-
2
-
-
0001325515
-
Approximation and estimation bounds for artificial neural networks
-
Barron A.R. Approximation and estimation bounds for artificial neural networks. Mach. Learn. 1994, 14:115-133.
-
(1994)
Mach. Learn.
, vol.14
, pp. 115-133
-
-
Barron, A.R.1
-
3
-
-
38649094938
-
The estimate for approximation error of neural networks: a constructive approach
-
Cao F., Xie T., Xu Z. The estimate for approximation error of neural networks: a constructive approach. Neurocomputing 2008, 71:626-630.
-
(2008)
Neurocomputing
, vol.71
, pp. 626-630
-
-
Cao, F.1
Xie, T.2
Xu, Z.3
-
4
-
-
0027698748
-
Approximation of continuous functionals by neural networks with application to dynamic systems
-
Chen T., Chen H. Approximation of continuous functionals by neural networks with application to dynamic systems. IEEE Trans. Neural Networks 1993, 4:910-918.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 910-918
-
-
Chen, T.1
Chen, H.2
-
5
-
-
0000378922
-
Approximation by ridge functions and neural networks with one hidden layer
-
Chui C.K., Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 1992, 70:131-141.
-
(1992)
J. Approx. Theory
, vol.70
, pp. 131-141
-
-
Chui, C.K.1
Li, X.2
-
6
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 1989, 2:303-314.
-
(1989)
Math. Control Signals Systems
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
7
-
-
3042763888
-
An improvement in the smoothness of the functions in A.N. Kolmogorov's theorem on superpositions
-
(in Russian)
-
Fridman B.L. An improvement in the smoothness of the functions in A.N. Kolmogorov's theorem on superpositions. Dokl. Akad. Nauk SSSR 1967, 177:1019-1022. (in Russian).
-
(1967)
Dokl. Akad. Nauk SSSR
, vol.177
, pp. 1019-1022
-
-
Fridman, B.L.1
-
8
-
-
0001675495
-
Representation properties of networks: Kolmogorov's theorem is irrelevant
-
Girosi F., Poggio T. Representation properties of networks: Kolmogorov's theorem is irrelevant. Neural Comput. 1989, 1:465-469.
-
(1989)
Neural Comput.
, vol.1
, pp. 465-469
-
-
Girosi, F.1
Poggio, T.2
-
10
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks 1991, 4:251-257.
-
(1991)
Neural Networks
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
11
-
-
41549157220
-
On the representation by linear superpositions
-
Ismailov V.E. On the representation by linear superpositions. J. Approx. Theory 2008, 151:113-125.
-
(2008)
J. Approx. Theory
, vol.151
, pp. 113-125
-
-
Ismailov, V.E.1
-
12
-
-
84855858116
-
Approximation by neural networks with weights varying on a finite set of directions
-
Ismailov V.E. Approximation by neural networks with weights varying on a finite set of directions. J. Math. Anal. Appl. 2012, 389:72-83.
-
(2012)
J. Math. Anal. Appl.
, vol.389
, pp. 72-83
-
-
Ismailov, V.E.1
-
13
-
-
0026479224
-
Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling
-
Ito Y. Approximation of continuous functions on Rd by linear combinations of shifted rotations of a sigmoid function with and without scaling. Neural Networks 1992, 5:105-115.
-
(1992)
Neural Networks
, vol.5
, pp. 105-115
-
-
Ito, Y.1
-
14
-
-
0039393134
-
Sur le theoreme de superposition de Kolmogorov
-
collection of articles dedicated to G.G. Lorentz on the occasion of his sixty-fifth birthday, III, (in French)
-
Kahane J. Sur le theoreme de superposition de Kolmogorov. J. Approx. Theory 1975, 13:229-234. collection of articles dedicated to G.G. Lorentz on the occasion of his sixty-fifth birthday, III, (in French).
-
(1975)
J. Approx. Theory
, vol.13
, pp. 229-234
-
-
Kahane, J.1
-
15
-
-
34247544840
-
Best Approximation by Linear Superpositions (Approximate Nomography)
-
translated from the Russian manuscript by D. Khavinson, American Mathematical Society, Providence, RI
-
Khavinson S.Ya. Best Approximation by Linear Superpositions (Approximate Nomography). Transl. Math. Monogr. 1997, vol. 159. translated from the Russian manuscript by D. Khavinson, American Mathematical Society, Providence, RI, 175 pp.
