-
1
-
-
0031195377
-
Rate of convergence of some neural network operators to the unit-univariate case
-
Anastassiou G.A. Rate of convergence of some neural network operators to the unit-univariate case. J. Math. Anal. Appl. 1997, 212:237-262.
-
(1997)
J. Math. Anal. Appl.
, vol.212
, pp. 237-262
-
-
Anastassiou, G.A.1
-
2
-
-
78751604033
-
Univariate hyperbolic tangent neural network approximation
-
Anastassiou G.A. Univariate hyperbolic tangent neural network approximation. Math. Comput. Modelling 2011, 53(5-6):1111-1132.
-
(2011)
Math. Comput. Modelling
, vol.53
, Issue.5-6
, pp. 1111-1132
-
-
Anastassiou, G.A.1
-
3
-
-
79651470747
-
Multivariate hyperbolic tangent neural network approximation
-
Anastassiou G.A. Multivariate hyperbolic tangent neural network approximation. Comput. Math. Appl. 2011, 61(4):809-821.
-
(2011)
Comput. Math. Appl.
, vol.61
, Issue.4
, pp. 809-821
-
-
Anastassiou, G.A.1
-
4
-
-
79951956614
-
Multivariate sigmoidal neural network approximation
-
Anastassiou G.A. Multivariate sigmoidal neural network approximation. Neural Networks 2011, 24:378-386.
-
(2011)
Neural Networks
, vol.24
, pp. 378-386
-
-
Anastassiou, G.A.1
-
5
-
-
84876301028
-
Intelligent Systems: Approximation by Artificial Neural Networks
-
Springer-Verlag, Berlin
-
Anastassiou G.A. Intelligent Systems: Approximation by Artificial Neural Networks. Intell. Syst. Ref. Libr. 2011, vol. 19. Springer-Verlag, Berlin.
-
(2011)
Intell. Syst. Ref. Libr.
, vol.19
-
-
Anastassiou, G.A.1
-
6
-
-
84856712031
-
Univariate sigmoidal neural network approximation
-
Anastassiou G.A. Univariate sigmoidal neural network approximation. J. Comput. Anal. Appl. 2012, 14(4):659-690.
-
(2012)
J. Comput. Anal. Appl.
, vol.14
, Issue.4
, pp. 659-690
-
-
Anastassiou, G.A.1
-
7
-
-
0003085388
-
Rates of convergence for radial basis functions and neural networks
-
Chapman & Hall, London, R.J. Mammone (Ed.)
-
Anzellotti G., Girosi F. Rates of convergence for radial basis functions and neural networks. Artificial Neural Networks for Speech and Vision 1993, 97-113. Chapman & Hall, London. R.J. Mammone (Ed.).
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 97-113
-
-
Anzellotti, G.1
Girosi, F.2
-
8
-
-
27844583054
-
Nonlinear Integral Operators and Applications
-
de Gruyter, New York, Berlin
-
Bardaro C., Musielak J., Vinti G. Nonlinear Integral Operators and Applications. de Gruyter Ser. Nonlinear Anal. Appl. 2003, vol. 9. de Gruyter, New York, Berlin.
-
(2003)
de Gruyter Ser. Nonlinear Anal. Appl.
, vol.9
-
-
Bardaro, C.1
Musielak, J.2
Vinti, G.3
-
9
-
-
27844481668
-
A general approach to the convergence theorems of generalized sampling series
-
Bardaro C., Vinti G. A general approach to the convergence theorems of generalized sampling series. Appl. Anal. 1997, 64:203-217.
-
(1997)
Appl. Anal.
, vol.64
, pp. 203-217
-
-
Bardaro, C.1
Vinti, G.2
-
10
-
-
27844441875
-
An abstract approach to sampling type operators inspired by the work of P.L. Butzer. Part I: linear operators
-
Bardaro C., Vinti G. An abstract approach to sampling type operators inspired by the work of P.L. Butzer. Part I: linear operators. Sampl. Theory Signal Image Process. 2003, 2(3):271-296.
-
(2003)
Sampl. Theory Signal Image Process.
, vol.2
, Issue.3
, pp. 271-296
-
-
Bardaro, C.1
Vinti, G.2
-
11
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
Barron A.R. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 1993, 39(3):930-945.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.R.1
-
12
-
-
0003368808
-
Fourier Analysis and Approximation
-
Academic Press, New York, London
-
Butzer P.L., Nessel R.J. Fourier Analysis and Approximation. Pure Appl. Math. 1971, vol. 40. Academic Press, New York, London.
-
(1971)
Pure Appl. Math.
, vol.40
-
-
Butzer, P.L.1
Nessel, R.J.2
-
13
-
-
38249033946
-
Approximation of continuous and discontinuous functions by generalized sampling series
-
Butzer P.L., Ries S., Stens R.L. Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory 1987, 50:25-39.
