-
1
-
-
0038238304
-
Adaptive epileptic seizure prediction system
-
May
-
L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. N. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, "Adaptive epileptic seizure prediction system," IEEE Trans. Biomed. Eng., vol. 50, no. 5, pp. 616-627, May 2003.
-
(2003)
IEEE Trans. Biomed. Eng.
, vol.50
, Issue.5
, pp. 616-627
-
-
Iasemidis, L.D.1
Shiau, D.S.2
Chaovalitwongse, W.3
Sackellares, J.C.4
Pardalos, P.N.5
Principe, J.C.6
Carney, P.R.7
Prasad, A.8
Veeramani, B.9
Tsakalis, K.10
-
2
-
-
24044474732
-
Artificial neural network based epileptic detection using time-domain and frequency-domain features
-
Dec
-
V. Srinivasan, C. Eswaran and N. Sriraam, "Artificial neural network based epileptic detection using time-domain and frequency-domain features," J. Med. Syst., vol. 29, no. 6, pp. 647-660, Dec. 2005.
-
(2005)
J. Med. Syst.
, vol.29
, Issue.6
, pp. 647-660
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
3
-
-
34247217946
-
Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
-
K. Polat and S. Günes, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform," Appl. Math. Comput., vol. 187, no. 2, pp. 1017-1026, 2007.
-
(2007)
Appl. Math. Comput.
, vol.187
, Issue.2
, pp. 1017-1026
-
-
Polat, K.1
Günes, S.2
-
4
-
-
84903811417
-
Time frequency detection of EEG abnormalities
-
Missouri: Elsevier ch. 15, article 15.5
-
B. Boashash, M. Mesbah, and P. Colditz, "Time frequency detection of EEG abnormalities," in Time-Frequency Signal Analysis and Processing: A Comprehensive Reference. Missouri: Elsevier, 2003, ch. 15, article 15.5, pp. 663-670.
-
(2003)
Time-Frequency Signal Analysis and Processing: A Comprehensive Reference
, pp. 663-670
-
-
Boashash, B.1
Mesbah, M.2
Colditz, P.3
-
5
-
-
35248825924
-
EEG signal analysis using FB expansion and second-order linear TVAR process
-
R. B. Pachori and P. Sircar, "EEG signal analysis using FB expansion and second-order linear TVAR process," Signal Process., vol. 88, pp. 415-420, 2008.
-
(2008)
Signal Process.
, vol.88
, pp. 415-420
-
-
Pachori, R.B.1
Sircar, P.2
-
6
-
-
0037441741
-
Analysis of EEG records in an epileptic patient using wavelet transform
-
H. Adeli, Z. Zhou, and N. Dadmehr, "Analysis of EEG records in an epileptic patient using wavelet transform," J. Neurosci. Methods, vol. 123, pp. 69-87, 2003.
-
(2003)
J. Neurosci. Methods
, vol.123
, pp. 69-87
-
-
Adeli, H.1
Zhou, Z.2
Dadmehr, N.3
-
7
-
-
0038398958
-
Wavelet based automatic seizure detection in intracerebral electroencephalogram
-
Y. U. Khan and J. Gotman, "Wavelet based automatic seizure detection in intracerebral electroencephalogram," Clin. Neurophysiol., vol. 114, pp. 898-908, 2003.
-
(2003)
Clin. Neurophysiol.
, vol.114
, pp. 898-908
-
-
Khan, Y.U.1
Gotman, J.2
-
8
-
-
38749083808
-
Automatic seizure detection basedontime-frequency analysis and artificial neural networks
-
A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, "Automatic seizure detection basedontime-frequency analysis and artificial neural networks," Comput. Intell. Neurosci., vol. 2007, p. 80510, 2007.
-
(2007)
Comput. Intell. Neurosci.
, vol.2007
, pp. 80510
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
9
-
-
33947658555
-
Epileptic seizure detection
-
Mar./Apr
-
R. Schuyler, A. White, K. Staley, and K. J. Cios, "Epileptic seizure detection," IEEE Eng. Med. Biol. Mag., vol. 26, no. 2, pp. 74-81, Mar./Apr. 2007.
-
(2007)
IEEE Eng. Med. Biol. Mag.
, vol.26
, Issue.2
, pp. 74-81
-
-
Schuyler, R.1
White, A.2
Staley, K.3
Cios, K.J.4
-
10
-
-
34547573516
-
Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
-
Sep
-
S. G. Dastidar, H. Adeli, and N. Dadmehr, "Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection," IEEE Trans. Biomed. Eng., vol. 54, no. 9, pp. 1545-1551, Sep. 2007.
-
(2007)
IEEE Trans. Biomed. Eng.
