-
1
-
-
31544452808
-
The path forward for biofuels and biomaterials
-
Ragauskas A.J., et al. The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
-
(2006)
Science
, vol.311
, pp. 484-489
-
-
Ragauskas, A.J.1
-
2
-
-
77950551360
-
Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy's 'Top 10' revisited
-
Bozell J.J., Petersen G.R. Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy's 'Top 10' revisited. Green Chem. 2010, 12:539-554.
-
(2010)
Green Chem.
, vol.12
, pp. 539-554
-
-
Bozell, J.J.1
Petersen, G.R.2
-
3
-
-
84862019725
-
Fungal strategies for lignin degradation
-
Sigoillot, et al. Fungal strategies for lignin degradation. Adv. Bot. Res. 2012, 61:263-308.
-
(2012)
Adv. Bot. Res.
, vol.61
, pp. 263-308
-
-
Sigoillot1
-
4
-
-
29044440810
-
Applications of oxidoreductases: recent progress
-
Xu F. Applications of oxidoreductases: recent progress. Ind. Biotechnol. 2005, 1:38-50.
-
(2005)
Ind. Biotechnol.
, vol.1
, pp. 38-50
-
-
Xu, F.1
-
5
-
-
67649770563
-
Enzymatic delignification of plant cell wall: from nature to mill
-
Martinez A.T., et al. Enzymatic delignification of plant cell wall: from nature to mill. Curr. Opin. Biotechnol. 2009, 20:348-357.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 348-357
-
-
Martinez, A.T.1
-
6
-
-
84922956090
-
Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond
-
Wiley, A. Riva, W.-D. Fessner (Eds.)
-
Garcia-Ruiz, et al. Directed evolution of ligninolytic oxidoreductases: from functional expression to stabilization and beyond. Cascade Biocatalysis Integrating Stereoselective and Environmentally Friendly Reactions 2014, 1-18. Wiley. A. Riva, W.-D. Fessner (Eds.).
-
(2014)
Cascade Biocatalysis Integrating Stereoselective and Environmentally Friendly Reactions
, pp. 1-18
-
-
Garcia-Ruiz1
-
7
-
-
0037322616
-
Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution
-
Bulter T., et al. Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl. Environ. Microbiol. 2003, 69:987-995.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 987-995
-
-
Bulter, T.1
-
9
-
-
79955610447
-
Directed evolution of fungal laccases
-
Mate D., et al. Directed evolution of fungal laccases. Curr. Genomics 2011, 12:113-122.
-
(2011)
Curr. Genomics
, vol.12
, pp. 113-122
-
-
Mate, D.1
-
10
-
-
77956971213
-
Laboratory evolution of high redox potential laccases
-
Mate D., et al. Laboratory evolution of high redox potential laccases. Chem. Biol. 2010, 17:1030-1041.
-
(2010)
Chem. Biol.
, vol.17
, pp. 1030-1041
-
-
Mate, D.1
-
11
-
-
84857093916
-
Engineering platforms for directed evolution of laccase from Pycnoporus cinnabarinus
-
Camarero S., et al. Engineering platforms for directed evolution of laccase from Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 2012, 78:1370-1384.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 1370-1384
-
-
Camarero, S.1
-
12
-
-
77956961683
-
Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes
-
Cañas A.I., Camarero S. Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv. 2010, 28:694-705.
-
(2010)
Biotechnol. Adv.
, vol.28
, pp. 694-705
-
-
Cañas, A.I.1
Camarero, S.2
-
13
-
-
84868106496
-
Development of chimeric laccases by directed evolution
-
Pardo I., et al. Development of chimeric laccases by directed evolution. Biotechnol. Bioeng. 2012, 109:2978-2986.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 2978-2986
-
-
Pardo, I.1
-
14
-
-
70349263694
-
Plasticity of laccase generated by homeologous recombination in yeast
-
Cusano A.M., et al. Plasticity of laccase generated by homeologous recombination in yeast. FEBS J. 2009, 276:5471-5480.
