-
1
-
-
0035201779
-
Error bounds for approximation with neural networks
-
M. Burger, A. Neubauer, Error bounds for approximation with neural networks, J. Approx. Theory 112 (2) (2001) 235-250.
-
(2001)
J. Approx. Theory
, vol.112
, Issue.2
, pp. 235-250
-
-
Burger, M.1
Neubauer, A.2
-
2
-
-
0002271590
-
Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their superpositions
-
A.N. Gorban', Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their superpositions, Appl. Math. Lett. 11 (3) (1998) 45-49.
-
(1998)
Appl. Math. Lett.
, vol.11
, Issue.3
, pp. 45-49
-
-
Gorban', A.N.1
-
3
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
M. Leshno, V.Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks 6 (1993) 861-867.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinkus, A.3
Schocken, S.4
-
4
-
-
0003949354
-
Constructive Approximation, Advanced Problems
-
Springer, Berlin
-
G.G. Lorentz, M.V. Golitschek, Y. Makovoz, Constructive Approximation, Advanced Problems, Springer, Berlin, 1996.
-
(1996)
-
-
Lorentz, G.G.1
Golitschek, M.V.2
Makovoz, Y.3
-
5
-
-
0032950772
-
Lower bounds for approximation by MLP neural networks
-
V. Maiorov, A. Pinkus, Lower bounds for approximation by MLP neural networks, Neurocomputing 25 (1-3) (1999) 81-91.
-
(1999)
Neurocomputing
, vol.25
, Issue.1-3
, pp. 81-91
-
-
Maiorov, V.1
Pinkus, A.2
-
6
-
-
0001574595
-
Uniform approximation by neural networks
-
Y. Makovoz, Uniform approximation by neural networks, J. Approx. Theory 95 (2) (1998) 215-228.
-
(1998)
J. Approx. Theory
, vol.95
, Issue.2
, pp. 215-228
-
-
Makovoz, Y.1
-
7
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Cambridge University Press, Cambridge
-
A. Pinkus, Approximation theory of the MLP model in neural networks, in: Acta Numerica, Vol. 8, Cambridge University Press, Cambridge, 1999, pp. 143-195.
-
(1999)
Acta Numerica
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
8
-
-
0345195977
-
Universal approximation using feedforward neural networks: A survey of some existing methods and some new results
-
F. Scarselli, A.C. Tsoi, Universal approximation using feedforward neural networks: a survey of some existing methods and some new results, Neural Networks 11 (1998) 15-37.
-
(1998)
Neural Networks
, vol.11
, pp. 15-37
-
-
Scarselli, F.1
Tsoi, A.C.2
-
9
-
-
0031100287
-
Capabilities of four-layered feedforward neural network: Four layers versus three
-
S. Tamura, M. Tateish, Capabilities of four-layered feedforward neural network: four layers versus three, IEEE Trans. Neural Networks 8 (2) (1997) 251-255.
-
(1997)
IEEE Trans. Neural Networks
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateish, M.2
-
10
-
-
0027242791
-
Backpropagation neural nets with one and two hidden layers
-
J. de Villiers, D. Barnard, Backpropagation neural nets with one and two hidden layers, IEEE Trans. Neural Networks 4 (12) (1992) 136-141.
-
(1992)
IEEE Trans. Neural Networks
, vol.4
, Issue.12
, pp. 136-141
-
-
de Villiers, J.1
Barnard, D.2
|