, vol.54
, Issue.9
, pp. 1545-1551
-
-
Dastidar, S.G.1
Adeli, H.2
Dadmehr, N.3
-
11
-
-
41249099701
-
Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
-
H. Ocak, "Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm," Signal Proecss., vol. 88, pp. 1858-1867, 2008.
-
(2008)
Signal Proecss.
, vol.88
, pp. 1858-1867
-
-
Ocak, H.1
-
12
-
-
77957685691
-
Epileptic seizure detection using mul-tiwavelet transform based approximate entropy and artificial neural networks
-
L. Guo, D. Rivero, and A. Pazos, "Epileptic seizure detection using mul-tiwavelet transform based approximate entropy and artificial neural networks," J. Neurosci. Methods, vol. 193, pp. 156-163, 2010.
-
(2010)
J. Neurosci. Methods
, vol.193
, pp. 156-163
-
-
Guo, L.1
Rivero, D.2
Pazos, A.3
-
13
-
-
70349410385
-
Epileptic seizure detection in EEGs using time-frequency analysis
-
Sep
-
A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, "Epileptic seizure detection in EEGs using time-frequency analysis," IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 5, pp. 703-710, Sep. 2009.
-
(2009)
IEEE Trans. Inf. Technol. Biomed.
, vol.13
, Issue.5
, pp. 703-710
-
-
Tzallas, A.T.1
Tsipouras, M.G.2
Fotiadis, D.I.3
-
14
-
-
33751396389
-
EEG signal classification using wavelet feature extraction and a mixture of expert model
-
A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model," Expert Syst. Appl., vol. 32, pp. 1084-1093, 2007.
-
(2007)
Expert Syst. Appl.
, vol.32
, pp. 1084-1093
-
-
Subasi, A.1
-
15
-
-
77955054723
-
Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
-
L. Guo D. Rivero, J. Dorado, J. R. Rabuñal, and A. Pazos, "Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks," J. Neurosci. Methods, vol. 191, pp. 101-109, 2010.
-
J. Neurosci. Methods
, vol.191
, Issue.2010
, pp. 101-109
-
-
Guo D Rivero, L.1
Dorado, J.2
Rabuñal, J.R.3
Pazos, A.4
-
16
-
-
24144470790
-
Recurrent neural networks employing Lyapunov exponents for EEG signals classification
-
N. F. Güler, E. D. Ü beyli, and I. Güler, "Recurrent neural networks employing Lyapunov exponents for EEG signals classification," Expert Syst. Appl., vol. 29, no. 3, pp. 506-514, 2005.
-
(2005)
Expert Syst. Appl.
, vol.29
, Issue.3
, pp. 506-514
-
-
Güler, N.F.1
Beyli, E.D.Ü.2
Güler, I.3
-
17
-
-
0029123213
-
Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
-
K. Lehnertz and C. E. Elger, "Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss," Electroencephalogra. Clin. Neurophysiol., vol. 95, no. 2, pp. 108-117, 1995.
-
(1995)
Electroencephalogra. Clin. Neurophysiol.
, vol.95
, Issue.2
, pp. 108-117
-
-
Lehnertz, K.1
Elger, C.E.2
-
18
-
-
0031264147
-
Use of the fractal dimension for the analysis of electroencephalographic time series
-
A. Accardo, M. Affinito, M. Carrozzi, and F. Bouquet, "Use of the fractal dimension for the analysis of electroencephalographic time series," Biol. Cybern., vol. 77, pp. 339-350, 1997.
-
(1997)
Biol. Cybern.
, vol.77
, pp. 339-350
-
-
Accardo, A.1
Affinito, M.2
Carrozzi, M.3
Bouquet, F.4
-
19
-
-
34248567678
-
Approximate entropy-based epileptic EEG detection using artificial neural networks
-
May
-
V. Srinivasan, C. Eswaran, and N. Sriraam, "Approximate entropy-based epileptic EEG detection using artificial neural networks," IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 3, pp. 288-295, May 2007.
-
(2007)
IEEE Trans. Inf. Technol. Biomed.
, vol.11
, Issue.3
, pp. 288-295
-
-
Srinivasan, V.1
Eswaran, C.2
Sriraam, N.3
-
20
-
-
77954612893
-
Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
-
S. F. Liang, H. C. Wang, and W. L. Chang, "Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection," EURASIP J. Adv. Signal Process., vol. 2010, p. 853434, 2010.
-
(2010)
EURASIP J. Adv. Signal Process.
, vol.2010
, pp. 853434
-
-
Liang, S.F.1
Wang, H.C.2
Chang, W.L.3
-
21
-
-
78549254986
-
Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
-
R. B. Pachori, "Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition," Res. Lett. Signal Process., vol. 2008, p. 293056, 2008.
-
(2008)
Res. Lett. Signal Process.
