메뉴 건너뛰기




Volumn 43, Issue 10, 2013, Pages 1523-1529

Automated identification of normal and diabetes heart rate signals using nonlinear measures

Author keywords

AdaBoost; Approximate Entropy; Decision tree; Detrended fluctuation analysis; Diabetes mellitus; Electrocardiogram; Fuzzy Sugeno classifier; Heart rate variability; K Nearest neighbor algorithm; Largest Lyapunov exponet; Probabilistic neural network; Recurrence plots; Support vector machine

Indexed keywords

APPROXIMATE ENTROPY; DETRENDED FLUCTUATION ANALYSIS; DIABETES MELLITUS; HEART RATE VARIABILITY; K NEAREST NEIGHBOR ALGORITHM; LARGEST LYAPUNOV EXPONET; PROBABILISTIC NEURAL NETWORKS; RECURRENCE PLOT;

EID: 84882932054     PISSN: 00104825     EISSN: 18790534     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2013.05.024     Document Type: Article
Times cited : (135)

References (75)
  • 1
    • 4644240373 scopus 로고    scopus 로고
    • Global prevalence of diabetes: estimates for the year 2000 and projections for 2030
    • Rathmann W., Giani G. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27(10):2568-2569.
    • (2004) Diabetes Care , vol.27 , Issue.10 , pp. 2568-2569
    • Rathmann, W.1    Giani, G.2
  • 2
    • 84882993824 scopus 로고    scopus 로고
    • The National Health and Nutrition Examination Survey (NHANES), Last accessed December .
    • The National Health and Nutrition Examination Survey (NHANES), Last accessed December 2012. http://www.cdc.gov/nchs/nhanes.htm.
    • (2012)
  • 3
    • 84882948366 scopus 로고    scopus 로고
    • WHO (World Health Organization), Global Status Report on ncds, Chapter 1: Burden: Mortality, Morbidity and Risk Factors.
    • WHO (World Health Organization), Global Status Report on ncds, Chapter 1: Burden: Mortality, Morbidity and Risk Factors.
  • 4
    • 0020519080 scopus 로고
    • Diabetes mortality: new light on an underestimated public health problem
    • Fuller J., Elford J., Goldblatt P., Adelstein A. Diabetes mortality: new light on an underestimated public health problem. Diabetologia 1983, 24:336-341.
    • (1983) Diabetologia , vol.24 , pp. 336-341
    • Fuller, J.1    Elford, J.2    Goldblatt, P.3    Adelstein, A.4
  • 5
    • 0034844049 scopus 로고    scopus 로고
    • Mortality and causes of death in the who multinational study of vascular disease in diabetes
    • Morrish N.J., Wang S.L., Stevens L.K., Fuller J.H., Keen H. Mortality and causes of death in the who multinational study of vascular disease in diabetes. Diabetologia 2001, 44:S14-S21.
    • (2001) Diabetologia , vol.44
    • Morrish, N.J.1    Wang, S.L.2    Stevens, L.K.3    Fuller, J.H.4    Keen, H.5
  • 6
    • 84882942635 scopus 로고    scopus 로고
    • WHO (World Health Organization), Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia, (Last accessed October 2012.).
    • WHO (World Health Organization), Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia, 2006, (Last accessed October 2012.). http://whqlibdoc.who.int/publications/2006/%209241594934_eng.pdf.
    • (2006)
  • 7
    • 78649492749 scopus 로고    scopus 로고
    • Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms
    • the MAGIC Investigators, the DIAGRAM Investigators, Ahead of print
    • de Miguel-Yanes J.M., Shrader P., Pencina M.J., Fox C.S., Manning A.K., Grant R.W., Dupuis J., Florez J.C., D'Agostino R.B., Cupples L.A., Meigs J.B. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 2010, the MAGIC Investigators, the DIAGRAM Investigators, Ahead of print.
    • (2010) Diabetes Care
    • de Miguel-Yanes, J.M.1    Shrader, P.2    Pencina, M.J.3    Fox, C.S.4    Manning, A.K.5    Grant, R.W.6    Dupuis, J.7    Florez, J.C.8    D'Agostino, R.B.9    Cupples, L.A.10    Meigs, J.B.11
  • 9
    • 84863316633 scopus 로고    scopus 로고
    • Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review
    • Faust O., Acharya U.R., Ng E., Ng K.-H., Suri J.S. Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review. J. Med. Syst. 2010, 1-13.
