메뉴 건너뛰기




Volumn 199, Issue 3, 2015, Pages 711-727

The DNA damage response and checkpoint adaptation in Saccharomyces cerevisiae: Distinct roles for the replication protein A2 (Rfa2) N-terminus

Author keywords

Checkpoint adaptation; DNA damage; Genetic interaction; Phosphorylation; Replication protein A

Indexed keywords

ALANINE; ASPARTIC ACID; REPLICATION FACTOR A; SERINE; THREONINE; FUNGAL DNA; RFA2 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84924955751     PISSN: 00166731     EISSN: 19432631     Source Type: Journal    
DOI: 10.1534/genetics.114.173211     Document Type: Article
Times cited : (6)

References (80)
  • 1
    • 47849125967 scopus 로고    scopus 로고
    • A multidimensional chromatography technology for in-depth phosphoproteome analysis
    • Albuquerque, C. P., M. B. Smolka, S. H. Payne, V. Bafna, J. Eng et al., 2008 A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol. Cell. Proteomics 7: 1389–1396.
    • (2008) Mol. Cell. Proteomics , vol.7 , pp. 1389-1396
    • Albuquerque, C.P.1    Smolka, M.B.2    Payne, S.H.3    Bafna, V.4    Eng, J.5
  • 2
    • 59449109775 scopus 로고    scopus 로고
    • Mitotic crisis: The unmasking of a novel role for RPA
    • Anantha, R. W., and J. A. Borowiec, 2009 Mitotic crisis: the unmasking of a novel role for RPA. Cell Cycle 8: 357–361.
    • (2009) Cell Cycle , vol.8 , pp. 357-361
    • Anantha, R.W.1    Borowiec, J.A.2
  • 3
    • 37249080597 scopus 로고    scopus 로고
    • Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair
    • Anantha, R. W., V. M. Vassin, and J. A. Borowiec, 2007 Sequential and synergistic modification of human RPA stimulates chromosomal DNA repair. J. Biol. Chem. 282: 35910–35923.
    • (2007) J. Biol. Chem , vol.282 , pp. 35910-35923
    • Anantha, R.W.1    Vassin, V.M.2    Borowiec, J.A.3
  • 4
    • 51349140504 scopus 로고    scopus 로고
    • RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage
    • Anantha, R. W., E. Sokolova, and J. A. Borowiec, 2008 RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc. Natl. Acad. Sci. USA 105: 12903–12908.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 12903-12908
    • Anantha, R.W.1    Sokolova, E.2    Borowiec, J.A.3
  • 5
    • 84875528224 scopus 로고    scopus 로고
    • Human single-stranded DNA binding proteins are essential for maintaining genomic stability
    • Ashton, N. W., E. Bolderson, L. Cubeddu, K. J. O’Byrne, and D. J. Richard, 2013 Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol. Biol. 14: 9.
    • (2013) BMC Mol. Biol , vol.14 , pp. 9
    • Ashton, N.W.1    Bolderson, E.2    Cubeddu, L.3    O’byrne, K.J.4    Richard, D.J.5
  • 6
    • 2942744563 scopus 로고    scopus 로고
    • DNA stimulates Mec1-mediated phosphorylation of Replication Protein A
    • Bartrand, A. J., D. Iyasu, and G. S. Brush, 2004 DNA stimulates Mec1-mediated phosphorylation of Replication Protein A. J. Biol. Chem. 279: 26762–26767.
    • (2004) J. Biol. Chem , vol.279 , pp. 26762-26767
    • Bartrand, A.J.1    Iyasu, D.2    Brush, G.S.3
  • 7
    • 33644784811 scopus 로고    scopus 로고
    • Evidence of meiotic crossover control in Saccharomyces cerevisiae through Mec1-mediated phosphorylation of Replication Protein A
    • Bartrand, A. J., D. Iyasu, S. M. Marinco, and G. S. Brush, 2006 Evidence of meiotic crossover control in Saccharomyces cerevisiae through Mec1-mediated phosphorylation of Replication Protein A. Genetics 172: 27–39.
    • (2006) Genetics , vol.172 , pp. 27-39
    • Bartrand, A.J.1    Iyasu, D.2    Marinco, S.M.3    Brush, G.S.4
  • 8
    • 0041816064 scopus 로고    scopus 로고
    • The phosphorylation domain of the 32-kDa subunit of Replication Protein A (RPA) modulates RPA–DNA interactions: Evidence for an intersubunit interaction
    • Binz, S. K., Y. Lao, D. F. Lowry, and M. S. Wold, 2003 The phosphorylation domain of the 32-kDa subunit of Replication Protein A (RPA) modulates RPA–DNA interactions: evidence for an intersubunit interaction. J. Biol. Chem. 278: 35584–35591.