-
(2009)
FEBS J.
, vol.276
, pp. 5471-5480
-
-
Cusano, A.M.1
-
15
-
-
44949138330
-
Development of new laccases by directed evolution: functional and computational analyses
-
Festa G., et al. Development of new laccases by directed evolution: functional and computational analyses. Proteins 2008, 72:25-34.
-
(2008)
Proteins
, vol.72
, pp. 25-34
-
-
Festa, G.1
-
16
-
-
79960205602
-
Selection of 'better performing' laccases through directed evolution
-
Miele A., et al. Selection of 'better performing' laccases through directed evolution. FEBS J. 2009, 276:377-378.
-
(2009)
FEBS J.
, vol.276
, pp. 377-378
-
-
Miele, A.1
-
17
-
-
76449112993
-
Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation
-
Miele A., et al. Random mutants of a Pleurotus ostreatus laccase as new biocatalysts for industrial effluents bioremediation. J. Appl. Microbiol. 2010, 108:998-1006.
-
(2010)
J. Appl. Microbiol.
, vol.108
, pp. 998-1006
-
-
Miele, A.1
-
18
-
-
84870051131
-
Accurate stabilities of laccase mutants predicted with a modified FoldX protocol
-
Christensen N.J., Kepp K.P. Accurate stabilities of laccase mutants predicted with a modified FoldX protocol. J. Chem. Inf. Model. 2012, 52:3028-3042.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 3028-3042
-
-
Christensen, N.J.1
Kepp, K.P.2
-
19
-
-
84055213590
-
Directed evolution of a temperature, peroxide and alkaline pH tolerant versatile peroxidase
-
Garcia-Ruiz E., et al. Directed evolution of a temperature, peroxide and alkaline pH tolerant versatile peroxidase. Biochem. J. 2012, 441:487-498.
-
(2012)
Biochem. J.
, vol.441
, pp. 487-498
-
-
Garcia-Ruiz, E.1
-
20
-
-
77951174887
-
Evolving thermostability in mutant libraries of ligninolytic oxidoreductases expressed in yeast
-
Garcia E., et al. Evolving thermostability in mutant libraries of ligninolytic oxidoreductases expressed in yeast. Microbiol. Cell Fact. 2010, 9:17.
-
(2010)
Microbiol. Cell Fact.
, vol.9
, pp. 17
-
-
Garcia, E.1
-
21
-
-
84909949748
-
Structural determinants of oxidative stabilization in an evolved versatile peroxidase
-
Gonzalez-Perez D., et al. Structural determinants of oxidative stabilization in an evolved versatile peroxidase. ACS Catal. 2014, 4:3891-3901.
-
(2014)
ACS Catal.
, vol.4
, pp. 3891-3901
-
-
Gonzalez-Perez, D.1
-
22
-
-
67649786142
-
Substrate oxidation sites in versatile peroxidases and other basidiomycete peroxidases
-
Ruiz-Dueñas F.J., et al. Substrate oxidation sites in versatile peroxidases and other basidiomycete peroxidases. J. Exp. Bot. 2009, 60:441-452.
-
(2009)
J. Exp. Bot.
, vol.60
, pp. 441-452
-
-
Ruiz-Dueñas, F.J.1
-
23
-
-
0042266271
-
2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulfide isomerase
-
2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulfide isomerase. Protein Eng. 2003, 16:423-428.
-
(2003)
Protein Eng.
, vol.16
, pp. 423-428
-
-
Miyazaki-Imamura, C.1
-
24
-
-
36048970828
-
2 stability
-
2 stability. J. Biotechnol. 2008, 133:110-115.
-
(2008)
J. Biotechnol.
, vol.133
, pp. 110-115
-
-
Ryu, K.1
-
25
-
-
45449084391
-
Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling
-
Ryu K., et al. Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling. J. Biotechnol. 2008, 135:241-246.
