-
1
-
-
78751604033
-
Univariate hyperbolic tangent neural network approximation
-
Anastassiou, G.A.: Univariate hyperbolic tangent neural network approximation. Math. Comput. Model. 53(5–6), 1111–1132 (2011)
-
(2011)
Math. Comput. Model.
, vol.53
, Issue.5-6
, pp. 1111-1132
-
-
Anastassiou, G.A.1
-
2
-
-
79651470747
-
Multivariate hyperbolic tangent neural network approximation
-
Anastassiou, G.A.: Multivariate hyperbolic tangent neural network approximation. Comput. Math. Appl. 61(4), 809–821 (2011)
-
(2011)
Comput. Math. Appl.
, vol.61
, Issue.4
, pp. 809-821
-
-
Anastassiou, G.A.1
-
3
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf. Theory 39(3), 930–945 (1993)
-
(1993)
IEEE Trans. Inf. Theory
, vol.39
, Issue.3
, pp. 930-945
-
-
Barron, A.R.1
-
6
-
-
0002038798
-
The sampling theorem and linear prediction in signal analysis
-
Butzer, P.L., Splettstößer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math.-Verein 90, 1–70 (1988)
-
(1988)
Jahresber. Deutsch. Math.-Verein
, vol.90
, pp. 1-70
-
-
Butzer, P.L.1
Splettstößer, W.2
Stens, R.L.3
-
7
-
-
84865627769
-
A neural network approach for solving Fredholm integral equations of the second kind
-
Buzhabadi, R., Effati, S.: A neural network approach for solving Fredholm integral equations of the second kind. Neural Comput. Appl. 21, 843–852 (2012)
-
(2012)
Neural Comput. Appl.
, vol.21
, pp. 843-852
-
-
Buzhabadi, R.1
Effati, S.2
-
8
-
-
67649743440
-
The approximation operators with sigmoidal functions
-
Cao, F., Chen, Z.: The approximation operators with sigmoidal functions. Comput. Math. Appl. 58(4), 758–765 (2009)
-
(2009)
Comput. Math. Appl.
, vol.58
, Issue.4
, pp. 758-765
-
-
Cao, F.1
Chen, Z.2
-
9
-
-
9644285073
-
A constructive proof and an extension of Cybenko’s approximation theorem
-
Springer, New York
-
Chen, H., Chen, T., Liu, R.: A constructive proof and an extension of Cybenko’s approximation theorem. In: Computing Science and Statistics, pp. 163–168. Springer, New York (1992)
-
(1992)
Computing Science and Statistics
, pp. 163-168
-
-
Chen, H.1
Chen, T.2
Liu, R.3
-
10
-
-
51249165422
-
Degree of approximation by superpositions of a sigmoidal function
-
Chen, D.: Degree of approximation by superpositions of a sigmoidal function. Approx. Theory Appl. 9(3), 17–28 (1993)
-
(1993)
Approx. Theory Appl.
, vol.9
, Issue.3
, pp. 17-28
-
-
Chen, D.1
-
12
-
-
84883037302
-
Solving Volterra integral equations of the second kind by sigmoidal functions approximations, to appear in
-
Costarelli, D., Spigler, R.: Solving Volterra integral equations of the second kind by sigmoidal functions approximations, to appear in J. Integral Eq. Appl. 25(2) (2013)
-
(2013)
J. Integral Eq. Appl
, vol.25
, Issue.2
-
-
Costarelli, D.1
Spigler, R.2
-
13
-
-
84882972393
-
Constructive approximation by superposition of sigmoidal functions
-
Costarelli, D., Spigler, R.: Constructive approximation by superposition of sigmoidal functions. Anal. Theory Appl. 29(2), 169–196 (2013)
-
(2013)
Anal. Theory Appl.
, vol.29
, Issue.2
, pp. 169-196
-
-
Costarelli, D.1
Spigler, R.2
-
14
-
-
84876320512
-
Approximation results for neural network operators activated by sigmoidal functions
-
Costarelli, D., Spigler, R.: Approximation results for neural network operators activated by sigmoidal functions. Neural Netw. 44, 101–106 (2013)
-
(2013)
Neural Netw.
, vol.44
, pp. 101-106
-
-
Costarelli, D.1
Spigler, R.2
-
15
-
-
84883048212
-
Multivariate neural network operators with sigmoidal activation functions
-
Costarelli, D., Spigler, R.: Multivariate neural network operators with sigmoidal activation functions. Neural Netw. 48, 72–77 (2013)
-
(2013)
Neural Netw.
, vol.48
, pp. 72-77
-
-
Costarelli, D.1
Spigler, R.2
-
16
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303–314 (1989)
-
(1989)
Math. Control Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
17
-
-
0003077036
-
Ten Lectures on Wavelets
-
Society for Industrial and Applied Mathematics, SIAM, Philadelphia
-
Daubechies, I.: Ten Lectures on Wavelets, Regional Conference Series in Applied Mathematics 61. Society for Industrial and Applied Mathematics, SIAM, Philadelphia (1992)
-
(1992)
Regional Conference Series in Applied Mathematics
, vol.61
-
-
Daubechies, I.1
-
18
-
-
24944585477
-
A Practical Guide to Spline
-
Springer, New York
-
De Boor, C.: A Practical Guide to Spline, Applied Mathematical Sciences 27. Springer, New York (2001)
-
(2001)
Applied Mathematical Sciences
, vol.27
-
-
De Boor, C.1
-
19
-
-
0042892216
-
Univariant approximation by superpositions of a sigmoidal function
-
Gao, B., Xu, Y.: Univariant approximation by superpositions of a sigmoidal function. J. Math. Anal. Appl. 178, 221–226 (1993)
-
(1993)