    • (2003) J. Biol. Chem , vol.278 , pp. 35584-35591
    • Binz, S.K.1    Lao, Y.2    Lowry, D.F.3    Wold, M.S.4
  • 9
    • 33746816108 scopus 로고    scopus 로고
    • The Rad53 signal transduction pathway: Replication fork stabilization, DNA repair, and adaptation
    • Branzei, D., and M. Foiani, 2006 The Rad53 signal transduction pathway: replication fork stabilization, DNA repair, and adaptation. Exp. Cell Res. 312: 2654–2659.
    • (2006) Exp. Cell Res , vol.312 , pp. 2654-2659
    • Branzei, D.1    Foiani, M.2
  • 10
    • 0034307720 scopus 로고    scopus 로고
    • Phosphorylation of the Replication Protein A large subunit in the Saccharomyces cerevisiae checkpoint response
    • Brush, G. S., and T. J. Kelly, 2000 Phosphorylation of the Replication Protein A large subunit in the Saccharomyces cerevisiae checkpoint response. Nucleic Acids Res. 28: 3725–3732.
    • (2000) Nucleic Acids Res , vol.28 , pp. 3725-3732
    • Brush, G.S.1    Kelly, T.J.2
  • 11
    • 0030479885 scopus 로고    scopus 로고
    • The ATM homologue MEC1 is required for phosphorylation of Replication Protein A in yeast
    • Brush, G. S., D. M. Morrow, P. Hieter, and T. J. Kelly, 1996 The ATM homologue MEC1 is required for phosphorylation of Replication Protein A in yeast. Proc. Natl. Acad. Sci. USA 93: 15075–15080.
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 15075-15080
    • Brush, G.S.1    Morrow, D.M.2    Hieter, P.3    Kelly, T.J.4
  • 12
    • 0035584046 scopus 로고    scopus 로고
    • Replication protein A is sequentially phosphorylated during meiosis
    • Brush, G. S., D. M. Clifford, S. M. Marinco, and A. J. Bartrand, 2001 Replication protein A is sequentially phosphorylated during meiosis. Nucleic Acids Res. 29: 4808–4817.
    • (2001) Nucleic Acids Res , vol.29 , pp. 4808-4817
    • Brush, G.S.1    Clifford, D.M.2    Marinco, S.M.3    Bartrand, A.J.4
  • 13
    • 34548213631 scopus 로고    scopus 로고
    • The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination
    • Burgess, R. C., S. Rahman, M. Lisby, R. Rothstein, and X. Zhao, 2007 The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol. Cell. Biol. 27: 6153–6162.
    • (2007) Mol. Cell. Biol , vol.27 , pp. 6153-6162
    • Burgess, R.C.1    Rahman, S.2    Lisby, M.3    Rothstein, R.4    Zhao, X.5
  • 14
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary, C., C. Kumar, F. Gnad, M. L. Nielsen, M. Rehman et al., 2009 Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834–840.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gnad, F.3    Nielsen, M.L.4    Rehman, M.5
  • 15
    • 1242339586 scopus 로고    scopus 로고
    • The meiosisspecific protein kinase Ime2 directs phosphorylation of Replication Protein A
    • Clifford, D. M., S. M. Marinco, and G. S. Brush, 2004 The meiosisspecific protein kinase Ime2 directs phosphorylation of Replication Protein A. J. Biol. Chem. 279: 6163–6170.
    • (2004) J. Biol. Chem , vol.279 , pp. 6163-6170
    • Clifford, D.M.1    Marinco, S.M.2    Brush, G.S.3
  • 16
    • 29244457261 scopus 로고    scopus 로고
    • Mechanistic insight into the Cdc28-related protein kinase Ime2 through analysis of Replication Protein A phosphorylation
    • Clifford, D. M., K. E. Stark, K. E. Gardner, S. Hoffmann-Benning, and G. S. Brush, 2005 Mechanistic insight into the Cdc28-related protein kinase Ime2 through analysis of Replication Protein A phosphorylation. Cell Cycle 4: 1826–1833.
    • (2005) Cell Cycle , vol.4 , pp. 1826-1833
    • Clifford, D.M.1    Stark, K.E.2    Gardner, K.E.3    Hoffmann-Benning, S.4    Brush, G.S.5
  • 17
    • 34147217542 scopus 로고    scopus 로고
    • Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
    • Collins, S. R., K. M. Miller, N. L. Maas, A. Roguev, J. Fillingham et al., 2007 Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806–810.
    • (2007) Nature , vol.446 , pp. 806-810
    • Collins, S.R.1    Miller, K.M.2    Maas, N.L.3    Roguev, A.4    Fillingham, J.5
  • 18
    • 84862783021 scopus 로고    scopus 로고
    • Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint
    • Cremona, C. A., P. Sarangi, Y. Yang, L. E. Hang, S. Rahman et al., 2012 Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol. Cell 45: 422–432.
