메뉴 건너뛰기




Volumn 493, Issue , 2013, Pages 57-67

Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach

Author keywords

Flow modeling; NAM model; Wavelet decomposition; WNN model

Indexed keywords

EFFICIENCY COEFFICIENT; FLOW MODELING; OPTIMUM ARCHITECTURES; RAINFALL-RUNOFF MODELING; RAINFALL-RUNOFF MODELS; ROOT MEAN SQUARED ERRORS; STANDARD NEURAL NETWORK MODELS; WAVELET NEURAL NETWORKS;

EID: 84877830096     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.04.016     Document Type: Article
Times cited : (104)

References (62)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390(1-2):85-91.
    • (2010) J. Hydrol. , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 3
    • 84877809094 scopus 로고
    • Hydrologic investigation and design in urban areas: A review, Australian Govt. Pub. Service. ISBN 0642501211.
    • Aitken, A.P., 1973. Hydrologic investigation and design in urban areas: A review, Australian Govt. Pub. Service. ISBN 0642501211.
    • (1973)
    • Aitken, A.P.1
  • 4
    • 84877833042 scopus 로고    scopus 로고
    • Wavelet Exploratory Analysis of the FTSE ALL SHARE Index. Preprint Submitted to Economics Letters University of Durham, Durham, UK.
    • Antonios, A., Constantine, E.V., 2003. Wavelet Exploratory Analysis of the FTSE ALL SHARE Index. Preprint Submitted to Economics Letters University of Durham, Durham, UK.
    • (2003)
    • Antonios, A.1    Constantine, E.V.2
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, I: preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • Artificial neural networks in hydrology, I: preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 6
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, II: hydrological applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • Artificial neural networks in hydrology, II: hydrological applications. J. Hydrol. Eng. 2000, 5(2):124-137. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 7
    • 33750417685 scopus 로고    scopus 로고
    • Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
    • Benaouda D., Murtagh F., Starck J.L., Renaud O. Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting. Neurocomputing 2006, 70:139-154.
    • (2006) Neurocomputing , vol.70 , pp. 139-154
    • Benaouda, D.1    Murtagh, F.2    Starck, J.L.3    Renaud, O.4
  • 8
    • 0345329512 scopus 로고    scopus 로고
    • Neural networks and reinforcement learning in control of water systems
    • Bhattacharya, B., Lobbrecht, A.H., Solomatine, D.P., 2003. Neural networks and reinforcement learning in control of water systems. J. Water Res. PL-ASCE 129, 458-465.
    • (2003) J. Water Res. PL-ASCE , vol.129 , pp. 458-465
    • Bhattacharya, B.1    Lobbrecht, A.H.2    Solomatine, D.P.3
  • 10
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth 2006, 31(18):1164-1171.
    • (2006) Phys Chem Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 11
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y.H., Chang F.J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367:125-137.
    • (2009) J. Hydrol. , vol.367 , pp. 125-137
    • Chen, Y.H.1    Chang, F.J.2
  • 12
    • 34250622460 scopus 로고    scopus 로고
    • Merging multiple precipitation sources for flash flood forecasting
    • Chiang Y.M., Hsu K.L., Chang F.J., Hong Y., Sorooshian S. Merging multiple precipitation sources for flash flood forecasting. J. Hydrol. 2007, 340:183-196.
    • (2007) J. Hydrol. , vol.340 , pp. 183-196
    • Chiang, Y.M.1    Hsu, K.L.2    Chang, F.J.3    Hong, Y.4    Sorooshian, S.5
  • 13
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Ci{dotless}ǧi{dotless}zoǧlu H.K. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 2003, 48(3):349-361.
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Ciǧizoǧlu, H.K.1
  • 14
    • 0034036224 scopus 로고    scopus 로고
    • Variability in subtropical Andean Argentinian Atuel river: a wavelet approach
    • Compagnucci R.H., Blanco S.A., Filiola M.A., Jacovkis P.M. Variability in subtropical Andean Argentinian Atuel river: a wavelet approach. Environmetrics. 2000, 11:251-269.
    • (2000) Environmetrics. , vol.11 , pp. 251-269
    • Compagnucci, R.H.1    Blanco, S.A.2    Filiola, M.A.3    Jacovkis, P.M.4
  • 15
    • 0000133685 scopus 로고
    • Daubechies Ten lectures on wavelets. 1994
    • Daubechies Ten lectures on wavelets. 1994. CBMS SIAM 1992, 61:194-202.
    • (1992) CBMS SIAM , vol.61 , pp. 194-202
  • 16
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson D.W., Wilby R. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal 1998, 43(1):47-65.
