliaguet P., Euvrard G. Approximation of a function and its derivative with a neural network. Neural Networks 1992, 5(2):207-220.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 207-220
    • Cardaliaguet, P.1    Euvrard, G.2
  • 17
    • 77953536452 scopus 로고    scopus 로고
    • Approximation with neural networks activated by ramp sigmoids
    • Cheang G.H.L. Approximation with neural networks activated by ramp sigmoids. J. Approx. Theory 2010, 162:1450-1465.
    • (2010) J. Approx. Theory , vol.162 , pp. 1450-1465
    • Cheang, G.H.L.1
  • 19
    • 84882972393 scopus 로고    scopus 로고
    • Constructive approximation by superposition of sigmoidal functions
    • Costarelli D., Spigler R. Constructive approximation by superposition of sigmoidal functions. Anal. Theory Appl. 2013, 29(2):169-196.
    • (2013) Anal. Theory Appl. , vol.29 , Issue.2 , pp. 169-196
    • Costarelli, D.1    Spigler, R.2
  • 20
    • 84883037302 scopus 로고    scopus 로고
    • Solving Volterra integral equations of the second kind by sigmoidal functions approximations
    • Costarelli D., Spigler R. Solving Volterra integral equations of the second kind by sigmoidal functions approximations. J. Integral Equations Appl. 2013, 25(2):193-222.
    • (2013) J. Integral Equations Appl. , vol.25 , Issue.2 , pp. 193-222
    • Costarelli, D.1    Spigler, R.2
  • 21
    • 84926311345 scopus 로고    scopus 로고
    • Approximation by series of sigmoidal functions with applications to neural networks
    • in press
    • Costarelli D., Spigler R. Approximation by series of sigmoidal functions with applications to neural networks. Ann. Mat. Pura Appl. 2013, in press. 10.1007/s10231-013-0378-y.
    • (2013) Ann. Mat. Pura Appl.
    • Costarelli, D.1    Spigler, R.2
  • 22
    • 84876320512 scopus 로고    scopus 로고
    • Approximation results for neural network operators activated by sigmoidal functions
    • Costarelli D., Spigler R. Approximation results for neural network operators activated by sigmoidal functions. Neural Networks 2013, 44:101-106.
    • (2013) Neural Networks , vol.44 , pp. 101-106
    • Costarelli, D.1    Spigler, R.2
  • 23
    • 84883048212 scopus 로고    scopus 로고
    • Multivariate neural network operators with sigmoidal activation functions
    • Costarelli D., Spigler R. Multivariate neural network operators with sigmoidal activation functions. Neural Networks 2013, 48:72-77.
    • (2013) Neural Networks , vol.48 , pp. 72-77
    • Costarelli, D.1    Spigler, R.2
  • 24
    • 84898686004 scopus 로고    scopus 로고
    • A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions
    • Costarelli D., Spigler R. A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. J. Integral Equations Appl. 2014, 26(1):15-52.
    • (2014) J. Integral Equations Appl. , vol.26 , Issue.1 , pp. 15-52
    • Costarelli, D.1    Spigler, R.2
  • 25
    • 84902364445 scopus 로고    scopus 로고
    • Solving numerically nonlinear systems of balance laws by multivariate sigmoidal functions approximation
    • submitted for publication.
    • D. Costarelli, R. Spigler, Solving numerically nonlinear systems of balance laws by multivariate sigmoidal functions approximation, 2014, submitted for publication.
    • (2014)
    • Costarelli, D.1    Spigler, R.2
  • 26
    • 84902388148 scopus 로고    scopus 로고
    • Convergence of a family of neural network operators of the Kantorovich type
    • submitted for publication.
    • D. Costarelli, R. Spigler, Convergence of a family of neural network operators of the Kantorovich type, 2014, submitted for publication.
    • (2014)
    • Costarelli, D.1    Spigler, R.2
  • 27
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 1989, 2:303-314.
    • (1989) Math. Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 28
    • 0042892216 scopus 로고
    • Univariant approximation by superpositions of a sigmoidal function
    • Gao B., Xu Y. Univariant approximation by superpositions of a sigmoidal function. J. Math. Anal. Appl. 1993, 178:221-226.