    • (2012) Mol. Cell , vol.45 , pp. 422-432
    • Cremona, C.A.1    Sarangi, P.2    Yang, Y.3    Hang, L.E.4    Rahman, S.5
  • 19
    • 40849114493 scopus 로고    scopus 로고
    • Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase eta-deficient human cells treated with cisplatin and oxaliplatin
    • Cruet-Hennequart, S., M. T. Glynn, L. S. Murillo, S. Coyne, and M. P. Carty, 2008 Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase eta-deficient human cells treated with cisplatin and oxaliplatin. DNA Rep. 7: 582–596.
    • (2008) DNA Rep , vol.7 , pp. 582-596
    • Cruet-Hennequart, S.1    Glynn, M.T.2    Murillo, L.S.3    Coyne, S.4    Carty, M.P.5
  • 20
    • 0025365192 scopus 로고
    • Cellcycle- regulated phosphorylation of DNA Replication Factor A from human and yeast cells
    • Din, S., S. J. Brill, M. P. Fairman, and B. Stillman, 1990 Cellcycle- regulated phosphorylation of DNA Replication Factor A from human and yeast cells. Genes Dev. 4: 968–977.
    • (1990) Genes Dev , vol.4 , pp. 968-977
    • Din, S.1    Brill, S.J.2    Fairman, M.P.3    Stillman, B.4
  • 21
    • 77955475870 scopus 로고    scopus 로고
    • Regulation of DNA repair through deSUMOylation and SUMOylation of Replication Protein A complex
    • Dou, H., C. Huang, M. Singh, P. B. Carpenter, and E. T. H. Yeh, 2010 Regulation of DNA repair through deSUMOylation and SUMOylation of Replication Protein A complex. Mol. Cell 39: 333–345.
    • (2010) Mol. Cell , vol.39 , pp. 333-345
    • Dou, H.1    Huang, C.2    Singh, M.3    Carpenter, P.B.4    Yeh, E.T.5
  • 22
    • 0026403428 scopus 로고
    • Phosphorylation of Replication Protein A: A role for cdc2 kinase in G1/S regulation
    • Dutta, A., S. Din, S. J. Brill, and B. Stillman, 1991 Phosphorylation of Replication Protein A: a role for cdc2 kinase in G1/S regulation. Cold Spring Harb. Symp. Quant. Biol. 56: 315–324.
    • (1991) Cold Spring Harb. Symp. Quant. Biol , vol.56 , pp. 315-324
    • Dutta, A.1    Din, S.2    Brill, S.J.3    Stillman, B.4
  • 23
    • 33749134033 scopus 로고    scopus 로고
    • A dynamic model for Replication Protein A (RPA) function in DNA processing pathways
    • Fanning, E., V. Klimovich, and A. R. Nager, 2006 A dynamic model for Replication Protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 34: 4126–4137.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4126-4137
    • Fanning, E.1    Klimovich, V.2    Nager, A.R.3
  • 24
    • 70350540470 scopus 로고    scopus 로고
    • Protein phosphatase 2A-dependent dephosphorylation of Replication Protein A is required for the repair of DNA breaks induced by replication stress
    • Feng, J., T. Wakeman, S. Yong, X. Wu, S. Kornbluth et al., 2009 Protein phosphatase 2A-dependent dephosphorylation of Replication Protein A is required for the repair of DNA breaks induced by replication stress. Mol. Cell. Biol. 29: 5696–5709.
    • (2009) Mol. Cell. Biol , vol.29 , pp. 5696-5709
    • Feng, J.1    Wakeman, T.2    Yong, S.3    Wu, X.4    Kornbluth, S.5
  • 25
    • 0028838087 scopus 로고
    • A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52
    • Firmenich, A. A., M. Elias-Arnanz, and P. Berg, 1995 A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol. Cell. Biol. 15: 1620–1631.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 1620-1631
    • Firmenich, A.A.1    Elias-Arnanz, M.2    Berg, P.3
  • 26
    • 77954589779 scopus 로고    scopus 로고
    • Oligonucleotide/oligosaccharidebinding fold proteins: A growing family of genome guardians
    • Flynn, R. L., and L. Zou, 2010 Oligonucleotide/oligosaccharidebinding fold proteins: a growing family of genome guardians. Crit. Rev. Biochem. Mol. Biol. 45: 266–275.
    • (2010) Crit. Rev. Biochem. Mol. Biol , vol.45 , pp. 266-275
    • Flynn, R.L.1    Zou, L.2
  • 27
    • 0035131636 scopus 로고    scopus 로고
    • Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast
    • Galgoczy, D. J., and D. P. Toczyski, 2001 Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol. Cell. Biol. 21: 1710–1718.