    • (1998) Hydrological Sciences Journal , vol.43 , Issue.1 , pp. 47-65
    • Dawson, D.W.1    Wilby, R.2
  • 18
    • 0004007861 scopus 로고
    • Computer Simulation Techniques In Hydrology
    • Elsevier: New York, 239-252.
    • Fleming, G., 1975. Computer Simulation Techniques In Hydrology. Elsevier: New York, pp. 18-53, 239-252.
    • (1975) , pp. 18-53
    • Fleming, G.1
  • 19
    • 0031399328 scopus 로고    scopus 로고
    • Multiscale detection of abrupt climate changes: application to the river nile flood
    • Fraedrich K., Jiang J., Gerstengarbe F.-W., Werner P.C. Multiscale detection of abrupt climate changes: application to the river nile flood. Int. J. Climatol. 1997, 17(12):1301-1315.
    • (1997) Int. J. Climatol. , vol.17 , Issue.12 , pp. 1301-1315
    • Fraedrich, K.1    Jiang, J.2    Gerstengarbe, F.-W.3    Werner, P.C.4
  • 20
    • 0037114996 scopus 로고    scopus 로고
    • Use of wavelet transform for temporal characterisation of remote watersheds
    • Gaucherel C. Use of wavelet transform for temporal characterisation of remote watersheds. J. Hydrol. 2002, 269(3-4):101-121.
    • (2002) J. Hydrol. , vol.269 , Issue.3-4 , pp. 101-121
    • Gaucherel, C.1
  • 22
    • 0000562670 scopus 로고
    • Decomposition of Hardy functions into square integrable wavelets of constant shape
    • Grossmann A., Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15(4):723-736.
    • (1984) SIAM J. Math. Anal. , vol.15 , Issue.4 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 23
    • 0024903928 scopus 로고
    • Continuous and discrete wavelet transforms
    • Heil C.E., Walnut D.F. Continuous and discrete wavelet transforms. SIAM Rev. 1989, 31(4):628-666.
    • (1989) SIAM Rev. , vol.31 , Issue.4 , pp. 628-666
    • Heil, C.E.1    Walnut, D.F.2
  • 24
    • 0002300771 scopus 로고
    • Some potential applications of artificial neural networks in financial management
    • Hsieh, C., 1993. Some potential applications of artificial neural networks in financial management. J. Syst. Manage. 12-15.
    • (1993) J. Syst. Manage. , pp. 12-15
    • Hsieh, C.1
  • 25
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta V.H., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31(10):2517-2530.
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, V.H.2    Sorooshian, S.3
  • 26
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S.K., Das, A., Srivastava, D.K., 1999. Application of ANN for reservoir inflow prediction and operation. J. Water Res. PL-ASCE 125, 263-271.
    • (1999) J. Water Res. PL-ASCE , vol.125 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 27
    • 4444228763 scopus 로고    scopus 로고
    • Analysis of soil water retention data using artificial neural networks
    • Jain S.K., Singh V.P., van Genuchten M.Th. Analysis of soil water retention data using artificial neural networks. J. Hydrol. Eng. ASCE 2004, 9:415-420.
    • (2004) J. Hydrol. Eng. ASCE , vol.9 , pp. 415-420
    • Jain, S.K.1    Singh, V.P.2    van Genuchten, M.3
  • 28
    • 84877809491 scopus 로고    scopus 로고
    • Role of coherent structure in the stochastic dynamic variability of precipitation
    • Kumar P. Role of coherent structure in the stochastic dynamic variability of precipitation. J. Geophys. Res. 1996, 101:393-404.
    • (1996) J. Geophys. Res. , vol.101 , pp. 393-404
    • Kumar, P.1
  • 30
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relations for karstic springs: Part II. Continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat D., Ababou R., Mangin A. Rainfall-runoff relations for karstic springs: Part II. Continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238:149-178.
    • (2000) J. Hydrol. , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 31
    • 0037967293 scopus 로고    scopus 로고
    • Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake
    • Lafrenière M., Sharp M. Wavelet analysis of inter-annual variability in the runoff regimes of glacial and nival stream catchments, Bow Lake. Alberta. Hydrol. Process. 2003, 17:1093-1118.
    • (2003) Alberta. Hydrol. Process. , vol.17 , pp. 1093-1118
    • Lafrenière, M.1    Sharp, M.2
  • 32
    • 33646564705 scopus 로고    scopus 로고
    • Identification of Homogeneous Regions for. Regional Frequency Analysis Using the Self-organizing Map
    • Lin G.F., Chen L.H. Identification of Homogeneous Regions for. Regional Frequency Analysis Using the Self-organizing Map. J. Hydrol. 2006, 324(1-9):1-9.
    • (2006) J. Hydrol. , vol.324 , Issue.1-9 , pp. 1-9
    • Lin, G.F.1    Chen, L.H.2
  • 33