    • (2010) J. Med. Syst. , pp. 1-13
    • Faust, O.1    Acharya, U.R.2    Ng, E.3    Ng, K.-H.4    Suri, J.S.5
  • 10
    • 0036765379 scopus 로고    scopus 로고
    • Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy
    • Al-Hazimi A., Al-Ama N., Syiamic A., Qosti R., Abdel-Galil K. Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Ann. Saudi Med. 2002, 22(5-6):400-403.
    • (2002) Ann. Saudi Med. , vol.22 , Issue.5-6 , pp. 400-403
    • Al-Hazimi, A.1    Al-Ama, N.2    Syiamic, A.3    Qosti, R.4    Abdel-Galil, K.5
  • 12
    • 0034498286 scopus 로고    scopus 로고
    • Arrhythmia detection and recognition in ECG signals using nonlinear techniques
    • S-37
    • Sun Y., Chan K.L., Krishnan S.M. Arrhythmia detection and recognition in ECG signals using nonlinear techniques. Ann. Biomed. Eng. 2000, 28(1). S-37.
    • (2000) Ann. Biomed. Eng. , vol.28 , Issue.1
    • Sun, Y.1    Chan, K.L.2    Krishnan, S.M.3
  • 13
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • Pincus S.M. Approximate entropy as a measure of system complexity. Proc. Nat. Acad. Sci. 1991, 88(6):2297-2301.
    • (1991) Proc. Nat. Acad. Sci. , vol.88 , Issue.6 , pp. 2297-2301
    • Pincus, S.M.1
  • 14
    • 7044253486 scopus 로고    scopus 로고
    • Comprehensive analysis of cardiac health using heart rate signals
    • Acharya U.R., Kannathal N., Krishnan S.M. Comprehensive analysis of cardiac health using heart rate signals. Physiol. Meas. 2004, 25(5):1139-1151.
    • (2004) Physiol. Meas. , vol.25 , Issue.5 , pp. 1139-1151
    • Acharya, U.R.1    Kannathal, N.2    Krishnan, S.M.3
  • 15
    • 0023063326 scopus 로고
    • Applications of nonlinear dynamics to clinical cardiologya
    • Goldberger A.L., West B.J. Applications of nonlinear dynamics to clinical cardiologya. Ann. N.Y. Acad. Sci. 1987, 504(1):195-213.
    • (1987) Ann. N.Y. Acad. Sci. , vol.504 , Issue.1 , pp. 195-213
    • Goldberger, A.L.1    West, B.J.2
  • 16
    • 0026154666 scopus 로고
    • Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50 and 100Hz interference from the ECG
    • Warlar R., Eswaran C. Integer coefficient bandpass filter for the simultaneous removal of baseline wander, 50 and 100Hz interference from the ECG. Med. Biol. Eng. Comput. 1991, 29:333-336.
    • (1991) Med. Biol. Eng. Comput. , vol.29 , pp. 333-336
    • Warlar, R.1    Eswaran, C.2
  • 17
    • 0021892137 scopus 로고
    • A real-time qrs detection algorithm
    • Pan J., Tompkins W.J. A real-time qrs detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32(3):230-236.
    • (1985) IEEE Trans. Biomed. Eng. , vol.32 , Issue.3 , pp. 230-236
    • Pan, J.1    Tompkins, W.J.2
  • 20
    • 33846338227 scopus 로고    scopus 로고
    • Recurrence plots for the analysis of complex systems
    • Marwan N., Romano M.C., Thiel M., Kurths J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438(5-6):237-329.
    • (2007) Phys. Rep. , vol.438 , Issue.5-6 , pp. 237-329
    • Marwan, N.1    Romano, M.C.2    Thiel, M.3    Kurths, J.4
  • 22
    • 0036122252 scopus 로고    scopus 로고
    • Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals
    • Zbilut J.P., Thomasson N., Webber C.L. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals. Med. Eng. Phys. 2002, 24(1):53-60.
    • (2002) Med. Eng. Phys. , vol.24 , Issue.1 , pp. 53-60
    • Zbilut, J.P.1    Thomasson, N.2    Webber, C.L.3
  • 23
    • 0028355806 scopus 로고
    • Physiological time-series analysis: what does regularity quantify?
    • Pincus S.M., Goldberger A.L. Physiological time-series analysis: what does regularity quantify?. Am. J. Physiol. Heart Circ. Physiol. 1994, 266(4):H1643-H1656.