-
(1987)
J. Approx. Theory
, vol.50
, pp. 25-39
-
-
Butzer, P.L.1
Ries, S.2
Stens, R.L.3
-
14
-
-
67649743440
-
The approximation operators with sigmoidal functions
-
Cao F., Chen Z. The approximation operators with sigmoidal functions. Comput. Math. Appl. 2009, 58(4):758-765.
-
(2009)
Comput. Math. Appl.
, vol.58
, Issue.4
, pp. 758-765
-
-
Cao, F.1
Chen, Z.2
-
15
-
-
84863018410
-
The construction and approximation of a class of neural networks operators with ramp functions
-
Cao F., Chen Z. The construction and approximation of a class of neural networks operators with ramp functions. J. Comput. Anal. Appl. 2012, 14(1):101-112.
-
(2012)
J. Comput. Anal. Appl.
, vol.14
, Issue.1
, pp. 101-112
-
-
Cao, F.1
Chen, Z.2
-
16
-
-
0026727494
-
Approximation of a function and its derivative with a neural network
-
Cardaliaguet P., Euvrard G. Approximation of a function and its derivative with a neural network. Neural Networks 1992, 5(2):207-220.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 207-220
-
-
Cardaliaguet, P.1
Euvrard, G.2
-
17
-
-
77953536452
-
Approximation with neural networks activated by ramp sigmoids
-
Cheang G.H.L. Approximation with neural networks activated by ramp sigmoids. J. Approx. Theory 2010, 162:1450-1465.
-
(2010)
J. Approx. Theory
, vol.162
, pp. 1450-1465
-
-
Cheang, G.H.L.1
-
19
-
-
84882972393
-
Constructive approximation by superposition of sigmoidal functions
-
Costarelli D., Spigler R. Constructive approximation by superposition of sigmoidal functions. Anal. Theory Appl. 2013, 29(2):169-196.
-
(2013)
Anal. Theory Appl.
, vol.29
, Issue.2
, pp. 169-196
-
-
Costarelli, D.1
Spigler, R.2
-
20
-
-
84883037302
-
Solving Volterra integral equations of the second kind by sigmoidal functions approximations
-
Costarelli D., Spigler R. Solving Volterra integral equations of the second kind by sigmoidal functions approximations. J. Integral Equations Appl. 2013, 25(2):193-222.
-
(2013)
J. Integral Equations Appl.
, vol.25
, Issue.2
, pp. 193-222
-
-
Costarelli, D.1
Spigler, R.2
-
21
-
-
84926311345
-
Approximation by series of sigmoidal functions with applications to neural networks
-
in press
-
Costarelli D., Spigler R. Approximation by series of sigmoidal functions with applications to neural networks. Ann. Mat. Pura Appl. 2013, in press. 10.1007/s10231-013-0378-y.
-
(2013)
Ann. Mat. Pura Appl.
-
-
Costarelli, D.1
Spigler, R.2
-
22
-
-
84876320512
-
Approximation results for neural network operators activated by sigmoidal functions
-
Costarelli D., Spigler R. Approximation results for neural network operators activated by sigmoidal functions. Neural Networks 2013, 44:101-106.
-
(2013)
Neural Networks
, vol.44
, pp. 101-106
-
-
Costarelli, D.1
Spigler, R.2
-
23
-
-
84883048212
-
Multivariate neural network operators with sigmoidal activation functions
-
Costarelli D., Spigler R. Multivariate neural network operators with sigmoidal activation functions. Neural Networks 2013, 48:72-77.
-
(2013)
Neural Networks
, vol.48
, pp. 72-77
-
-
Costarelli, D.1
Spigler, R.2
-
24
-
-
84898686004
-
A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions
-
Costarelli D., Spigler R. A collocation method for solving nonlinear Volterra integro-differential equations of the neutral type by sigmoidal functions. J. Integral Equations Appl. 2014, 26(1):15-52.
-
(2014)
J. Integral Equations Appl.
, vol.26
, Issue.1
, pp. 15-52
-
-
Costarelli, D.1
Spigler, R.2
-
25
-
-
84902364445
-
Solving numerically nonlinear systems of balance laws by multivariate sigmoidal functions approximation
-
submitted for publication.
-
D. Costarelli, R. Spigler, Solving numerically nonlinear systems of balance laws by multivariate sigmoidal functions approximation, 2014, submitted for publication.
-
(2014)
-
-
Costarelli, D.1
Spigler, R.2
-
26
-
-
84902388148
-
Convergence of a family of neural network operators of the Kantorovich type
-
submitted for publication.
-
D. Costarelli, R. Spigler, Convergence of a family of neural network operators of the Kantorovich type, 2014, submitted for publication.
-
(2014)
-
-
Costarelli, D.1
Spigler, R.2
-
27
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 1989, 2:303-314.