    • (2001) Mol. Cell. Biol , vol.21 , pp. 1710-1718
    • Galgoczy, D.J.1    Toczyski, D.P.2
  • 28
    • 84907853696 scopus 로고    scopus 로고
    • Regulation of Rfa2 phosphorylation in response to genotoxic stress in Candida albicans
    • Gao, J.-X., H.-T. Wang, A. H.-H. Wong, G.-S. Zeng, Z.-X. Huang et al., 2014 Regulation of Rfa2 phosphorylation in response to genotoxic stress in Candida albicans. Mol. Microbiol. 94: 141–155.
    • (2014) Mol. Microbiol , vol.94 , pp. 141-155
    • Gao, J.-X.1    Wang, H.-T.2    Wong, A.H.3    Zeng, G.-S.4    Huang, Z.-X.5
  • 29
    • 68549085023 scopus 로고    scopus 로고
    • High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast
    • Gnad, F., L. M. F. de Godoy, J. Cox, N. Neuhauser, S. Ren et al., 2009 High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9: 4642–4652.
    • (2009) Proteomics , vol.9 , pp. 4642-4652
    • Gnad, F.1    De Godoy, L.M.2    Cox, J.3    Neuhauser, N.4    Ren, S.5
  • 30
    • 77950356865 scopus 로고    scopus 로고
    • A naturally occurring human RPA subunit homolog does not support DNA replication or cell-cycle progression
    • Haring, S. J., T. D. Humphreys, and M. S. Wold, 2010 A naturally occurring human RPA subunit homolog does not support DNA replication or cell-cycle progression. Nucleic Acids Res. 38: 846–858.
    • (2010) Nucleic Acids Res , vol.38 , pp. 846-858
    • Haring, S.J.1    Humphreys, T.D.2    Wold, M.S.3
  • 31
    • 33751419716 scopus 로고    scopus 로고
    • Surviving the breakup: The DNA damage checkpoint
    • Harrison, J. C., and J. E. Haber, 2006 Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40: 209–235.
    • (2006) Annu. Rev. Genet , vol.40 , pp. 209-235
    • Harrison, J.C.1    Haber, J.E.2
  • 32
    • 78649563648 scopus 로고    scopus 로고
    • Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels
    • Helbig, A. O., S. Rosati, P. W. W. M. Pijnappel, B. van Breukelen, M. H. T. H. Timmers et al., 2010 Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 11: 685.
    • (2010) BMC Genomics , vol.11 , pp. 685
    • Helbig, A.O.1    Rosati, S.2    Pijnappel, P.W.3    Van Breukelen, B.4    Timmers, M.H.5
  • 33
    • 0029740726 scopus 로고    scopus 로고
    • Phosphorylation of human Replication Protein A by the DNA-dependent protein kinase is involved in the modulation of DNA replication
    • Henricksen, L. A., T. Carter, A. Dutta, and M. S. Wold, 1996 Phosphorylation of human Replication Protein A by the DNA-dependent protein kinase is involved in the modulation of DNA replication. Nucleic Acids Res. 24: 3107–3112.
    • (1996) Nucleic Acids Res , vol.24 , pp. 3107-3112
    • Henricksen, L.A.1    Carter, T.2    Dutta, A.3    Wold, M.S.4
  • 34
    • 70349546862 scopus 로고    scopus 로고
    • Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution
    • Holt, L. J., B. B. Tuch, J. Villen, A. D. Johnson, S. P. Gygi et al., 2009 Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325: 1682–1686.
    • (2009) Science , vol.325 , pp. 1682-1686
    • Holt, L.J.1    Tuch, B.B.2    Villen, J.3    Johnson, A.D.4    Gygi, S.P.5
  • 36
    • 52249091114 scopus 로고    scopus 로고
    • Dancing on damaged chromatin: Functions of ATM and the RAD50/ MRE11/NBS1 complex in cellular responses to DNA damage
    • Iijima, K., M. Ohara, R. Seki, and H. Tauchi, 2008 Dancing on damaged chromatin: functions of ATM and the RAD50/ MRE11/NBS1 complex in cellular responses to DNA damage. J. Radiat. Res. 49: 451–464.
    • (2008) J. Radiat. Res , vol.49 , pp. 451-464
    • Iijima, K.1    Ohara, M.2    Seki, R.3    Tauchi, H.4
  • 37
    • 0345293222 scopus 로고    scopus 로고
    • MEC1-dependent phosphorylation of yeast RPA1 in vitro
    • Kim, H.-S., and S. J. Brill, 2003 MEC1-dependent phosphorylation of yeast RPA1 in vitro. DNA Repair 2: 1321–1335.