    • (1994) Am. J. Physiol. Heart Circ. Physiol. , vol.266 , Issue.4
    • Pincus, S.M.1    Goldberger, A.L.2
  • 24
    • 0026780669 scopus 로고
    • Quantification of hormone pulsatility via an approximate entropy algorithm
    • Pincus S.M., Keefe D.L. Quantification of hormone pulsatility via an approximate entropy algorithm. Am. J. Physiol.- Endocrinol. Metab. 1992, 262(5):E741-E754.
    • (1992) Am. J. Physiol.- Endocrinol. Metab. , vol.262 , Issue.5
    • Pincus, S.M.1    Keefe, D.L.2
  • 25
    • 0035679921 scopus 로고    scopus 로고
    • Assessing serial irregularity and its implications for health
    • Pincus S.M. Assessing serial irregularity and its implications for health. Ann. N.Y. Acad. Sci. 2001, 954(1):245-267.
    • (2001) Ann. N.Y. Acad. Sci. , vol.954 , Issue.1 , pp. 245-267
    • Pincus, S.M.1
  • 26
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • Rosenstein M.T., Collins J.J., Luca C.J.D. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993, 65(1-2):117-134.
    • (1993) Physica D , vol.65 , Issue.1-2 , pp. 117-134
    • Rosenstein, M.T.1    Collins, J.J.2    Luca, C.J.D.3
  • 27
    • 0029589965 scopus 로고
    • Fractal mechanisms and heart rate dynamics: long-range correlations and their breakdown with disease
    • Peng C.K., Havlin S., Hausdorff J.M., Mietus J.E., Stanley H.E., Goldberger A.L. Fractal mechanisms and heart rate dynamics: long-range correlations and their breakdown with disease. J. Electrocardiol. 1995, 28 Supplement 1(0):59-65.
    • (1995) J. Electrocardiol. , Issue.0 , pp. 59-65
    • Peng, C.K.1    Havlin, S.2    Hausdorff, J.M.3    Mietus, J.E.4    Stanley, H.E.5    Goldberger, A.L.6
  • 28
    • 0029434863 scopus 로고
    • Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series
    • Peng C.K., Havlin S., Stanley H.E., Goldberger A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscipl. J. Nonlinear Sci. 1995, 5(1):82-87.
    • (1995) Chaos Interdiscipl. J. Nonlinear Sci. , vol.5 , Issue.1 , pp. 82-87
    • Peng, C.K.1    Havlin, S.2    Stanley, H.E.3    Goldberger, A.L.4
  • 29
    • 0142224780 scopus 로고
    • The effects of violations of assumptions underlying the t test
    • Boneau C.A. The effects of violations of assumptions underlying the t test. Psychol. Bull. 1960, 57(1):49-64.
    • (1960) Psychol. Bull. , vol.57 , Issue.1 , pp. 49-64
    • Boneau, C.A.1
  • 32
    • 65249157560 scopus 로고
    • The divergence and Bhattacharyya distance measures in signal selection
    • Kailath T. The divergence and Bhattacharyya distance measures in signal selection. Commun. Technol., IEEE Trans. 1967, 15(1):52-60.
    • (1967) Commun. Technol., IEEE Trans. , vol.15 , Issue.1 , pp. 52-60
    • Kailath, T.1
  • 33
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Networks 1990, 3(1):109-118.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 34
    • 77952541525 scopus 로고    scopus 로고
    • A genetic algorithm for constructing compact binary decision trees
    • Cha S. A genetic algorithm for constructing compact binary decision trees. J. Pattern Recogn. Res. 2009, 1(2009):1-13.
    • (2009) J. Pattern Recogn. Res. , vol.1 , Issue.2009 , pp. 1-13
    • Cha, S.1
  • 35
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1986, 1:81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 36
    • 0141855285 scopus 로고    scopus 로고
    • Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer
    • Markey M.K., Tourassi G.D., Floyd C.E. Decision tree classification of proteins identified by mass spectrometry of blood serum samples from people with and without lung cancer. Proteomics 2003, 3(9):1678-1679.
    • (2003) Proteomics , vol.3 , Issue.9 , pp. 1678-1679
    • Markey, M.K.1    Tourassi, G.D.2    Floyd, C.E.3
  • 37
    • 85145007596 scopus 로고
    • Statistical decision-tree models for parsing
    • ACL '95, Association for Computational Linguistics, Stroudsburg, PA, USA
    • D.M. Magerman, Statistical decision-tree models for parsing, in: Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, ACL '95, Association for Computational Linguistics, Stroudsburg, PA, USA, 1995, pp. 276-283.