-
(2008)
J. Biotechnol.
, vol.135
, pp. 241-246
-
-
Ryu, K.1
-
26
-
-
84896761350
-
Oxidations catalyzed by fungal peroxygenases
-
Hofrichter M., Ullrich R. Oxidations catalyzed by fungal peroxygenases. Curr. Opin. Chem. Biol. 2014, 19:116-125.
-
(2014)
Curr. Opin. Chem. Biol.
, vol.19
, pp. 116-125
-
-
Hofrichter, M.1
Ullrich, R.2
-
27
-
-
84899861423
-
Directed evolution of unspecific peroxygenase from Agrocybe aegerita
-
Molina-Espeja P., et al. Directed evolution of unspecific peroxygenase from Agrocybe aegerita. Appl. Environ. Microbiol. 2014, 80:3496-3507.
-
(2014)
Appl. Environ. Microbiol.
, vol.80
, pp. 3496-3507
-
-
Molina-Espeja, P.1
-
28
-
-
85052409617
-
Chimeric signal peptides for the functional expression of aryl-alcohol oxidase in Saccharomyces cerevisiae
-
A. del Rio (Ed.)
-
Viña-Gonzalez J., et al. Chimeric signal peptides for the functional expression of aryl-alcohol oxidase in Saccharomyces cerevisiae. Proceedings of the 13th European Workshop on Lignocellulosic and Pulp 2014, 859-862. A. del Rio (Ed.).
-
(2014)
Proceedings of the 13th European Workshop on Lignocellulosic and Pulp
, pp. 859-862
-
-
Viña-Gonzalez, J.1
-
29
-
-
84876724015
-
Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production
-
Sygmund C., et al. Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microbiol. Cell Fact. 2013, 12:38.
-
(2013)
Microbiol. Cell Fact.
, vol.12
, pp. 38
-
-
Sygmund, C.1
-
30
-
-
84880991218
-
Biofuels cells for biomedical applications: colonizing the animal kingdom
-
Falk M., et al. Biofuels cells for biomedical applications: colonizing the animal kingdom. ChemPhysChem 2013, 14:204-2058.
-
(2013)
ChemPhysChem
, vol.14
, pp. 204-2058
-
-
Falk, M.1
-
31
-
-
84874306801
-
Blood tolerant laccase by directed evolution
-
Mate D.M., et al. Blood tolerant laccase by directed evolution. Chem. Biol. 2013, 20:223-231.
-
(2013)
Chem. Biol.
, vol.20
, pp. 223-231
-
-
Mate, D.M.1
-
32
-
-
84877834372
-
Functional expression of a blood tolerant laccase in Pichia pastoris
-
Mate D.M., et al. Functional expression of a blood tolerant laccase in Pichia pastoris. BMC Biotechnol. 2013, 13:38.
-
(2013)
BMC Biotechnol.
, vol.13
, pp. 38
-
-
Mate, D.M.1
-
33
-
-
84907904030
-
Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission
-
Falk M., et al. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission. PLoS ONE 2014, 9:e109104.
-
(2014)
PLoS ONE
, vol.9
-
-
Falk, M.1
-
34
-
-
84899516241
-
Bioelectrochemical oxidation of water
-
Pita M., et al. Bioelectrochemical oxidation of water. J. Am. Chem. Soc. 2014, 136:892-5895.
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 892-5895
-
-
Pita, M.1
-
35
-
-
34548605576
-
In vitro evolution of a fungal laccase in high concentrations of organic cosolvents
-
Zumarraga M., et al. In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chem. Biol. 2007, 14:1052-1064.
-
(2007)
Chem. Biol.
, vol.14
, pp. 1052-1064
-
-
Zumarraga, M.1
-
36
-
-
84876918439
-
Directed laccase evolution for improved ionic liquid resistance
-
Liu H., et al. Directed laccase evolution for improved ionic liquid resistance. Green Chem. 2013, 15:1348-1355.
-
(2013)
Green Chem.