    • (2003) DNA Repair , vol.2 , pp. 1321-1335
    • Kim, H.-S.1    Brill, S.J.2
  • 39
    • 0034733591 scopus 로고    scopus 로고
    • Rapid and reliable protein extraction from yeast
    • Kushnirov, V. V., 2000 Rapid and reliable protein extraction from yeast. Yeast 16: 857–860.
    • (2000) Yeast , vol.16 , pp. 857-860
    • Kushnirov, V.V.1
  • 40
    • 77949267720 scopus 로고    scopus 로고
    • A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination
    • Lee, D.-H., Y. Pan, S. Kanner, P. Sung, J. A. Borowiec et al., 2010 A PP4 phosphatase complex dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nat. Struct. Mol. Biol. 17: 365–372.
    • (2010) Nat. Struct. Mol. Biol , vol.17 , pp. 365-372
    • Lee, D.-H.1    Pan, Y.2    Kanner, S.3    Sung, P.4    Borowiec, J.A.5
  • 41
    • 0032493889 scopus 로고    scopus 로고
    • Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
    • Lee, S. E., J. K. Moore, A. Holmes, K. Umezu, R. D. Kolodner et al., 1998 Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94: 399–409.
    • (1998) Cell , vol.94 , pp. 399-409
    • Lee, S.E.1    Moore, J.K.2    Holmes, A.3    Umezu, K.4    Kolodner, R.D.5
  • 42
    • 0034437899 scopus 로고    scopus 로고
    • Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae
    • Lee, S. E., A. Pellicioli, J. Demeter, M. P. Vaze, A. P. Gasch et al., 2000 Arrest, adaptation, and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 65: 303–314.
    • (2000) Cold Spring Harb. Symp. Quant. Biol , vol.65 , pp. 303-314
    • Lee, S.E.1    Pellicioli, A.2    Demeter, J.3    Vaze, M.P.4    Gasch, A.P.5
  • 43
    • 79959488298 scopus 로고    scopus 로고
    • DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange
    • Liaw, H., D. Lee, and K. Myung, 2011 DNA-PK-dependent RPA2 hyperphosphorylation facilitates DNA repair and suppresses sister chromatid exchange. PLoS ONE 6: 1–10.
    • (2011) Plos ONE , vol.6 , pp. 1-10
    • Liaw, H.1    Lee, D.2    Myung, K.3
  • 44
    • 0029101853 scopus 로고
    • Cell cycle checkpoints and repair of ionizing radiation damage
    • Liu, V. F., N. V. Boubnov, and D. T. Weaver, 1995 Cell cycle checkpoints and repair of ionizing radiation damage. Stem Cells 13(Suppl. 1): 117–128.
    • (1995) Stem Cells , vol.13 , Issue.1 , pp. 117-128
    • Liu, V.F.1    Boubnov, N.V.2    Weaver, D.T.3
  • 45
    • 25444485251 scopus 로고    scopus 로고
    • Modulation of Replication Protein A function by its hyperphosphorylation- induced conformational change involving DNA binding domain B
    • Liu, Y., M. Kvaratskhelia, S. Hess, Y. Qu, and Y. Zou, 2005 Modulation of Replication Protein A function by its hyperphosphorylation- induced conformational change involving DNA binding domain B. J. Biol. Chem. 280: 32775–32783.
    • (2005) J. Biol. Chem , vol.280 , pp. 32775-32783
    • Liu, Y.1    Kvaratskhelia, M.2    Hess, S.3    Qu, Y.4    Zou, Y.5
  • 46
    • 84868213765 scopus 로고    scopus 로고
    • Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress
    • Liu, S., S. O. Opiyo, K. Manthey, J. G. Glanzer, A. K. Ashley et al., 2012 Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucleic Acids Res. 40: 10780–10794.
    • (2012) Nucleic Acids Res , vol.40 , pp. 10780-10794
    • Liu, S.1    Opiyo, S.O.2    Manthey, K.3    Glanzer, J.G.4    Ashley, A.K.5
  • 47
    • 0028072045 scopus 로고
    • Replication Factor A is required in vivo for DNA replication, repair, and recombination
    • Longhese, M. P., P. Plevani, and G. Lucchini, 1994 Replication Factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol. 14: 7884–7890.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 7884-7890
    • Longhese, M.P.1    Plevani, P.2    Lucchini, G.3
  • 48
    • 0029791693 scopus 로고    scopus 로고
    • The 70 kDa subunit of Replication Protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast
    • Longhese, M. P., H. Neecke, V. Paciotti, G. Lucchini, and P. Plevani, 1996 The 70 kDa subunit of Replication Protein A is required for the G1/S and intra-S DNA damage checkpoints in budding yeast. Nucleic Acids Res. 24: 3533–3537.
