메뉴 건너뛰기




Volumn 38, Issue 9, 2011, Pages 10751-10758

Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection

Author keywords

ECG; Genetic algorithm; Model selection; Partial seizure; Support vector machines; Wavelet kernel function

Indexed keywords

ACCURACY RATE; CLASSIFICATION ACCURACY; CLASSIFICATION TECHNIQUE; DATA SETS; ECG; EVOLUTIONARY MODELS; INPUT FEATURES; LYAPUNOV EXPONENT; MASSACHUSETTS INSTITUTE OF TECHNOLOGY; MODEL SELECTION; PARTIAL EPILEPSY; PARTIAL SEIZURE; SEIZURE DETECTION; STATISTICAL LEARNING THEORY; WAVELET ENTROPIES; WAVELET KERNEL FUNCTION;

EID: 79955594660     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.01.087     Document Type: Article
Times cited : (61)

References (24)
  • 2
    • 79955588456 scopus 로고    scopus 로고
    • Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM
    • E. Avci Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm-support vector machines: HGASVM Expert Systems with Applications 2008 1 12
    • (2008) Expert Systems with Applications , pp. 1-12
    • Avci, E.1
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Mining and Knowledge Discovery 2 1998 121 167 (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 69949137742 scopus 로고    scopus 로고
    • Wavelet support vector machine with universal approximation and its application
    • Cui, W. Z. (2006). Wavelet support vector machine with universal approximation and its application. In IEEE information theory workshop (pp. 340-364).
    • (2006) IEEE Information Theory Workshop , pp. 340-364
    • Cui, W.Z.1
  • 7
    • 3242764614 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction
    • I. Güler, and E.D. Übeyli Application of adaptive neuro-fuzzy inference system for detection of electrocardiographic changes in patients with partial epilepsy using feature extraction Expert Systems with Applications 27 3 2004 323 330
    • (2004) Expert Systems with Applications , vol.27 , Issue.3 , pp. 323-330
    • Güler, I.1    Übeyli, E.D.2
  • 8
    • 33745184412 scopus 로고    scopus 로고
    • An expert system for detection of electrocardiographic changes in patients with partial epilepsy using wavelet-based neural networks
    • DOI 10.1111/j.1468-0394.2005.00295.x
    • I. Güler, and E.D. Übeyli An expert system for detection of electrocardiographic changes in patients with partial epilepsy using wavelet-based neural networks Expert Systems with Application 22 2 2005 62 71 (Pubitemid 43906634)
    • (2005) Expert Systems , vol.22 , Issue.2 , pp. 62-71
    • Guler, I.1    Ubeyli, E.D.2
  • 9
    • 0037176807 scopus 로고    scopus 로고
    • Ictal heart rate differentiates epileptic from non-epileptic seizures
    • J. Hirsch, and C.O.a.L. Ictal heart rate differentiates epileptic from non-epileptic seizures Neurology 58 2002 636 638
    • (2002) Neurology , vol.58 , pp. 636-638
    • Hirsch, J.1    O, A.L.C.2
  • 10
    • 33846358482 scopus 로고    scopus 로고
    • Sudden unexpected death in epilepsy: A search for risk factors
    • DOI 10.1016/j.yebeh.2006.11.010, PII S1525505006004641
    • N. Hitiris, S. Suratman, K. Kelly, L.J. Stephen, G.J. Sills, and M.J. Brodie Sudden unexpected death in epilepsy: A search for risk factors Epilepsy & Behavior 10 2007 138 141 (Pubitemid 46132182)
    • (2007) Epilepsy and Behavior , vol.10 , Issue.1 , pp. 138-141
    • Hitiris, N.1    Suratman, S.2    Kelly, K.3    Stephen, L.J.4    Sills, G.J.5    Brodie, M.J.6
  • 11
    • 33745842899 scopus 로고    scopus 로고
    • Finding the missing link between ictal bradyarrhythmia, ictal asystole, and sudden unexpected death in epilepsy
    • DOI 10.1016/j.yebeh.2006.05.009, PII S1525505006002034
    • H. Leung, P. Kwan, and C.E. Elger Finding the missing link between ictal bradyarrhythmia, ictal asystole, and sudden unexpected death in epilepsy Epilepsy & Behavior 13 2006 19 30 (Pubitemid 44028772)