    • (1993) J. Math. Anal. Appl. , vol.178 , pp. 221-226
    • Gao, B.1    Xu, Y.2
  • 29
    • 78650896759 scopus 로고    scopus 로고
    • On a variational norm tailored to variable-basis approximation schemes
    • Gnecco G., Sanguineti M. On a variational norm tailored to variable-basis approximation schemes. IEEE Trans. Inform. Theory 2011, 57:549-558.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , pp. 549-558
    • Gnecco, G.1    Sanguineti, M.2
  • 30
    • 31244437685 scopus 로고    scopus 로고
    • Approximation order to a function in C-(R) by superposition of a sigmoidal function
    • Hahm N., Hong B. Approximation order to a function in C-(R) by superposition of a sigmoidal function. Appl. Math. Lett. 2002, 15:591-597.
    • (2002) Appl. Math. Lett. , vol.15 , pp. 591-597
    • Hahm, N.1    Hong, B.2
  • 31
    • 70350222271 scopus 로고    scopus 로고
    • An integral upper bound for neural network approximation
    • Kainen P.C., Kurková V. An integral upper bound for neural network approximation. Neural Comput. 2009, 21:2970-2989.
    • (2009) Neural Comput. , vol.21 , pp. 2970-2989
    • Kainen, P.C.1    Kurková, V.2
  • 32
    • 84863873369 scopus 로고    scopus 로고
    • Complexity estimates based on integral transforms induced by computational units
    • Kurková V. Complexity estimates based on integral transforms induced by computational units. Neural Networks 2012, 33:160-167.
    • (2012) Neural Networks , vol.33 , pp. 160-167
    • Kurková, V.1
  • 33
    • 0041829446 scopus 로고    scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Lewicki G., Marino G. Approximation by superpositions of a sigmoidal function. Z. Anal. Anwend. 2003, 22(2):463-470.
    • (2003) Z. Anal. Anwend. , vol.22 , Issue.2 , pp. 463-470
    • Lewicki, G.1    Marino, G.2
  • 34
    • 10644262975 scopus 로고    scopus 로고
    • Approximation of functions of finite variation by superpositions of a sigmoidal function
    • Lewicki G., Marino G. Approximation of functions of finite variation by superpositions of a sigmoidal function. Appl. Math. Lett. 2004, 17:1147-1152.
    • (2004) Appl. Math. Lett. , vol.17 , pp. 1147-1152
    • Lewicki, G.1    Marino, G.2
  • 35
    • 0030221938 scopus 로고    scopus 로고
    • Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer
    • Li X. Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer. Neurocomputing 1996, 12:327-343.
    • (1996) Neurocomputing , vol.12 , pp. 327-343
    • Li, X.1
  • 36
    • 0030119952 scopus 로고    scopus 로고
    • Random approximants and neural networks
    • Makovoz Y. Random approximants and neural networks. J. Approx. Theory 1996, 85:98-109.
    • (1996) J. Approx. Theory , vol.85 , pp. 98-109
    • Makovoz, Y.1
  • 37
    • 0001574595 scopus 로고    scopus 로고
    • Uniform approximation by neural networks
    • Makovoz Y. Uniform approximation by neural networks. J. Approx. Theory 1998, 95(2):215-228.
    • (1998) J. Approx. Theory , vol.95 , Issue.2 , pp. 215-228
    • Makovoz, Y.1
  • 38
    • 0000358945 scopus 로고
    • Approximation by superposition of sigmoidal and radial basis functions
    • Mhaskar H.N., Micchelli C.A. Approximation by superposition of sigmoidal and radial basis functions. Adv. in Appl. Math. 1992, 13:350-373.
    • (1992) Adv. in Appl. Math. , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 39
    • 0000194429 scopus 로고
    • Degree of approximation by neural and translation networks with a single hidden layer
    • Mhaskar H.N., Micchelli C.A. Degree of approximation by neural and translation networks with a single hidden layer. Adv. in Appl. Math. 1995, 16:151-183.
    • (1995) Adv. in Appl. Math. , vol.16 , pp. 151-183
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 40
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8:143-195.
    • (1999) Acta Numer. , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 42
    • 27844511616 scopus 로고    scopus 로고
    • A general approximation result for nonlinear integral operators and applications to signal processing
    • Vinti G. A general approximation result for nonlinear integral operators and applications to signal processing. Appl. Anal. 2001, 79:217-238.
    • (2001) Appl. Anal. , vol.79 , pp. 217-238
    • Vinti, G.1
  • 43
    • 84874638760 scopus 로고    scopus 로고
    • A unifying approach to convergence of linear sampling type operators in Orlicz spaces
    • Vinti G., Zampogni L. A unifying approach to convergence of linear sampling type operators in Orlicz spaces. Adv. Differential Equations 2011, 16(5-6):573-600.
    • (2011) Adv. Differential Equations , vol.16 , Issue.5-6 , pp. 573-600
    • Vinti, G.1    Zampogni, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.