    • (1996) Nucleic Acids Res , vol.24 , pp. 3533-3537
    • Longhese, M.P.1    Neecke, H.2    Paciotti, V.3    Lucchini, G.4    Plevani, P.5
  • 49
    • 0042379940 scopus 로고    scopus 로고
    • Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae
    • Mallory, J. C., V. I. Bashkirov, K. M. Trujillo, J. A. Solinger, M. Dominska et al., 2003 Amino acid changes in Xrs2p, Dun1p, and Rfa2p that remove the preferred targets of the ATM family of protein kinases do not affect DNA repair or telomere length in Saccharomyces cerevisiae. DNA Repair 2: 1041–1064.
    • (2003) DNA Repair , vol.2 , pp. 1041-1064
    • Mallory, J.C.1    Bashkirov, V.I.2    Trujillo, K.M.3    Solinger, J.A.4    Dominska, M.5
  • 50
    • 0030930990 scopus 로고    scopus 로고
    • Roles of Replication Protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae
    • Maniar, H. S., R. Wilson, and S. J. Brill, 1997 Roles of Replication Protein-A subunits 2 and 3 in DNA replication fork movement in Saccharomyces cerevisiae. Genetics 145: 891–902.
    • (1997) Genetics , vol.145 , pp. 891-902
    • Maniar, H.S.1    Wilson, R.2    Brill, S.J.3
  • 51
    • 79951857925 scopus 로고    scopus 로고
    • DNA end resection: Unraveling the tail
    • Mimitou, E. P., and L. S. Symington, 2011 DNA end resection: unraveling the tail. DNA Repair 10: 344–348.
    • (2011) DNA Repair , vol.10 , pp. 344-348
    • Mimitou, E.P.1    Symington, L.S.2
  • 52
    • 77956628136 scopus 로고    scopus 로고
    • Replication Protein A: Directing Traffic at the Intersection of Replication and Repair
    • (Landmark Ed.)
    • Oakley, G. G., and S. M. Patrick, 2010 Replication Protein A: Directing Traffic at the Intersection of Replication and Repair. Front. Biosci. (Landmark Ed.) 15:883–900.
    • (2010) Front. Biosci , vol.15 , pp. 883-900
    • Oakley, G.G.1    Patrick, S.M.2
  • 53
    • 0242417571 scopus 로고    scopus 로고
    • RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions
    • Oakley, G. G., S. M. Patrick, J. Yao, M. P. Carty, J. J. Turchi et al., 2003 RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry 42: 3255–3264.
    • (2003) Biochemistry , vol.42 , pp. 3255-3264
    • Oakley, G.G.1    Patrick, S.M.2    Yao, J.3    Carty, M.P.4    Turchi, J.J.5
  • 54
    • 68249120791 scopus 로고    scopus 로고
    • Physical interaction between Replication Protein A (RPA) and MRN: Involvement of RPA2 phosphorylation and the N-terminus of RPA1
    • Oakley, G. G., K. Tillison, S. A. Opiyo, J. G. Glanzer, J. M. Horn et al., 2009 Physical interaction between Replication Protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1. Biochemistry 48: 7473–7481.
    • (2009) Biochemistry , vol.48 , pp. 7473-7481
    • Oakley, G.G.1    Tillison, K.2    Opiyo, S.A.3    Glanzer, J.G.4    Horn, J.M.5
  • 55
    • 33845991538 scopus 로고    scopus 로고
    • RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint
    • Olson, E., C. J. Nievera, V. Klimovich, E. Fanning, and X. Wu, 2006 RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J. Biol. Chem. 281: 39517–39533.
    • (2006) J. Biol. Chem , vol.281 , pp. 39517-39533
    • Olson, E.1    Nievera, C.J.2    Klimovich, V.3    Fanning, E.4    Wu, X.5
  • 56
    • 20444392406 scopus 로고    scopus 로고
    • DNA damage induced hyperphosphorylation of Replication Protein A. 2. Characterization of DNA binding activity, protein interactions, and activity in DNA replication and repair
    • Patrick, S. M., G. G. Oakley, K. Dixon, and J. J. Turchi, 2005 DNA damage induced hyperphosphorylation of Replication Protein A. 2. Characterization of DNA binding activity, protein interactions, and activity in DNA replication and repair. Biochemistry 44: 8438–8448.
    • (2005) Biochemistry , vol.44 , pp. 8438-8448
    • Patrick, S.M.1    Oakley, G.G.2    Dixon, K.3    Turchi, J.J.4
  • 57
    • 24944575222 scopus 로고    scopus 로고
    • Signal transduction: How rad53 kinase is activated
    • Pellicioli, A., and M. Foiani, 2005 Signal transduction: how rad53 kinase is activated. Curr. Biol. CB 15: R769–R771.