, vol.15
, pp. 1348-1355
-
-
Liu, H.1
-
37
-
-
84877986407
-
Widening the pH activity profile of a fungal laccase by directed evolution
-
Torres-Salas, et al. Widening the pH activity profile of a fungal laccase by directed evolution. ChemBioChem 2013, 14:934-937.
-
(2013)
ChemBioChem
, vol.14
, pp. 934-937
-
-
Torres-Salas1
-
38
-
-
19944399387
-
Applications of ancestral protein reconstruction in understanding protein function: GFP-like proteins
-
Chang B.S.W., et al. Applications of ancestral protein reconstruction in understanding protein function: GFP-like proteins. Methods Enzymol. 2005, 395:652-670.
-
(2005)
Methods Enzymol.
, vol.395
, pp. 652-670
-
-
Chang, B.S.W.1
-
39
-
-
79955640296
-
Single-molecule paleoenzymology probes the chemistry of resurrected enzymes
-
Jimenez R.P., et al. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat. Struct. Mol. Biol. 2011, 18:592-597.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 592-597
-
-
Jimenez, R.P.1
-
40
-
-
84855870416
-
On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus
-
Hobbs J.K., et al. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Mol. Biol. Evol. 2011, 29:825-835.
-
(2011)
Mol. Biol. Evol.
, vol.29
, pp. 825-835
-
-
Hobbs, J.K.1
-
41
-
-
84871697209
-
Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication
-
Voordeckers K., et al. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biol. 2012, 10:e1001446.
-
(2012)
PLoS Biol.
, vol.10
-
-
Voordeckers, K.1
-
42
-
-
84857374810
-
Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates
-
Huang R., et al. Enzyme functional evolution through improved catalysis of ancestrally nonpreferred substrates. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2966-2971.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 2966-2971
-
-
Huang, R.1
-
43
-
-
80051669875
-
Directed evolution of sulfotransferases and paraoxonases by ancestral libraries
-
Alcolombri U., et al. Directed evolution of sulfotransferases and paraoxonases by ancestral libraries. J. Mol. Biol. 2011, 411:837-853.
-
(2011)
J. Mol. Biol.
, vol.411
, pp. 837-853
-
-
Alcolombri, U.1
-
44
-
-
84925884180
-
Engineering proteins by reconstructing evolutionary adaptive paths
-
Springer, E.M.J. Gillam (Ed.)
-
Cox V.E., Gaucher E.A. Engineering proteins by reconstructing evolutionary adaptive paths. Directed Evolution Library Creation: Methods and Protocols 2014, 353-363. Springer. E.M.J. Gillam (Ed.).
-
(2014)
Directed Evolution Library Creation: Methods and Protocols
, pp. 353-363
-
-
Cox, V.E.1
Gaucher, E.A.2
-
45
-
-
84900832991
-
Phenotypic comparison of consensus variants versus laboratory resurrections of Precambrian proteins
-
Risso V., et al. Phenotypic comparison of consensus variants versus laboratory resurrections of Precambrian proteins. Proteins 2014, 82:887-896.
-
(2014)
Proteins
, vol.82
, pp. 887-896
-
-
Risso, V.1
-
46
-
-
84862977387
-
The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes
-
Floudas D., et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 2012, 336:1715-1719.
-
(2012)
Science
, vol.336
, pp. 1715-1719
-
-
Floudas, D.1
-
47
-
-
84924617159
-
Engineering microbial surfaces to degrade lignocellulosic biomass
-
Huang G.L., et al. Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered 2014, 5:1-11.
-
(2014)
Bioengineered
, vol.5
, pp. 1-11
-
-
Huang, G.L.1
-
48
-
-
84864186953
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
-
Hong K.K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012, 69:2671-2690.
-
(2012)
Cell. Mol. Life Sci.
, vol.69
, pp. 2671-2690
-
-
Hong, K.K.1
Nielsen, J.2
-
49
-
-
84903978024
-
Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae
-
Gonzalez-Perez D., Alcalde M. Assembly of evolved ligninolytic genes in Saccharomyces cerevisiae. Bioengineered 2014, 5:254-263.