J. Math. Anal. Appl.
, vol.178
, pp. 221-226
-
-
Gao, B.1
Xu, Y.2
-
20
-
-
31244437685
-
Approximation order to a function in (Formula presented.) by superposition of a sigmoidal function
-
Hahm, N., Hong, B.: Approximation order to a function in (Formula presented.) by superposition of a sigmoidal function. Appl. Math. Lett. 15, 591–597 (2002)
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 591-597
-
-
Hahm, N.1
Hong, B.2
-
22
-
-
84882976061
-
Constructive approximations for neural networks by sigmoidal functions
-
University of Lowell, Dep. of Mathematics
-
Jones, L.K.: Constructive approximations for neural networks by sigmoidal functions, Technical Report Series 7. University of Lowell, Dep. of Mathematics (1988)
-
(1988)
Technical Report Series
, vol.7
-
-
Jones, L.K.1
-
23
-
-
0011595675
-
Constructive multivariate approximation with sigmoidal functions and applications to neural networks
-
Lenze, B.: Constructive multivariate approximation with sigmoidal functions and applications to neural networks. In: Numer. Methods Approx. Theory, Birkhauser Verlag, Basel-Boston-Berlin, pp. 155–175 (1992)
-
(1992)
Numer. Methods Approx. Theory, Birkhauser Verlag, Basel-Boston-Berlin
, pp. 155-175
-
-
Lenze, B.1
-
24
-
-
0041829446
-
Approximation by superpositions of a sigmoidal function
-
Lewicki, G., Marino, G.: Approximation by superpositions of a sigmoidal function. Z. Anal. Anwendungen J. Anal. Appl. 22(2), 463–470 (2003)
-
(2003)
Z. Anal. Anwendungen J. Anal. Appl.
, vol.22
, Issue.2
, pp. 463-470
-
-
Lewicki, G.1
Marino, G.2
-
25
-
-
10644262975
-
Approximation of functions of finite variation by superpositions of a sigmoidal function
-
Lewicki, G., Marino, G.: Approximation of functions of finite variation by superpositions of a sigmoidal function. Appl. Math. Lett. 17, 1147–1152 (2004)
-
(2004)
Appl. Math. Lett.
, vol.17
, pp. 1147-1152
-
-
Lewicki, G.1
Marino, G.2
-
26
-
-
0030221938
-
Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer
-
Li, X.: Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer. Neurocomputing 12, 327–343 (1996)
-
(1996)
Neurocomputing
, vol.12
, pp. 327-343
-
-
Li, X.1
-
27
-
-
0034561156
-
Approximation by radial bases and neural networks
-
Li, X., Micchelli, C.A.: Approximation by radial bases and neural networks. Numer. Algorithms 25, 241–262 (2000)
-
(2000)
Numer. Algorithms
, vol.25
, pp. 241-262
-
-
Li, X.1
Micchelli, C.A.2
-
28
-
-
33845415634
-
Numerical solution for high order differential equations using a hybrid neural network—optimization method
-
Malek, A., Shekari Beidokhti, R.: Numerical solution for high order differential equations using a hybrid neural network—optimization method. Appl. Math. Comput. 183, 260–271 (2006)
-
(2006)
Appl. Math. Comput.
, vol.183
, pp. 260-271
-
-
Malek, A.1
Shekari Beidokhti, R.2
-
29
-
-
84966210236
-
Multiresolution approximations and wavelet orthonormal bases of (Formula presented.)
-
Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of (Formula presented.). Trans. Am. Math. Soc. 315, 69–87 (1989)
-
(1989)
Trans. Am. Math. Soc.
, vol.315
, pp. 69-87
-
-
Mallat, S.G.1
-
30
-
-
0004168108
-
Wavelets and Operators. Cambridge Studies in Advanced Mathematics 37
-
Meyer, Y.: Wavelets and Operators. Cambridge Studies in Advanced Mathematics 37, Cambridge (1992)
-
(1992)
Cambridge
-
-
Meyer, Y.1
-
31
-
-
0000358945
-
Approximation by superposition of sigmoidal and radial basis functions
-
Mhaskar, H.N., Micchelli, C.A.: Approximation by superposition of sigmoidal and radial basis functions. Adv. Appl. Math. 13, 350–373 (1992)
-
(1992)
Adv. Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
32
-
-
0000194429
-
Degree of approximation by neural and translation networks with a single hidden layer
-
Mhaskar, H.N., Micchelli, C.A.: Degree of approximation by neural and translation networks with a single hidden layer. Adv. Appl. Math. 16, 151–183 (1995)
-
(1995)
Adv. Appl. Math.
, vol.16
, pp. 151-183
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
33
-
-
0000041417
-
Neural networks for optimal approximation of smooth and analytic functions
-
Mhaskar, H.N.: Neural networks for optimal approximation of smooth and analytic functions. Neural Comput. 8, 164–177 (1996)
-
(1996)
Neural Comput.
, vol.8
, pp. 164-177
-
-
Mhaskar, H.N.1
-
34
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143–195 (1999)
-
(1999)
Acta Numer.
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
35
-
-
57649126218
-
Ten good reasons for using spline wavelets
-
Unser, M.: Ten good reasons for using spline wavelets. Wavelets Appl. Signal Image Process. 3169(5), 422–431 (1997)
-
(1997)
Wavelets Appl. Signal Image Process.
, vol.3169
, Issue.5
, pp. 422-431
-
-
Unser, M.1
-
36
-
-
84958754734
-
On the degree of approximation by wavelet expansions
-
Xiehua, S.: On the degree of approximation by wavelet expansions. Approx. Theory Appl. 14(1), 81–90 (1998)
-
(1998)
Approx. Theory Appl.
, vol.14
, Issue.1
, pp. 81-90
-
-
Xiehua, S.1
|