    • (2005) Curr. Biol. CB , vol.15 , pp. R769-R771
    • Pellicioli, A.1    Foiani, M.2
  • 58
    • 0035105240 scopus 로고    scopus 로고
    • Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
    • Pellicioli, A., S. E. Lee, C. Lucca, M. Foiani, and J. E. Haber, 2001 Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7: 293–300.
    • (2001) Mol. Cell , vol.7 , pp. 293-300
    • Pellicioli, A.1    Lee, S.E.2    Lucca, C.3    Foiani, M.4    Haber, J.E.5
  • 59
    • 84869091913 scopus 로고    scopus 로고
    • Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair
    • Psakhye, I., and S. Jentsch, 2012 Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151: 807–820.
    • (2012) Cell , vol.151 , pp. 807-820
    • Psakhye, I.1    Jentsch, S.2
  • 60
    • 77953287126 scopus 로고    scopus 로고
    • MRN and the race to the break
    • Rupnik, A., N. F. Lowndes, and M. Grenon, 2010 MRN and the race to the break. Chromosoma 119: 115–135.
    • (2010) Chromosoma , vol.119 , pp. 115-135
    • Rupnik, A.1    Lowndes, N.F.2    Grenon, M.3
  • 61
    • 0035878060 scopus 로고    scopus 로고
    • The set1Delta mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of Replication Protein A that leads to transcriptional activation of repair genes
    • Schramke, V., H. Neecke, V. Brevet, Y. Corda, G. Lucchini et al., 2001 The set1Delta mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of Replication Protein A that leads to transcriptional activation of repair genes. Genes Dev. 15: 1845–1858.
    • (2001) Genes Dev , vol.15 , pp. 1845-1858
    • Schramke, V.1    Neecke, H.2    Brevet, V.3    Corda, Y.4    Lucchini, G.5
  • 62
    • 0347988057 scopus 로고    scopus 로고
    • RPA regulates telomerase action by providing Est1p access to chromosome ends
    • Schramke, V., P. Luciano, V. Brevet, S. Guillot, Y. Corda et al., 2004 RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat. Genet. 36: 46–54.
    • (2004) Nat. Genet , vol.36 , pp. 46-54
    • Schramke, V.1    Luciano, P.2    Brevet, V.3    Guillot, S.4    Corda, Y.5
  • 63
    • 77953932126 scopus 로고    scopus 로고
    • The role of RPA2 phosphorylation in homologous recombination in response to replication arrest
    • Shi, W., Z. Feng, J. Zhang, I. Gonzalez-Suarez, R. P. Vanderwaal et al., 2010 The role of RPA2 phosphorylation in homologous recombination in response to replication arrest. Carcinogenesis 31: 994–1002.
    • (2010) Carcinogenesis , vol.31 , pp. 994-1002
    • Shi, W.1    Feng, Z.2    Zhang, J.3    Gonzalez-Suarez, I.4    Vanderwaal, R.P.5
  • 64
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski, R. S., and P. Hieter, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 65
    • 77958498222 scopus 로고    scopus 로고
    • The ATMChk2 and ATR-Chk1 pathways in DNA damage signaling and cancer
    • Smith, J., L. M. Tho, N. Xu, and D. A. Gillespie, 2010 The ATMChk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv. Cancer Res. 108: 73–112.
    • (2010) Adv. Cancer Res , vol.108 , pp. 73-112
    • Smith, J.1    Tho, L.M.2    Xu, N.3    Gillespie, D.A.4
  • 66
    • 34547499407 scopus 로고    scopus 로고
    • Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases
    • Smolka, M. B., C. P. Albuquerque, S. Chen, and H. Zhou, 2007 Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl. Acad. Sci. USA 104: 10364–10369.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 10364-10369
    • Smolka, M.B.1    Albuquerque, C.P.2    Chen, S.3    Zhou, H.4
  • 67
    • 77958031723 scopus 로고    scopus 로고
    • The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates
    • Soulard, A., A. Cremonesi, S. Moes, F. Schutz, P. Jeno et al., 2010 The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 21: 3475–3486.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 3475-3486
    • Soulard, A.1    Cremonesi, A.2    Moes, S.3    Schutz, F.4    Jeno, P.5
  • 68
    • 78651296878 scopus 로고    scopus 로고
    • PhosphoGRID: A Database of Experimentally Verified in Vivo Protein Phosphorylation Sites from the Budding Yeast Saccharomyces cerevisiae
    • 2010
    • Stark, C., T.-C. Su, A. Breitkreutz, P. Lourenco, M. Dahabieh et al., 2010 2010 PhosphoGRID: A Database of Experimentally Verified in Vivo Protein Phosphorylation Sites from the Budding Yeast Saccharomyces cerevisiae. Database 2010: 1–13.
