메뉴 건너뛰기




Volumn 16, Issue 6, 2012, Pages 1135-1142

Classification of seizure and nonseizure EEG signals using empirical mode decomposition

Author keywords

EEG signal analysis; electroencephalogram (EEG) signal; empirical mode decomposition; epilepsy

Indexed keywords

ANALYTIC SIGNALS; CLASSIFICATION ACCURACY; DATA SETS; EEG SIGNAL CLASSIFICATION; EEG SIGNALS; ELECTROENCEPHALOGRAM SIGNALS; EMD METHOD; EMPIRICAL MODE DECOMPOSITION; EPILEPSY; FREQUENCY MODULATED; HILBERT TRANSFORMATIONS; INTRINSIC MODE FUNCTIONS; LEAST SQUARES SUPPORT VECTOR MACHINES;

EID: 84865980798     PISSN: 10897771     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITB.2011.2181403     Document Type: Article
Times cited : (450)

References (34)
  • 2
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Dec
    • V. Srinivasan, C. Eswaran and N. Sriraam, "Artificial neural network based epileptic detection using time-domain and frequency-domain features," J. Med. Syst., vol. 29, no. 6, pp. 647-660, Dec. 2005.
    • (2005) J. Med. Syst. , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 3
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • K. Polat and S. Günes, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform," Appl. Math. Comput., vol. 187, no. 2, pp. 1017-1026, 2007.
    • (2007) Appl. Math. Comput. , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Günes, S.2
  • 5
    • 35248825924 scopus 로고    scopus 로고
    • EEG signal analysis using FB expansion and second-order linear TVAR process
    • R. B. Pachori and P. Sircar, "EEG signal analysis using FB expansion and second-order linear TVAR process," Signal Process., vol. 88, pp. 415-420, 2008.
    • (2008) Signal Process. , vol.88 , pp. 415-420
    • Pachori, R.B.1    Sircar, P.2
  • 6
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou, and N. Dadmehr, "Analysis of EEG records in an epileptic patient using wavelet transform," J. Neurosci. Methods, vol. 123, pp. 69-87, 2003.
    • (2003) J. Neurosci. Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 7
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Y. U. Khan and J. Gotman, "Wavelet based automatic seizure detection in intracerebral electroencephalogram," Clin. Neurophysiol., vol. 114, pp. 898-908, 2003.
    • (2003) Clin. Neurophysiol. , vol.114 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 8
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection basedontime-frequency analysis and artificial neural networks
    • A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, "Automatic seizure detection basedontime-frequency analysis and artificial neural networks," Comput. Intell. Neurosci., vol. 2007, p. 80510, 2007.
    • (2007) Comput. Intell. Neurosci. , vol.2007 , pp. 80510
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 10
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • Sep
    • S. G. Dastidar, H. Adeli, and N. Dadmehr, "Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection," IEEE Trans. Biomed. Eng., vol. 54, no. 9, pp. 1545-1551, Sep. 2007.
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , Issue.9 , pp. 1545-1551
    • Dastidar, S.G.1    Adeli, H.2    Dadmehr, N.3
  • 11
    • 41249099701 scopus 로고    scopus 로고
    • Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm
    • H. Ocak, "Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm," Signal Proecss., vol. 88, pp. 1858-1867, 2008.
    • (2008) Signal Proecss. , vol.88 , pp. 1858-1867
    • Ocak, H.1
  • 12
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using mul-tiwavelet transform based approximate entropy and artificial neural networks
    • L. Guo, D. Rivero, and A. Pazos, "Epileptic seizure detection using mul-tiwavelet transform based approximate entropy and artificial neural networks," J. Neurosci. Methods, vol. 193, pp. 156-163, 2010.
    • (2010) J. Neurosci. Methods , vol.193 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 13
    • 70349410385 scopus 로고    scopus 로고
    • Epileptic seizure detection in EEGs using time-frequency analysis
    • Sep
    • A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, "Epileptic seizure detection in EEGs using time-frequency analysis," IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 5, pp. 703-710, Sep. 2009.
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.5 , pp. 703-710
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 14
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model," Expert Syst. Appl., vol. 32, pp. 1084-1093, 2007.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 15
    • 77955054723 scopus 로고    scopus 로고
    • Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks
    • L. Guo D. Rivero, J. Dorado, J. R. Rabuñal, and A. Pazos, "Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks," J. Neurosci. Methods, vol. 191, pp. 101-109, 2010.
    • J. Neurosci. Methods , vol.191 , Issue.2010 , pp. 101-109
    • Guo D Rivero, L.1    Dorado, J.2    Rabuñal, J.R.3    Pazos, A.4
  • 16
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • N. F. Güler, E. D. Ü beyli, and I. Güler, "Recurrent neural networks employing Lyapunov exponents for EEG signals classification," Expert Syst. Appl., vol. 29, no. 3, pp. 506-514, 2005.
    • (2005) Expert Syst. Appl. , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Beyli, E.D.Ü.2    Güler, I.3
  • 17
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • K. Lehnertz and C. E. Elger, "Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss," Electroencephalogra. Clin. Neurophysiol., vol. 95, no. 2, pp. 108-117, 1995.