, vol.2008
, pp. 293056
-
-
Pachori, R.B.1
-
22
-
-
79956288045
-
Seizure classification in EEG signals utilizing Hilbert-Huang transform
-
R. J. Oweis and E. W. Abdulhay, "Seizure classification in EEG signals utilizing Hilbert-Huang transform," Biomed. Eng. OnLine, 10, p. 38, 2011.
-
(2011)
Biomed. Eng. OnLine
, vol.10
, pp. 38
-
-
Oweis, R.J.1
Abdulhay, E.W.2
-
23
-
-
80655124711
-
Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
-
R. B. Pachori and V. Bajaj, "Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition," Comput. Methods Progr. Biomed., vol. 104, no. 3, pp. 373-381, 2011.
-
(2011)
Comput. Methods Progr. Biomed.
, vol.104
, Issue.3
, pp. 373-381
-
-
Pachori, R.B.1
Bajaj, V.2
-
24
-
-
5444236478
-
The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis
-
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, vol. 454, pp. 903-995, 1998.
-
(1998)
Proc. R. Soc. Lond. A
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, H.H.5
Zheng, Q.6
Yen, N.C.7
Tung, C.C.8
Liu, H.H.9
-
25
-
-
77952080754
-
Multivariate empirical mode decomposition
-
N. Rehman and D. P. Mandic, "Multivariate empirical mode decomposition," Proc. R. Soc. A, vol. 466, pp. 1291-1302, 2010.
-
Proc. R. Soc. A
, vol.466
, Issue.2010
, pp. 1291-1302
-
-
Rehman, N.1
Mandic, D.P.2
-
26
-
-
78650841059
-
Application of multivaritate empirical mode decomposition for seizure detection in EEG signals
-
N. Rehman, Y. Xia, and D. P. Mandic, "Application of multivaritate empirical mode decomposition for seizure detection in EEG signals," in 2010 Proc. IEEE Eng. Med. Bio. Soc. Conf., pp. 1650-1653.
-
2010 Proc. IEEE Eng. Med. Bio. Soc. Conf.
, pp. 1650-1653
-
-
Rehman, N.1
Xia, Y.2
Mandic, D.P.3
-
27
-
-
0035682573
-
Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
-
R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, "Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state," Phys. Rev. E, vol. 64, no. 6, p. 061907, 2001.
-
(2001)
Phys. Rev. e
, vol.64
, Issue.6
, pp. 061907
-
-
Andrzejak, R.G.1
Lehnertz, K.2
Mormann, F.3
Rieke, C.4
David, P.5
Elger, C.E.6
-
28
-
-
0442326792
-
Empirical mode decomposition as a filter bank
-
Feb
-
P. Flandrin, G. Rilling, and P. Goncalvés, "Empirical mode decomposition as a filter bank," IEEE Signal Process. Lett., vol. 11, no. 2, pp. 112-114, Feb. 2004.
-
(2004)
IEEE Signal Process. Lett.
, vol.11
, Issue.2
, pp. 112-114
-
-
Flandrin, P.1
Rilling, G.2
Goncalvés, P.3
-
29
-
-
0025671460
-
Instantaneous bandwidth for signals and spectrogram
-
L. Cohen and C. Lee, "Instantaneous bandwidth for signals and spectrogram," in 1990 Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., pp. 2450-2454.
-
1990 Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
, pp. 2450-2454
-
-
Cohen, L.1
Lee, C.2
-
31
-
-
0032638628
-
Least squares support vector machine classifiers
-
Jun
-
J. A. K. Sukens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Sukens, J.A.K.1
Vandewalle, J.2
-
32
-
-
37249031426
-
Wavelet-based feature extraction for support vector machines for screening balance impairments in the eldery
-
Dec
-
A.H.Khandoker, D.T.H. Lai, R.K.Begg, and M.Palaniswami, "Wavelet-based feature extraction for support vector machines for screening balance impairments in the eldery," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 4, pp. 587-597, Dec. 1999.
-
(1999)
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.15
, Issue.4
, pp. 587-597
-
-
Khandoker, A.H.1
Lai, D.T.H.2
Begg, R.K.3
Palaniswami, M.4
-
33
-
-
0742290039
-
Wavelet support vector machine
-
Feb
-
L. Zhang, W. Zhoz, and L. Jiao, "Wavelet support vector machine," IEEE Trans. Syst. Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 34-39, Feb. 2004.
-
(2004)
IEEE Trans. Syst. Man, Cybern. B, Cybern.
, vol.34
, Issue.1
, pp. 34-39
-
-
Zhang, L.1
Zhoz, W.2
Jiao, L.3
-
34
-
-
79955594660
-
Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
-
M. Zavar, S. Rahati, M. R. Akbarzabeh, and H. Ghasemifard, "Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection," Expert Syst. Appl., vol. 38, pp. 10751-10758, 2011.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 10751-10758
-
-
Zavar, M.1
Rahati, S.2
Akbarzabeh, M.R.3
Ghasemifard, H.4
|