    • (1995) Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics , pp. 276-283
    • Magerman, D.M.1
  • 38
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inf. Control 1965, 8(3):338-353.
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 44
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning Boolean formulae and finite automata
    • Kearns M., Valiant L. Cryptographic limitations on learning Boolean formulae and finite automata. J. Assoc. Comput. Mach. 1994, 41:67-95.
    • (1994) J. Assoc. Comput. Mach. , vol.41 , pp. 67-95
    • Kearns, M.1    Valiant, L.2
  • 46
    • 84983110889 scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boosting
    • Springer, Berlin/Heidelberg, P. Vitányi (Ed.)
    • Freund Y., Schapire R. A desicion-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory, Vol. 904 of Lecture Notes in Computer Science 1995, 23-37. Springer, Berlin/Heidelberg. P. Vitányi (Ed.).
    • (1995) Computational Learning Theory, Vol. 904 of Lecture Notes in Computer Science , pp. 23-37
    • Freund, Y.1    Schapire, R.2
  • 47
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65(6):386-408.
    • (1958) Psychol. Rev. , vol.65 , Issue.6 , pp. 386-408
    • Rosenblatt, F.1
  • 51
    • 84898999495 scopus 로고    scopus 로고
    • G.L.J. Lafferty, Boosting and maximum likelihood for exponential models, in: Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Neural Information Processing Systems (NIPS) Conference, vol. 1, The MIT Press
    • G.L.J. Lafferty, Boosting and maximum likelihood for exponential models, in: Advances in Neural Information Processing Systems 14: Proceedings of the 2001 Neural Information Processing Systems (NIPS) Conference, vol. 1, The MIT Press, 2002, p. 447.
    • (2002) , pp. 447
  • 53
    • 84155181072 scopus 로고    scopus 로고
    • Ann vs. svm: which one performs better in classification of mccs in mammogram imaging
    • Ren J. Ann vs. svm: which one performs better in classification of mccs in mammogram imaging. Know.-Based Syst 2012, 26:144-153.
    • (2012) Know.-Based Syst , vol.26 , pp. 144-153
    • Ren, J.1
  • 55
    • 82455175670 scopus 로고    scopus 로고
    • Arrhythmia disease diagnosis using neural network, svm and genetic algorithm optimized k-means clustering
    • Martis R.J., Chakraborty C. Arrhythmia disease diagnosis using neural network, svm and genetic algorithm optimized k-means clustering. J. Mech. Med. Biol. 2011, 11:897-915.
    • (2011) J. Mech. Med. Biol. , vol.11 , pp. 897-915
    • Martis, R.J.1    Chakraborty, C.2
  • 57
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 2002, 13(2):415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 59
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer C. Selecting a classification method by cross-validation. Mach. Learn. 1993, 13:135-143.
    • (1993) Mach. Learn. , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 61
    • 84867923052 scopus 로고    scopus 로고
    • Nonlinear analysis of physiological signals: a review
    • 1240015 (21 pp) 10.1142/S0219519412400155
    • Faust O., Bairy M.G. Nonlinear analysis of physiological signals: a review. J. Mech. Med. Biol. 2012, 12(4). 1240015 (21 pp) 10.1142/S0219519412400155.
    • (2012) J. Mech. Med. Biol. , vol.12 , Issue.4
    • Faust, O.1    Bairy, M.G.2
  • 62
    • 84877934667 scopus 로고    scopus 로고
    • Comprehensive analysis of normal and diabetic heart rate signals: a review
    • 1350033 (17 pp) 10.1142/S0219519413500334
    • Faust O., Prasad V.R., Swapna G., Chattopadhyay S., Lim T.-C. Comprehensive analysis of normal and diabetic heart rate signals: a review. J. Mech. Med. Biol. 2013, 13(3). 1350033 (17 pp) 10.1142/S0219519413500334.
    • (2013) J. Mech. Med. Biol. , vol.13 , Issue.3
    • Faust, O.1    Prasad, V.R.2    Swapna, G.3    Chattopadhyay, S.4    Lim, T.-C.5
  • 63
    • 13144284941 scopus 로고    scopus 로고
    • Analysis of cardiac signals using spatial filling index and time-frequency domain
    • Faust O., Acharya R., Krishnan U.S., Min L. Analysis of cardiac signals using spatial filling index and time-frequency domain. Biomed. Eng. Online 2004, 3(1):1-30.
