메뉴 건너뛰기




Volumn 104, Issue 3, 2011, Pages 358-372

Clustering technique-based least square support vector machine for EEG signal classification

Author keywords

Clustering technique (CT); Electroencephalogram (EEG); Feature extraction; Least square support vector machine (LS SVM); Simple random sampling (SRS)

Indexed keywords

AVERAGE SENSITIVITIES; BENCHMARK DATABASE; CLASSIFICATION ACCURACY; CLASSIFICATION RATES; CLUSTERING TECHNIQUES; EEG SIGNAL CLASSIFICATION; EEG SIGNALS; ELECTROENCEPHALOGRAM (EEG); EXECUTION TIME; LEAST SQUARE SUPPORT VECTOR MACHINES; MENTAL IMAGERY; MOTOR IMAGERY EEG; SIMPLE RANDOM SAMPLING; TWO STAGE;

EID: 80055040385     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2010.11.014     Document Type: Article
Times cited : (200)

References (44)
  • 4
    • 71349088028 scopus 로고    scopus 로고
    • Entropies based detection of epileptic seizures with artificial neural network classifiers
    • Pravin Kumar S., Sriraam N., Benakop P.G., Jinaga B.C. Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst. Appl. 2010, 37:3284-3291.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3284-3291
    • Pravin Kumar, S.1    Sriraam, N.2    Benakop, P.G.3    Jinaga, B.C.4
  • 5
    • 0031141135 scopus 로고    scopus 로고
    • Classification of EEG signals using the wavelet transform
    • May
    • Hazarika N., Chen J.Z., Tsoi A.C., Sergejew A. Classification of EEG signals using the wavelet transform. Signal Process. 1997, 59(May (1)):61-72.
    • (1997) Signal Process. , vol.59 , Issue.1 , pp. 61-72
    • Hazarika, N.1    Chen, J.Z.2    Tsoi, A.C.3    Sergejew, A.4
  • 6
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli H., Zhou Z., Dadmehr N. Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 2003, 123(1):69-87.
    • (2003) J. Neurosci. Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Mining Knowl. Discov. 1998, 2:121-167.
    • (1998) Data Mining Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.1
  • 9
    • 34047114775 scopus 로고    scopus 로고
    • Multiclass support vector machines for EEG-signal classification
    • March
    • Guler I., Ubeyli E.D. Multiclass support vector machines for EEG-signal classification. IEEE Trans. Inf. Technol. Biomed. 2007, 11(March (2)):117-126.
    • (2007) IEEE Trans. Inf. Technol. Biomed. , vol.11 , Issue.2 , pp. 117-126
    • Guler, I.1    Ubeyli, E.D.2
  • 10
    • 56349106179 scopus 로고    scopus 로고
    • Cross-correlation aided support vector machine classifier for classification of EEG signals
    • Chandaka S., Chatterjee A., Munshi S. Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst. Appl. 2009, 36:1329-1336.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 11
    • 32644450162 scopus 로고    scopus 로고
    • Using support vector machines to optimally classify rotator cuff strength data and quantify post-operative strength in rotator cuff tear patients
    • Silver A.E., Lungren M.P., Johnson M.E., O'Driscoll S.W., An K.N., Hughes R.E. Using support vector machines to optimally classify rotator cuff strength data and quantify post-operative strength in rotator cuff tear patients. J. Biomech. 2006, 39:973-979.
    • (2006) J. Biomech. , vol.39 , pp. 973-979
    • Silver, A.E.1    Lungren, M.P.2    Johnson, M.E.3    O'Driscoll, S.W.4    An, K.N.5    Hughes, R.E.6
  • 12
    • 33751378334 scopus 로고    scopus 로고
    • Automatic seizure detection based on support vector machine with genetic algorithms, SEAL, LNCS 4247
    • J. Fan, C. Shao, Y. Ouyang, J. Wang, S. Li, Z. Wang, Automatic seizure detection based on support vector machine with genetic algorithms, SEAL 2006, LNCS 4247, pp. 845-852.
    • (2006) , pp. 845-852
    • Fan, J.1    Shao, C.2    Ouyang, Y.3    Wang, J.4    Li, S.5    Wang, Z.6
  • 13