    • (1995) Electroencephalogra. Clin. Neurophysiol. , vol.95 , Issue.2 , pp. 108-117
    • Lehnertz, K.1    Elger, C.E.2
  • 18
    • 0031264147 scopus 로고    scopus 로고
    • Use of the fractal dimension for the analysis of electroencephalographic time series
    • A. Accardo, M. Affinito, M. Carrozzi, and F. Bouquet, "Use of the fractal dimension for the analysis of electroencephalographic time series," Biol. Cybern., vol. 77, pp. 339-350, 1997.
    • (1997) Biol. Cybern. , vol.77 , pp. 339-350
    • Accardo, A.1    Affinito, M.2    Carrozzi, M.3    Bouquet, F.4
  • 19
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • May
    • V. Srinivasan, C. Eswaran, and N. Sriraam, "Approximate entropy-based epileptic EEG detection using artificial neural networks," IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 3, pp. 288-295, May 2007.
    • (2007) IEEE Trans. Inf. Technol. Biomed. , vol.11 , Issue.3 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 20
    • 77954612893 scopus 로고    scopus 로고
    • Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection
    • S. F. Liang, H. C. Wang, and W. L. Chang, "Combination of EEG complexity and spectral analysis for epilepsy diagnosis and seizure detection," EURASIP J. Adv. Signal Process., vol. 2010, p. 853434, 2010.
    • (2010) EURASIP J. Adv. Signal Process. , vol.2010 , pp. 853434
    • Liang, S.F.1    Wang, H.C.2    Chang, W.L.3
  • 21
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • R. B. Pachori, "Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition," Res. Lett. Signal Process., vol. 2008, p. 293056, 2008.
    • (2008) Res. Lett. Signal Process. , vol.2008 , pp. 293056
    • Pachori, R.B.1
  • 22
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing Hilbert-Huang transform
    • R. J. Oweis and E. W. Abdulhay, "Seizure classification in EEG signals utilizing Hilbert-Huang transform," Biomed. Eng. OnLine, 10, p. 38, 2011.
    • (2011) Biomed. Eng. OnLine , vol.10 , pp. 38
    • Oweis, R.J.1    Abdulhay, E.W.2
  • 23
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • R. B. Pachori and V. Bajaj, "Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition," Comput. Methods Progr. Biomed., vol. 104, no. 3, pp. 373-381, 2011.
    • (2011) Comput. Methods Progr. Biomed. , vol.104 , Issue.3 , pp. 373-381
    • Pachori, R.B.1    Bajaj, V.2
  • 24
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis
    • N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, "The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, vol. 454, pp. 903-995, 1998.
    • (1998) Proc. R. Soc. Lond. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.C.4    Shih, H.H.5    Zheng, Q.6    Yen, N.C.7    Tung, C.C.8    Liu, H.H.9
  • 25
    • 77952080754 scopus 로고    scopus 로고
    • Multivariate empirical mode decomposition
    • N. Rehman and D. P. Mandic, "Multivariate empirical mode decomposition," Proc. R. Soc. A, vol. 466, pp. 1291-1302, 2010.
    • Proc. R. Soc. A , vol.466 , Issue.2010 , pp. 1291-1302
    • Rehman, N.1    Mandic, D.P.2
  • 26
    • 78650841059 scopus 로고    scopus 로고
    • Application of multivaritate empirical mode decomposition for seizure detection in EEG signals
    • N. Rehman, Y. Xia, and D. P. Mandic, "Application of multivaritate empirical mode decomposition for seizure detection in EEG signals," in 2010 Proc. IEEE Eng. Med. Bio. Soc. Conf., pp. 1650-1653.
    • 2010 Proc. IEEE Eng. Med. Bio. Soc. Conf. , pp. 1650-1653
    • Rehman, N.1    Xia, Y.2    Mandic, D.P.3
  • 27
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, "Indications of nonlinear deterministics and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state," Phys. Rev. E, vol. 64, no. 6, p. 061907, 2001.
    • (2001) Phys. Rev. e , vol.64 , Issue.6 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 28
    • 0442326792 scopus 로고    scopus 로고
    • Empirical mode decomposition as a filter bank
    • Feb
    • P. Flandrin, G. Rilling, and P. Goncalvés, "Empirical mode decomposition as a filter bank," IEEE Signal Process. Lett., vol. 11, no. 2, pp. 112-114, Feb. 2004.
    • (2004) IEEE Signal Process. Lett. , vol.11 , Issue.2 , pp. 112-114
    • Flandrin, P.1    Rilling, G.2    Goncalvés, P.3
  • 31
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Jun
    • J. A. K. Sukens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, Jun. 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Sukens, J.A.K.1    Vandewalle, J.2
  • 32
    • 37249031426 scopus 로고    scopus 로고
    • Wavelet-based feature extraction for support vector machines for screening balance impairments in the eldery
    • Dec
    • A.H.Khandoker, D.T.H. Lai, R.K.Begg, and M.Palaniswami, "Wavelet-based feature extraction for support vector machines for screening balance impairments in the eldery," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 4, pp. 587-597, Dec. 1999.
    • (1999) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.15 , Issue.4 , pp. 587-597
    • Khandoker, A.H.1    Lai, D.T.H.2    Begg, R.K.3    Palaniswami, M.4
  • 34
    • 79955594660 scopus 로고    scopus 로고
    • Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection
    • M. Zavar, S. Rahati, M. R. Akbarzabeh, and H. Ghasemifard, "Evolutionary model selection in a wavelet-based support vector machine for automated seizure detection," Expert Syst. Appl., vol. 38, pp. 10751-10758, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10751-10758
    • Zavar, M.1    Rahati, S.2    Akbarzabeh, M.R.3    Ghasemifard, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.