    • 0034739246 scopus 로고    scopus 로고
    • Automatic calibration of a conceptual rainfall-runoff model using multiple objectives
    • Madsen H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J. Hydrol. 2000, 235:276-288.
    • (2000) J. Hydrol. , vol.235 , pp. 276-288
    • Madsen, H.1
  • 34
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Software 2000, 15:101-124.
    • (2000) Environ. Modell. Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 35
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resources variables in river systems: current status and future directions
    • Maier H.R., Jain A., Dandy G.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resources variables in river systems: current status and future directions. Env. Mod. Softw. 2010, 25:891-909. 10.1016/j.envsoft.2010.02.003.
    • (2010) Env. Mod. Softw. , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 38
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak P.C., Satyaji Rao Y.R., Sudheer K.P. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour. Manage 2006, 20:77-90.
    • (2006) Water Resour. Manage , vol.20 , pp. 77-90
    • Nayak, P.C.1    Satyaji Rao, Y.R.2    Sudheer, K.P.3
  • 39
    • 84877797508 scopus 로고    scopus 로고
    • NCIWRD, Integrated water Resource Development: A Plan for Action. Report of the National Commission for Integrated Water Resource Development (NCIWRD), Ministry of Water Resources, Government of India.
    • NCIWRD, 1999. Integrated water Resource Development: A Plan for Action. Report of the National Commission for Integrated Water Resource Development (NCIWRD), vol. 1, Ministry of Water Resources, Government of India.
    • (1999) , vol.1
  • 40
    • 0015573240 scopus 로고
    • Numerical simulation of the rainfall-runoff process on a daily basis
    • Nielsen S.A., Hansen E. Numerical simulation of the rainfall-runoff process on a daily basis. Nord. Hydrol. 1973, 4:171-190.
    • (1973) Nord. Hydrol. , vol.4 , pp. 171-190
    • Nielsen, S.A.1    Hansen, E.2
  • 41
    • 0034642954 scopus 로고    scopus 로고
    • Understanding of runoff processes using a watershed model - a case study in Western Ghats in South India
    • Putty M.R.Y., Prasad R. Understanding of runoff processes using a watershed model - a case study in Western Ghats in South India. J. Hydrol. 2000, 228:215-227.
    • (2000) J. Hydrol. , vol.228 , pp. 215-227
    • Putty, M.R.Y.1    Prasad, R.2
  • 42
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 43
    • 0034036602 scopus 로고    scopus 로고
    • Coherent modes in multiscale variability of streamflow over the United States
    • Saco P., Kumar P. Coherent modes in multiscale variability of streamflow over the United States. Water Resour. Res. 2000, 36. 10.1029/1999WR900345.
    • (2000) Water Resour. Res. , vol.36
    • Saco, P.1    Kumar, P.2
  • 44
    • 0032215640 scopus 로고    scopus 로고
    • Relationship between dynamic response characteristics and physical descriptors of catchments in England and Wales
    • Sefton C.E.M., Howarth S.M. Relationship between dynamic response characteristics and physical descriptors of catchments in England and Wales. J. Hydrol. 1998, 211:1-15.
    • (1998) J. Hydrol. , vol.211 , pp. 1-15
    • Sefton, C.E.M.1    Howarth, S.M.2
  • 45
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall runoff modeling
    • Shamseldin A.Y. Application of a neural network technique to rainfall runoff modeling. J. Hydrol. 1997, 199:272-294.
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 46
    • 0029656894 scopus 로고    scopus 로고
    • Use of artificial neural network in transient drainage design
    • Shukla M.B., Kok R., Prasher S.O., Clark G., Larcroix R. Use of artificial neural network in transient drainage design. Trans. ASAE 1996, 39(1):119-124.
    • (1996) Trans. ASAE , vol.39 , Issue.1 , pp. 119-124
    • Shukla, M.B.1    Kok, R.2    Prasher, S.O.3    Clark, G.4    Larcroix, R.5
  • 47
    • 0003043663 scopus 로고
    • Watershed Modeling
    • Water Resources Publications, Littleton, Colo. V.P. Singh (Ed.)
    • Singh V.P. Watershed Modeling. In Computer Models of Watershed Hydrology 1995, 1-22. Water Resources Publications, Littleton, Colo. V.P. Singh (Ed.).
    • (1995) In Computer Models of Watershed Hydrology , pp. 1-22
    • Singh, V.P.1
  • 48
    • 0032003006 scopus 로고    scopus 로고
    • Stream flow characterization and feature detection using a discrete wavelet transform
    • Smith L.C., Turcotte D., Isacks B.L. Stream flow characterization and feature detection using a discrete wavelet transform. Hydrol. Process. 1998, 12:233-249.