-
(1989)
Math. Control Signals Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
28
-
-
0042892216
-
Univariant approximation by superpositions of a sigmoidal function
-
Gao B., Xu Y. Univariant approximation by superpositions of a sigmoidal function. J. Math. Anal. Appl. 1993, 178:221-226.
-
(1993)
J. Math. Anal. Appl.
, vol.178
, pp. 221-226
-
-
Gao, B.1
Xu, Y.2
-
29
-
-
78650896759
-
On a variational norm tailored to variable-basis approximation schemes
-
Gnecco G., Sanguineti M. On a variational norm tailored to variable-basis approximation schemes. IEEE Trans. Inform. Theory 2011, 57:549-558.
-
(2011)
IEEE Trans. Inform. Theory
, vol.57
, pp. 549-558
-
-
Gnecco, G.1
Sanguineti, M.2
-
30
-
-
31244437685
-
Approximation order to a function in C-(R) by superposition of a sigmoidal function
-
Hahm N., Hong B. Approximation order to a function in C-(R) by superposition of a sigmoidal function. Appl. Math. Lett. 2002, 15:591-597.
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 591-597
-
-
Hahm, N.1
Hong, B.2
-
31
-
-
70350222271
-
An integral upper bound for neural network approximation
-
Kainen P.C., Kurková V. An integral upper bound for neural network approximation. Neural Comput. 2009, 21:2970-2989.
-
(2009)
Neural Comput.
, vol.21
, pp. 2970-2989
-
-
Kainen, P.C.1
Kurková, V.2
-
32
-
-
84863873369
-
Complexity estimates based on integral transforms induced by computational units
-
Kurková V. Complexity estimates based on integral transforms induced by computational units. Neural Networks 2012, 33:160-167.
-
(2012)
Neural Networks
, vol.33
, pp. 160-167
-
-
Kurková, V.1
-
33
-
-
0041829446
-
Approximation by superpositions of a sigmoidal function
-
Lewicki G., Marino G. Approximation by superpositions of a sigmoidal function. Z. Anal. Anwend. 2003, 22(2):463-470.
-
(2003)
Z. Anal. Anwend.
, vol.22
, Issue.2
, pp. 463-470
-
-
Lewicki, G.1
Marino, G.2
-
34
-
-
10644262975
-
Approximation of functions of finite variation by superpositions of a sigmoidal function
-
Lewicki G., Marino G. Approximation of functions of finite variation by superpositions of a sigmoidal function. Appl. Math. Lett. 2004, 17:1147-1152.
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 1147-1152
-
-
Lewicki, G.1
Marino, G.2
-
35
-
-
0030221938
-
Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer
-
Li X. Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer. Neurocomputing 1996, 12:327-343.
-
(1996)
Neurocomputing
, vol.12
, pp. 327-343
-
-
Li, X.1
-
36
-
-
0030119952
-
Random approximants and neural networks
-
Makovoz Y. Random approximants and neural networks. J. Approx. Theory 1996, 85:98-109.
-
(1996)
J. Approx. Theory
, vol.85
, pp. 98-109
-
-
Makovoz, Y.1
-
37
-
-
0001574595
-
Uniform approximation by neural networks
-
Makovoz Y. Uniform approximation by neural networks. J. Approx. Theory 1998, 95(2):215-228.
-
(1998)
J. Approx. Theory
, vol.95
, Issue.2
, pp. 215-228
-
-
Makovoz, Y.1
-
38
-
-
0000358945
-
Approximation by superposition of sigmoidal and radial basis functions
-
Mhaskar H.N., Micchelli C.A. Approximation by superposition of sigmoidal and radial basis functions. Adv. in Appl. Math. 1992, 13:350-373.
-
(1992)
Adv. in Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
39
-
-
0000194429
-
Degree of approximation by neural and translation networks with a single hidden layer
-
Mhaskar H.N., Micchelli C.A. Degree of approximation by neural and translation networks with a single hidden layer. Adv. in Appl. Math. 1995, 16:151-183.
-
(1995)
Adv. in Appl. Math.
, vol.16
, pp. 151-183
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
40
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8:143-195.
-
(1999)
Acta Numer.
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
42
-
-
27844511616
-
A general approximation result for nonlinear integral operators and applications to signal processing
-
Vinti G. A general approximation result for nonlinear integral operators and applications to signal processing. Appl. Anal. 2001, 79:217-238.
-
(2001)
Appl. Anal.
, vol.79
, pp. 217-238
-
-
Vinti, G.1
-
43
-
-
84874638760
-
A unifying approach to convergence of linear sampling type operators in Orlicz spaces
-
Vinti G., Zampogni L. A unifying approach to convergence of linear sampling type operators in Orlicz spaces. Adv. Differential Equations 2011, 16(5-6):573-600.
-
(2011)
Adv. Differential Equations
, vol.16
, Issue.5-6
, pp. 573-600
-
-
Vinti, G.1
Zampogni, L.2
|