-
(2014)
Bioengineered
, vol.5
, pp. 254-263
-
-
Gonzalez-Perez, D.1
Alcalde, M.2
-
50
-
-
67650287695
-
In the light of directed evolution: pathways of adaptive protein evolution
-
Bloom J.D., Arnold F.H. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9995-10000.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 9995-10000
-
-
Bloom, J.D.1
Arnold, F.H.2
-
51
-
-
65249177164
-
Directed enzyme evolution: climbing fitness peaks one amino acid at a time
-
Tracewell C.A., Arnold F.H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 2009, 13:3-9.
-
(2009)
Curr. Opin. Chem. Biol.
, vol.13
, pp. 3-9
-
-
Tracewell, C.A.1
Arnold, F.H.2
-
52
-
-
56149121547
-
Directed enzyme evolution via small and effective neutral drift libraries
-
Gupta R.D., Tawfik D.S. Directed enzyme evolution via small and effective neutral drift libraries. Nat. Methods 2008, 5:939-942.
-
(2008)
Nat. Methods
, vol.5
, pp. 939-942
-
-
Gupta, R.D.1
Tawfik, D.S.2
-
53
-
-
84874023434
-
Enzyme engineering by targeted libraries
-
Goldsmith M., Tawfik D.S. Enzyme engineering by targeted libraries. Method Enzymol. 2013, 523:257-283.
-
(2013)
Method Enzymol.
, vol.523
, pp. 257-283
-
-
Goldsmith, M.1
Tawfik, D.S.2
-
54
-
-
35148850038
-
Steering directed protein evolution: strategies to manage combinatorial complexity of mutant libraries
-
Wong T.S., et al. Steering directed protein evolution: strategies to manage combinatorial complexity of mutant libraries. Environ. Microbiol. 2007, 9:2645-2659.
-
(2007)
Environ. Microbiol.
, vol.9
, pp. 2645-2659
-
-
Wong, T.S.1
-
55
-
-
21244497608
-
Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis
-
Friesner R.A., Guallar V. Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev. Phys. Chem. 2005, 56:389-427.
-
(2005)
Annu. Rev. Phys. Chem.
, vol.56
, pp. 389-427
-
-
Friesner, R.A.1
Guallar, V.2
-
56
-
-
84890013578
-
Is metagenomics resolving identification of functions in microbial communities?
-
Chistoserdova L. Is metagenomics resolving identification of functions in microbial communities?. Microbiol. Biotechnol. 2014, 7:1-4.
-
(2014)
Microbiol. Biotechnol.
, vol.7
, pp. 1-4
-
-
Chistoserdova, L.1
-
57
-
-
84874602326
-
Hyperstability and substrate promiscuity in laboratory resurrections of precambrian beta-lactamases
-
Risso V.A., et al. Hyperstability and substrate promiscuity in laboratory resurrections of precambrian beta-lactamases. J. Am. Chem. Soc. 2013, 135:2899-2902.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 2899-2902
-
-
Risso, V.A.1
-
58
-
-
84862731305
-
Saccharomyces cerevisiae in directed evolution: an efficient tool to improve enzymes
-
Gonzalez-Perez D., et al. Saccharomyces cerevisiae in directed evolution: an efficient tool to improve enzymes. Bioengineered 2012, 3:1-6.
-
(2012)
Bioengineered
, vol.3
, pp. 1-6
-
-
Gonzalez-Perez, D.1
-
59
-
-
79952123299
-
Opportunities for yeast metabolic engineering: Lessons from synthetic biology
-
Krivoruchko A., et al. Opportunities for yeast metabolic engineering: Lessons from synthetic biology. Biotechnol. J. 2011, 6:262-276.
-
(2011)
Biotechnol. J.
, vol.6
, pp. 262-276
-
-
Krivoruchko, A.1
-
60
-
-
51949107835
-
Progress in metabolic engineering of Saccharomyces cerevisiae
-
Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2008, 72:379-412.
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 379-412
-
-
Nevoigt, E.1
|