    • (1998) Hydrol. Process. , vol.12 , pp. 233-249
    • Smith, L.C.1    Turcotte, D.2    Isacks, B.L.3
  • 49
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16:1325-1330.
    • (2002) Hydrol. Process. , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 51
    • 79952716268 scopus 로고    scopus 로고
    • Predicting mean and bankfull discharge from channel cross-sectional area by expert and regression methods
    • Tayfur G., Singh V.P. Predicting mean and bankfull discharge from channel cross-sectional area by expert and regression methods. Water Resour. Manage 2011, 25(5):1253-1267.
    • (2011) Water Resour. Manage , vol.25 , Issue.5 , pp. 1253-1267
    • Tayfur, G.1    Singh, V.P.2
  • 52
    • 84877835336 scopus 로고    scopus 로고
    • Calibration and validation of conceptual distributed function model for an Indian catchment
    • Venkatesh B. Calibration and validation of conceptual distributed function model for an Indian catchment. J. Hydraul. 1998, 4(1):34-48.
    • (1998) J. Hydraul. , vol.4 , Issue.1 , pp. 34-48
    • Venkatesh, B.1
  • 53
    • 0039006394 scopus 로고    scopus 로고
    • Application of physically based rainfall-runoff model to Malaprabha catchment
    • Venktesh B., Jain M.K. Application of physically based rainfall-runoff model to Malaprabha catchment. J. Inst. Engrs. (India) 2000, 81:127-132.
    • (2000) J. Inst. Engrs. (India) , vol.81 , pp. 127-132
    • Venktesh, B.1    Jain, M.K.2
  • 54
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang D., Ding J. Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 2003, 1(1):67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, D.1    Ding, J.2
  • 55
    • 0022835936 scopus 로고
    • Estimation of parameters of the discrete, linear, input-output estimation model
    • Wang G.T., Yu Y.S. Estimation of parameters of the discrete, linear, input-output estimation model. J. Hydrol. 1986, 85:15-30.
    • (1986) J. Hydrol. , vol.85 , pp. 15-30
    • Wang, G.T.1    Yu, Y.S.2
  • 56
    • 84855462883 scopus 로고    scopus 로고
    • Simulating and predicting river discharge time series using a wavelet-neural network hybrid modeling approach
    • Wei S., Song J., Khan N.I. Simulating and predicting river discharge time series using a wavelet-neural network hybrid modeling approach. Hydrol. Process. 2011, 10.1002/hyp.8227.
    • (2011) Hydrol. Process.
    • Wei, S.1    Song, J.2    Khan, N.I.3
  • 57
    • 0031908080 scopus 로고    scopus 로고
    • A neural network approach to multiobjective optimization for water quality management in a river basin
    • Wen C.G., Lee C.S. A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resources Research 1998, 34:427-436.
    • (1998) Water Resources Research , vol.34 , pp. 427-436
    • Wen, C.G.1    Lee, C.S.2
  • 58
    • 0025635525 scopus 로고
    • Connectionist non parametric regression: multi layer feed forward networks can learn arbitrary mappings
    • White H. Connectionist non parametric regression: multi layer feed forward networks can learn arbitrary mappings. Neural network 1990, 3:535-549.
    • (1990) Neural network , vol.3 , pp. 535-549
    • White, H.1
  • 59
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby R.L., Abrahart R.J., Dawson C.W. Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrolog. Sci. J. 2003, 48(2):163-181.
    • (2003) Hydrolog. Sci. J. , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 60
    • 0030512054 scopus 로고    scopus 로고
    • Application of artificial neural network to land drainage engineering
    • Yang C.C., Larcroix R., Prasher S.O. Application of artificial neural network to land drainage engineering. Trans. ASAE 1996, 39:525-533.
    • (1996) Trans. ASAE , vol.39 , pp. 525-533
    • Yang, C.C.1    Larcroix, R.2    Prasher, S.O.3
  • 61
    • 0032122269 scopus 로고    scopus 로고
    • The use of back-propagation neural networks for the simulation and analysis of time-series data in subsurface drainage system
    • Yang C.C., Larcroix R., Prasher S.O. The use of back-propagation neural networks for the simulation and analysis of time-series data in subsurface drainage system. Trans. ASAE 1998, 41:1181-1187.
    • (1998) Trans. ASAE , vol.41 , pp. 1181-1187
    • Yang, C.C.1    Larcroix, R.2    Prasher, S.O.3
  • 62
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand C.M., Burn D.H., Simonovic S.P. Short term streamflow forecasting using artificial neural networks. J. Hydrol. 1999, 214:32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.