메뉴 건너뛰기




Volumn 113, Issue 2, 2014, Pages 494-502

Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions

Author keywords

95 Confidence ellipse area; EEG signal classification; Electroencephalogram (EEG) signal; Empirical mode decomposition; Epilepsy; Second order difference plot

Indexed keywords

95% CONFIDENCE ELLIPSE AREA; EEG SIGNAL CLASSIFICATION; ELECTROENCEPHALOGRAM SIGNALS; EMPIRICAL MODE DECOMPOSITION; EPILEPSY; SECOND ORDERS;

EID: 84892783589     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2013.11.014     Document Type: Article
Times cited : (251)

References (43)
  • 1
    • 33846638294 scopus 로고    scopus 로고
    • Seizure prediction: the long and winding road
    • Mormann F., Andrzejak R.G., Elger C.E., Lehnertz K. Seizure prediction: the long and winding road. Brain 2007, 130(2):314-333.
    • (2007) Brain , vol.130 , Issue.2 , pp. 314-333
    • Mormann, F.1    Andrzejak, R.G.2    Elger, C.E.3    Lehnertz, K.4
  • 2
    • 0028494938 scopus 로고
    • An algorithm to separate nonstationary part of a signal using mid-prediction filter
    • September
    • Ray G.C. An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing 1994, 42(9):2276-2279. September.
    • (1994) IEEE Transactions on Signal Processing , vol.42 , Issue.9 , pp. 2276-2279
    • Ray, G.C.1
  • 3
    • 0032006582 scopus 로고    scopus 로고
    • A new interpretation of nonlinear energy operator and its efficacy in spike detection
    • February
    • Mukhopadhyay S., Ray G.C. A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Transactions on Biomedical Engineering 1998, 45(2):180-187. February.
    • (1998) IEEE Transactions on Biomedical Engineering , vol.45 , Issue.2 , pp. 180-187
    • Mukhopadhyay, S.1    Ray, G.C.2
  • 4
    • 0038238304 scopus 로고    scopus 로고
    • Adaptive epileptic seizure prediction system
    • May
    • Iasemidis L.D., et al. Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering 2003, 50(5):616-627. May.
    • (2003) IEEE Transactions on Biomedical Engineering , vol.50 , Issue.5 , pp. 616-627
    • Iasemidis, L.D.1
  • 5
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • December
    • Srinivasan V., Eswaran C., Sriraam N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. Journal of Medical Systems 2005, 29(6):647-660. December.
    • (2005) Journal of Medical Systems , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 6
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • April
    • Polat K., Günes S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation 2007, 187(2):1017-1026. April.
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Günes, S.2
  • 7
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • August
    • Altunay S., Telatar Z., Erogul O. Epileptic EEG detection using the linear prediction error energy. Expert System with Applications 2010, 37(8):5661-5665. August.
    • (2010) Expert System with Applications , vol.37 , Issue.8 , pp. 5661-5665
    • Altunay, S.1    Telatar, Z.2    Erogul, O.3
  • 8
    • 84886528449 scopus 로고    scopus 로고
    • Classification of ictal and seizure-free EEG signals using fractional linear prediction
    • January
    • Joshi V., Pachori R.B., Vijesh A. Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control 2014, 9:1-5. January.
    • (2014) Biomedical Signal Processing and Control , vol.9 , pp. 1-5
    • Joshi, V.1    Pachori, R.B.2    Vijesh, A.3
  • 9
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • Article ID 80510, 13 pages
    • Tzallas A.T., Tsipouras M.G., Fotiadis D.I. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience 2007, vol. 2007, Article ID 80510, 13 pages.
    • (2007) Computational Intelligence and Neuroscience , vol.2007
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 11
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • February
    • Adeli H., Zhou Z., Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods 2003, 123(1):69-87. February.
    • (2003) Journal of Neuroscience Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 12
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • May
    • Khan Y.U., Gotman J. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clinical Neurophysiology 2003, 114(5):898-908. May.
    • (2003) Clinical Neurophysiology , vol.114 , Issue.5 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 13
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • September
    • Ghosh-Dastidar S., Adeli H., Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering 2007, 54(9):1545-1551. September.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.9 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 14
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • March
    • Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications 2009, 36(2):2027-2036. March.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 2027-2036
    • Ocak, H.1
  • 15
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
    • February
    • Adeli H., Ghosh-Dastidar S., Dadmehr N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering 2007, 54(2):205-211. February.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , Issue.2 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 16
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • May
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications 2007, 32(4):1084-1093. May.
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 17
    • 84878512713 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform
    • June
    • Uthayakumar R., Easwaramoorthy D. Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals 2013, 21(2). June.
    • (2013) Fractals , vol.21 , Issue.2
    • Uthayakumar, R.1    Easwaramoorthy, D.2
  • 18
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks
    • October
    • Guo L., Rivero D., Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. Journal of Neuroscience Methods 2010, 193(1):156-163. October.
    • (2010) Journal of Neuroscience Methods , vol.193 , Issue.1 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 19