    • 70349472753 scopus 로고    scopus 로고
    • Least square support vector machine employing model-based methods coefficients for analysis of EEG signals
    • Ubeyli E.D. Least square support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst. Appl. 2010, 37:233-239.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 233-239
    • Ubeyli, E.D.1
  • 14
    • 80655143343 scopus 로고    scopus 로고
    • EEG signal classification based on simple random sampling technique with least square support vector machines, Int
    • Technol, in press.
    • Siuly, Y. Li, P. Wen, EEG signal classification based on simple random sampling technique with least square support vector machines, Int. J. Biomed. Eng. Technol (2010), in press.
    • (2010) J. Biomed. Eng
    • Siuly1    Li, Y.2    Wen, P.3
  • 15
    • 69049087866 scopus 로고    scopus 로고
    • Siuly, Classification of EEG signals using sampling techniques and least square support vector machines, RSKT, LNCS 5589
    • Siuly, Y. Li, P. Wen, Classification of EEG signals using sampling techniques and least square support vector machines, RSKT 2009, LNCS 5589, pp. 375-382.
    • (2009) , pp. 375-382
    • Li, Y.1    Wen, P.2
  • 16
    • 58349108297 scopus 로고    scopus 로고
    • An expert system based on least square support vector machines for diagnosis of the valvular heart disease
    • Hanbay D. An expert system based on least square support vector machines for diagnosis of the valvular heart disease. Expert Syst. Appl. 2009, 36:4232-4238.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4232-4238
    • Hanbay, D.1
  • 17
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Guler N.F., Ubeyli E.D., Guler I. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 2005, 29:506-514.
    • (2005) Expert Syst. Appl. , vol.29 , pp. 506-514
    • Guler, N.F.1    Ubeyli, E.D.2    Guler, I.3
  • 18
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 2007, 32:1084-1093.
    • (2007) Expert Syst. Appl. , vol.32 , pp. 1084-1093
    • Subasi, A.1
  • 19
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signals classification
    • Ubeyli E.D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst. Appl. 2008, 34:1954-1962.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1954-1962
    • Ubeyli, E.D.1
  • 20
    • 34547652398 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and neural networks, in: IEEE John Vincent Atanasoff International Symposium on Modern Computing (JVA'06)
    • P. Jahankhani, V. Kodogiannis, K. Revett, EEG signal classification using wavelet feature extraction and neural networks, in: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06), pp. 52-57.
    • (2006) , pp. 52-57
    • Jahankhani, P.1    Kodogiannis, V.2    Revett, K.3
  • 21
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • Subasi A., Ercelebi E. Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs Biomed. 2005, 78:87-99.
    • (2005) Comput. Methods Programs Biomed. , vol.78 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 22
    • 80655126368 scopus 로고    scopus 로고
    • Classification of EEG signals using relative wavelet energy and artificial neural networks
    • June
    • Guo L., Rivero D., Seoane J.A., Pazos A. Classification of EEG signals using relative wavelet energy and artificial neural networks. GCE 2009, (June):12-14.
    • (2009) GCE , pp. 12-14
    • Guo, L.1    Rivero, D.2    Seoane, J.A.3    Pazos, A.4
  • 23
    • 84857799191 scopus 로고    scopus 로고
    • EEG time series (epileptic data) November (Online).
    • EEG time series (epileptic data) (2005, November) (Online). http://www.meb.uni-bonn.de/epileptologie/science/physik/eegdata.html.
    • (2005)
  • 24
    • 84857797760 scopus 로고    scopus 로고
    • Data Set V (online)