    • (2006) Epilepsy and Behavior , vol.9 , Issue.1 , pp. 19-30
    • Leung, H.1    Kwan, P.2    Elger, C.E.3
  • 12
    • 0037344062 scopus 로고    scopus 로고
    • Electrocardiographic changes at the onset of epileptic seizures
    • DOI 10.1046/j.1528-1157.2003.34702.x
    • F. Leutmezer, C. Schernthaner, S. Lurger, K. Pötzelberger, and C. Baumgartner Electrocardiographic changes at the onset of epileptic seizures Epilepsia 44 3 2003 348 354 (Pubitemid 36343765)
    • (2003) Epilepsia , vol.44 , Issue.3 , pp. 348-354
    • Leutmezer, F.1    Schernthaner, C.2    Lurger, S.3    Potzelberger, K.4    Baumgartner, C.5
  • 13
    • 39549103666 scopus 로고    scopus 로고
    • Application of fractal theory in analysis of human electroencephalographic signals
    • P. Paramanathan, and R. Uthayakumar Application of fractal theory in analysis of human electroencephalographic signals Computers in Biology and Medicine 38 2008 372 378
    • (2008) Computers in Biology and Medicine , vol.38 , pp. 372-378
    • Paramanathan, P.1    Uthayakumar, R.2
  • 14
  • 15
    • 79955573567 scopus 로고    scopus 로고
    • Applying wavelet entropy principle in fault classification
    • S.EL. Safty, and A.E.-Z. Applying wavelet entropy principle in fault classification Expert Systems with Applications 30 2008 1307 6884
    • (2008) Expert Systems with Applications , vol.30 , pp. 1307-6884
    • Safty, S.E.L.1
  • 16
    • 0037145626 scopus 로고    scopus 로고
    • Feature extraction from ECG signals using wavelet transforms for disease diagnostics
    • S.C. Saxena, V. Kumar, and S.T. Hamde Feature extraction from ECG signals using wavelet transforms for disease diagnostics International Journal of Systems Science 33 13 2002 1073 1085
    • (2002) International Journal of Systems Science , vol.33 , Issue.13 , pp. 1073-1085
    • Saxena, S.C.1    Kumar, V.2    Hamde, S.T.3
  • 17
    • 2342600567 scopus 로고    scopus 로고
    • Cardiorespiratory findings in sudden unexplained/unexpected death in epilepsy (SUDEP)
    • DOI 10.1016/j.eplepsyres.2004.03.008, PII S092012110400052X
    • C. Stollberger, and J. Finsterer Cardiorespiratory findings in sudden unexplained/unexpected death in epilepsy (SUDEP) Epilepsy Research 59 2004 51 60 (Pubitemid 38595421)
    • (2004) Epilepsy Research , vol.59 , Issue.1 , pp. 51-60
    • Stollberger, C.1    Finsterer, J.2
  • 18
    • 5444236357 scopus 로고    scopus 로고
    • Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks
    • E.D. Übeyli, and I. Güler Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks Engineering Applications of Artificial Intelligence 17 6 2004 567 576
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , Issue.6 , pp. 567-576
    • Übeyli, E.D.1    Güler, I.2
  • 19
    • 54049114256 scopus 로고    scopus 로고
    • Support vector machines for detection of electrocardiographic changes in partial epileptic patients
    • E.D. Übeyli, and I. Güler Support vector machines for detection of electrocardiographic changes in partial epileptic patients Expert Systems with Applications 51 2008 1 8
    • (2008) Expert Systems with Applications , vol.51 , pp. 1-8
    • Übeyli, E.D.1    Güler, I.2
  • 21
    • 79955582056 scopus 로고    scopus 로고
    • Wavelet support vector machine for induction machine fault diagnosis based on transient current signal
    • A. Widodo, and B.-S. Yang Wavelet support vector machine for induction machine fault diagnosis based on transient current signal Expert Systems with Applications 2007 1 10
    • (2007) Expert Systems with Applications , pp. 1-10
    • Widodo, A.1    Yang, B.-S.2
  • 24
    • 0742290039 scopus 로고    scopus 로고
    • Wavelet support vector machine
    • L. Zhang, W. Zhou, and L. Jiao Wavelet support vector machine IEEE 34 2004 34 39
    • (2004) IEEE , vol.34 , pp. 34-39
    • Zhang, L.1    Zhou, W.2    Jiao, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.