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signal classification
    • October
    • Güler N.F., Übeyli E.D., Güler I. Recurrent neural networks employing Lyapunov exponents for EEG signal classification. Expert Systems with Applications 2005, 29(3):506-514. October.
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 20
    • 71749109171 scopus 로고    scopus 로고
    • Lyapunov exponents/probabilistic neural networks for analysis of EEG signals
    • March
    • Übeyli E.D. Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications 2010, 37(2):985-992. March.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 985-992
    • Übeyli, E.D.1
  • 21
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • August
    • Lehnertz K., Elger C.E. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalography and Clinical Neurophysiology 1995, 95(2):108-117. August.
    • (1995) Electroencephalography and Clinical Neurophysiology , vol.95 , Issue.2 , pp. 108-117
    • Lehnertz, K.1    Elger, C.E.2
  • 22
    • 0031264147 scopus 로고    scopus 로고
    • Use of the fractal dimension for the analysis of electroencephalographic time series
    • November
    • Accardo A., Affinito M., Carrozzi M., Bouquet F. Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics 1997, 77(5):339-350. November.
    • (1997) Biological Cybernetics , vol.77 , Issue.5 , pp. 339-350
    • Accardo, A.1    Affinito, M.2    Carrozzi, M.3    Bouquet, F.4
  • 24
    • 77954612893 scopus 로고    scopus 로고
    • Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
    • Article ID 853434, 15 pages
    • Liang S.F., Wang H.C., Chang W.L. Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection. EURASIP Journal on Advances in Signal Processing 2010, vol. 2010, Article ID 853434, 15 pages.
    • (2010) EURASIP Journal on Advances in Signal Processing , vol.2010
    • Liang, S.F.1    Wang, H.C.2    Chang, W.L.3
  • 25
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang N.E., et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A 1998, 454:903-995.
    • (1998) Proceedings of the Royal Society of London A , vol.454 , pp. 903-995
    • Huang, N.E.1
  • 26
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • Article ID 293056, 5 pages
    • Pachori R.B. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Research Letters in Signal Processing 2008, 2008. Article ID 293056, 5 pages.
    • (2008) Research Letters in Signal Processing , vol.2008
    • Pachori, R.B.1
  • 27
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing Hilbert-Huang transform
    • December
    • Oweis R.J., Abdulhay E.W. Seizure classification in EEG signals utilizing Hilbert-Huang transform. BioMedical Engineering OnLine 2011, 10:38. December.
    • (2011) BioMedical Engineering OnLine , vol.10 , pp. 38
    • Oweis, R.J.1    Abdulhay, E.W.2
  • 28
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • December
    • Pachori R.B., Bajaj V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine 2011, 104(3):373-381. December.
    • (2011) Computer Methods and Programs in Biomedicine , vol.104 , Issue.3 , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 30
    • 84878902261 scopus 로고    scopus 로고
    • Feature extraction and recognition of ictal EEG using EMD and SVM
    • August
    • Li S., et al. Feature extraction and recognition of ictal EEG using EMD and SVM. Computers in Biology and Medicine 2013, 43(7):807-816. August.
    • (2013) Computers in Biology and Medicine , vol.43 , Issue.7 , pp. 807-816
    • Li, S.1
  • 31
    • 84880995411 scopus 로고    scopus 로고
    • Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals
    • March
    • Bajaj V., Pachori R.B. Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomedical Engineering Letters 2013, 3(1):17-21. March.
    • (2013) Biomedical Engineering Letters , vol.3 , Issue.1 , pp. 17-21
    • Bajaj, V.1    Pachori, R.B.2
  • 32
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEG signals using empirical mode decomposition
    • November
    • Bajaj V., Pachori R.B. Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine 2012, 16(6):1135-1142. November.
    • (2012) IEEE Transactions on Information Technology in Biomedicine , vol.16 , Issue.6 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.B.2
  • 35
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Article ID 061907
    • Andrzejak R.G., et al. Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Physical Review E 2001, vol. 64, Article ID 061907.
    • (2001) Physical Review E , vol.64
    • Andrzejak, R.G.1
  • 36
    • 36749100099 scopus 로고    scopus 로고
    • Analysis of eyes open, eye closed EEG signals using second-order diffference plot
    • December
    • Thuraisingham R.A., Tran Y., Boord P., Craig A. Analysis of eyes open, eye closed EEG signals using second-order diffference plot. Medical & Biological Engineering & Computing 2007, 45(12):1243-1249. December.
    • (2007) Medical & Biological Engineering & Computing , vol.45 , Issue.12 , pp. 1243-1249
    • Thuraisingham, R.A.1    Tran, Y.2    Boord, P.3    Craig, A.4
  • 38
    • 0030249034 scopus 로고    scopus 로고
    • Measures of postural steadiness: differences between healthy young and elderly adults
    • September
    • Prieto T.E., et al. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Transactions on Biomedical Engineering 1996, 43(9):956-966. September.
    • (1996) IEEE Transactions on Biomedical Engineering , vol.43 , Issue.9 , pp. 956-966
    • Prieto, T.E.1
  • 39
    • 74049101116 scopus 로고    scopus 로고
    • Study of age-related changes in postural control during quiet standing through linear discriminant analysis
    • November
    • Cavalheiro G.L., et al. Study of age-related changes in postural control during quiet standing through linear discriminant analysis. BioMedical Engineering OnLine 2009, 8(35). November.
    • (2009) BioMedical Engineering OnLine , vol.8 , Issue.35
    • Cavalheiro, G.L.1
  • 41
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Computation 1991, 4:415-447.
    • (1991) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.