    • (2010) Database , pp. 1-13
    • Stark, C.1    Su, T.-C.2    Breitkreutz, A.3    Lourenco, P.4    Dahabieh, M.5
  • 69
    • 0030666945 scopus 로고    scopus 로고
    • Function of yeast Rad52 protein as a mediator between Replication Protein A and the Rad51 recombinase
    • Sung, P., 1997 Function of yeast Rad52 protein as a mediator between Replication Protein A and the Rad51 recombinase. J. Biol. Chem. 272: 28194–28197.
    • (1997) J. Biol. Chem , vol.272 , pp. 28194-28197
    • Sung, P.1
  • 70
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu, K., N. Sugawara, C. Chen, J. E. Haber, and R. D. Kolodner, 1998 Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148: 989–1005.
    • (1998) Genetics , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4    Kolodner, R.D.5
  • 71
    • 1342325347 scopus 로고    scopus 로고
    • Replication protein A (RPA) phosphorylation prevents RPA association with replication centers
    • Vassin, V. M., M. S. Wold, and J. A. Borowiec, 2004 Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol. Cell. Biol. 24: 1930–1943.
    • (2004) Mol. Cell. Biol , vol.24 , pp. 1930-1943
    • Vassin, V.M.1    Wold, M.S.2    Borowiec, J.A.3
  • 72
    • 70849110242 scopus 로고    scopus 로고
    • Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress
    • Vassin, V. M., R. W. Anantha, E. Sokolova, S. Kanner, and J. A. Borowiec, 2009 Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress. J. Cell Sci. 122: 4070–4080.
    • (2009) J. Cell Sci , vol.122 , pp. 4070-4080
    • Vassin, V.M.1    Anantha, R.W.2    Sokolova, E.3    Kanner, S.4    Borowiec, J.A.5
  • 75
    • 34948899943 scopus 로고    scopus 로고
    • Mre11–Rad50– Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template
    • Williams, R. S., J. S. Williams, and J. A. Tainer, 2007 Mre11–Rad50– Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem. Cell Biol. Biochim. Biol. Cell. 85: 509–520.
    • (2007) Biochem. Cell Biol. Biochim. Biol. Cell , vol.85 , pp. 509-520
    • Williams, R.S.1    Williams, J.S.2    Tainer, J.A.3
  • 76
    • 0030908093 scopus 로고    scopus 로고
    • Replication protein A: A heterotrimeric, singlestranded DNA-binding protein required for eukaryotic DNA metabolism
    • Wold, M. S., 1997 Replication protein A: a heterotrimeric, singlestranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66: 61–92.
    • (1997) Annu. Rev. Biochem , vol.66 , pp. 61-92
    • Wold, M.S.1
  • 77
    • 0023992803 scopus 로고
    • Purification and characterization of Replication Protein A, a cellular protein required for in vitro replication of simian virus 40 DNA
    • Wold, M. S., and T. Kelly, 1988 Purification and characterization of Replication Protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc. Natl. Acad. Sci. USA 85: 2523–2527.
    • (1988) Proc. Natl. Acad. Sci. USA , vol.85 , pp. 2523-2527
    • Wold, M.S.1    Kelly, T.2
  • 78
    • 0024537212 scopus 로고
    • Identification of cellular proteins required for simian virus 40 DNA replication
    • Wold, M. S., D. H. Weinberg, D. M. Virshup, J. J. Li, and T. J. Kelly, 1989 Identification of cellular proteins required for simian virus 40 DNA replication. J. Biol. Chem. 264: 2801–2809.
    • (1989) J. Biol. Chem , vol.264 , pp. 2801-2809
    • Wold, M.S.1    Weinberg, D.H.2    Virshup, D.M.3    Li, J.J.4    Kelly, T.J.5
  • 79
    • 27744588177 scopus 로고    scopus 로고
    • Preferential localization of hyperphosphorylated Replication Protein A to double-strand break repair and checkpoint complexes upon DNA damage
    • Wu, X., Z. Yang, Y. Liu, and Y. Zou, 2005 Preferential localization of hyperphosphorylated Replication Protein A to double-strand break repair and checkpoint complexes upon DNA damage. Biochem. J. 391: 473–480.
    • (2005) Biochem. J , vol.391 , pp. 473-480
    • Wu, X.1    Yang, Z.2    Liu, Y.3    Zou, Y.4
  • 80
    • 33745607897 scopus 로고    scopus 로고
    • Functions of human Replication Protein A (RPA): From DNA replication to DNA damage and stress responses
    • Zou, Y., Y. Liu, X. Wu, and S. M. Shell, 2006 Functions of human Replication Protein A (RPA): from DNA replication to DNA damage and stress responses. J. Cell. Physiol. 208: 267–273.
    • (2006) J. Cell. Physiol , vol.208 , pp. 267-273
    • Zou, Y.1    Liu, Y.2    Wu, X.3    Shell, S.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.