-
(1997)
Transl. Math. Monogr.
, vol.159
, pp. 175
-
-
Khavinson, S.1
-
16
-
-
0001321136
-
On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition
-
(in Russian)
-
Kolmogorov A.N. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 1957, 114:953-956. (in Russian).
-
(1957)
Dokl. Akad. Nauk SSSR
, vol.114
, pp. 953-956
-
-
Kolmogorov, A.N.1
-
17
-
-
0001196621
-
Kolmogorov's theorem is relevant
-
Kůrkova V. Kolmogorov's theorem is relevant. Neural Comput. 1991, 3:617-622.
-
(1991)
Neural Comput.
, vol.3
, pp. 617-622
-
-
Kůrkova, V.1
-
18
-
-
0026627415
-
Kolmogorov's theorem and multilayer neural networks
-
Kůrkova V. Kolmogorov's theorem and multilayer neural networks. Neural Networks 1992, 5:501-506.
-
(1992)
Neural Networks
, vol.5
, pp. 501-506
-
-
Kůrkova, V.1
-
19
-
-
0027262895
-
Multilayer feedforward networks with a non-polynomial activation function can approximate any function
-
Leshno M., Lin V.Ya., Pinkus A., Schocken S. Multilayer feedforward networks with a non-polynomial activation function can approximate any function. Neural Networks 1993, 6:861-867.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.2
Pinkus, A.3
Schocken, S.4
-
20
-
-
38248999102
-
Fundamentality of ridge functions
-
Lin V.Ya., Pinkus A. Fundamentality of ridge functions. J. Approx. Theory 1993, 75:295-311.
-
(1993)
J. Approx. Theory
, vol.75
, pp. 295-311
-
-
Lin, V.1
Pinkus, A.2
-
21
-
-
0042507805
-
Metric entropy, widths, and superpositions of functions
-
Lorentz G.G. Metric entropy, widths, and superpositions of functions. Amer. Math. Monthly 1962, 69:469-485.
-
(1962)
Amer. Math. Monthly
, vol.69
, pp. 469-485
-
-
Lorentz, G.G.1
-
22
-
-
0032950772
-
Lower bounds for approximation by MLP neural networks
-
Maiorov V., Pinkus A. Lower bounds for approximation by MLP neural networks. Neurocomputing 1999, 25:81-91.
-
(1999)
Neurocomputing
, vol.25
, pp. 81-91
-
-
Maiorov, V.1
Pinkus, A.2
-
23
-
-
84966256961
-
Dimension of metric spaces and Hilbert's problem $13$
-
Ostrand P.A. Dimension of metric spaces and Hilbert's problem $13$. Bull. Amer. Math. Soc. 1965, 71:619-622.
-
(1965)
Bull. Amer. Math. Soc.
, vol.71
, pp. 619-622
-
-
Ostrand, P.A.1
-
24
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 8:143-195.
-
(1999)
Acta Numer.
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
25
-
-
84968510856
-
On the structure of continuous functions of several variables
-
Sprecher D.A. On the structure of continuous functions of several variables. Trans. Amer. Math. Soc. 1965, 115:340-355.
-
(1965)
Trans. Amer. Math. Soc.
, vol.115
, pp. 340-355
-
-
Sprecher, D.A.1
-
26
-
-
4243154218
-
An improvement in the superposition theorem of Kolmogorov
-
Sprecher D.A. An improvement in the superposition theorem of Kolmogorov. J. Math. Anal. Appl. 1972, 38:208-213.
-
(1972)
J. Math. Anal. Appl.
, vol.38
, pp. 208-213
-
-
Sprecher, D.A.1
-
27
-
-
51249184500
-
Uniformly separating families of functions
-
Sternfeld Y. Uniformly separating families of functions. Israel J. Math. 1978, 29:61-91.
-
(1978)
Israel J. Math.
, vol.29
, pp. 61-91
-
-
Sternfeld, Y.1
-
28
-
-
51249174956
-
Dimension, superposition of functions and separation of points, in compact metric spaces
-
Sternfeld Y. Dimension, superposition of functions and separation of points, in compact metric spaces. Israel J. Math. 1985, 50:13-53.
-
(1985)
Israel J. Math.
, vol.50
, pp. 13-53
-
-
Sternfeld, Y.1
|