    • (2004) Biomed. Eng. Online , vol.3 , Issue.1 , pp. 1-30
    • Faust, O.1    Acharya, R.2    Krishnan, U.S.3    Min, L.4
  • 66
    • 0009920749 scopus 로고    scopus 로고
    • Heart rate variability and cardiovascular mortality
    • Villareal R., Liu B., Massumi A. Heart rate variability and cardiovascular mortality. Curr. Atheroscler. Rep. 2002, 4:120-127.
    • (2002) Curr. Atheroscler. Rep. , vol.4 , pp. 120-127
    • Villareal, R.1    Liu, B.2    Massumi, A.3
  • 67
    • 19044367693 scopus 로고    scopus 로고
    • Heart rate variability analysis: a useful assessment tool for diabetes associated cardiac dysfunction in rural and remote areas
    • Flynn A.C., Jelinek H.F., Smith M. Heart rate variability analysis: a useful assessment tool for diabetes associated cardiac dysfunction in rural and remote areas. Aust. J. Rural Health 2005, 13(2):77-82.
    • (2005) Aust. J. Rural Health , vol.13 , Issue.2 , pp. 77-82
    • Flynn, A.C.1    Jelinek, H.F.2    Smith, M.3
  • 68
    • 25444500962 scopus 로고    scopus 로고
    • Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients
    • Chemla D., Young J., Badilini F., Maison-Blanche P., Affres H., Lecarpentier Y., Chanson P. Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients. Int. J. Cardiol. 2005, 104(3):307-313.
    • (2005) Int. J. Cardiol. , vol.104 , Issue.3 , pp. 307-313
    • Chemla, D.1    Young, J.2    Badilini, F.3    Maison-Blanche, P.4    Affres, H.5    Lecarpentier, Y.6    Chanson, P.7
  • 69
    • 14644392838 scopus 로고    scopus 로고
    • Diabetes, glucose, insulin, and heart rate variability: the atherosclerosis risk in communities (aric) study
    • Schroeder E.B., Chambless L.E., Liao D., Prineas R.J., Evans G.W., Rosamond W.D., Heiss G. Diabetes, glucose, insulin, and heart rate variability: the atherosclerosis risk in communities (aric) study. Diabetes Care 2005, 28(3):668-674.
    • (2005) Diabetes Care , vol.28 , Issue.3 , pp. 668-674
    • Schroeder, E.B.1    Chambless, L.E.2    Liao, D.3    Prineas, R.J.4    Evans, G.W.5    Rosamond, W.D.6    Heiss, G.7
  • 70
    • 84883009693 scopus 로고    scopus 로고
    • Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus, Int. J. Biol. Life Sci.
    • P.T. Ahamed Seyd, T.V.I. Ahamed, J. Jeevamma, J.K. Paul, Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus, Int. J. Biol. Life Sci.
    • Ahamed Seyd, P.T.1    Ahamed, T.V.I.2    Jeevamma, J.3    Paul, J.K.4
  • 71
    • 47649117704 scopus 로고    scopus 로고
    • Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis
    • Trunkvalterova Z., Javorka M., Tonhajzerova I., Javorkova J., Lazarova Z., Javorka K., Baumert M. Reduced short-term complexity of heart rate and blood pressure dynamics in patients with diabetes mellitus type 1: multiscale entropy analysis. Physiol. Meas. 2008, 29(7):817-828.
    • (2008) Physiol. Meas. , vol.29 , Issue.7 , pp. 817-828
    • Trunkvalterova, Z.1    Javorka, M.2    Tonhajzerova, I.3    Javorkova, J.4    Lazarova, Z.5    Javorka, K.6    Baumert, M.7
  • 74
    • 84878917377 scopus 로고    scopus 로고
    • Automated diagnosis of diabetes using higher order spectra features extracted from heart rate signals
    • Swapna G., Acharya U.R., Sree V.S., Suri J.S. Automated diagnosis of diabetes using higher order spectra features extracted from heart rate signals. Intell. Data Anal. 2013, 17(2):309-326.
    • (2013) Intell. Data Anal. , vol.17 , Issue.2 , pp. 309-326
    • Swapna, G.1    Acharya, U.R.2    Sree, V.S.3    Suri, J.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.