    • S. Chiappa, J.R. Millán, Data Set V (online) (2005). http://ida.first.fraunhofer.de/projects/bci/competition_iii/desc_V.html.
    • (2005)
    • Chiappa, S.1    Millán, J.R.2
  • 25
    • 84857797761 scopus 로고    scopus 로고
    • BCI competition III
    • BCI competition III, http://www.bbci.de/competition/iii.
  • 26
    • 58349104329 scopus 로고    scopus 로고
    • Multiclass least-square support vector machines for analog modulation classification
    • Abdulkadir S. Multiclass least-square support vector machines for analog modulation classification. Expert Syst. Appl. 2009, 36:6681-6685.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 6681-6685
    • Abdulkadir, S.1
  • 27
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • Polat K., Gunes S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl. Math. Comput. 2007, 187:1017-1026.
    • (2007) Appl. Math. Comput. , vol.187 , pp. 1017-1026
    • Polat, K.1    Gunes, S.2
  • 28
    • 84857799190 scopus 로고    scopus 로고
    • Sample size calculator
    • Sample size calculator, http://www.surveysystem.com/sscalc.htm.
  • 29
    • 0035682573 scopus 로고    scopus 로고
    • Indication of non linear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
    • Andrzejak R.G., Lehnertz K., Mormann F., Rieke C., David P., Elger C.E. Indication of non linear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 2001, 64:061907.
    • (2001) Phys. Rev. E , vol.64 , pp. 061907
    • Andrzejak, R.G.1    Lehnertz, K.2    Mormann, F.3    Rieke, C.4    David, P.5    Elger, C.E.6
  • 34
    • 33750704262 scopus 로고    scopus 로고
    • PSO-based hyper-parameters selection for LS-SVM classifiers, ICONIP 2006, Part II, LNCS 4233
    • X.C. Guo, Y.C. Liang, C.G. Wu, C.Y. Wang, PSO-based hyper-parameters selection for LS-SVM classifiers, ICONIP 2006, Part II, LNCS 4233, pp. 1138-1147.
    • Guo, X.C.1    Liang, Y.C.2    Wu, C.G.3    Wang, C.Y.4
  • 35
    • 67349154400 scopus 로고    scopus 로고
    • Modelling of a new solar air heater through least-squares support vector machines
    • Esen H., Ozgen F., Esen M., Sengur A. Modelling of a new solar air heater through least-squares support vector machines. Expert Syst. Appl. 2009, 36:10673-10682.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10673-10682
    • Esen, H.1    Ozgen, F.2    Esen, M.3    Sengur, A.4
  • 36
    • 58149461398 scopus 로고    scopus 로고
    • Classification of mental task from EEG data using neural networks based on particle swarm optimization
    • Lin C.J., Hsieh M.H. Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 2009, 72:1121-1130.
    • (2009) Neurocomputing , vol.72 , pp. 1121-1130
    • Lin, C.J.1    Hsieh, M.H.2
  • 37
    • 38349098748 scopus 로고    scopus 로고
    • The random electrode selection ensemble for EEG signal
    • Sun S., Zhang C., Lu Y. The random electrode selection ensemble for EEG signal. Pattern Recognit. 2008, 41:1663-1675.
    • (2008) Pattern Recognit. , vol.41 , pp. 1663-1675
    • Sun, S.1    Zhang, C.2    Lu, Y.3
  • 38
    • 34548688428 scopus 로고    scopus 로고
    • An experimental evaluation of ensemble methods for EEG signal classification
    • Sun S., Zhang C., Zhang D. An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognit. Lett. 2007, 28:2157-2163.
    • (2007) Pattern Recognit. Lett. , vol.28 , pp. 2157-2163
    • Sun, S.1    Zhang, C.2    Zhang, D.3
  • 39
    • 33749545271 scopus 로고    scopus 로고
    • Adaptive feature extraction for EEG signal classification
    • Sun S., Zhang C. Adaptive feature extraction for EEG signal classification. Med. Biol. Eng. Comput. 2006, 44(10):931-935.
    • (2006) Med. Biol. Eng. Comput. , vol.44 , Issue.10 , pp. 931-935
    • Sun, S.1    Zhang, C.2
  • 40
    • 33745290218 scopus 로고    scopus 로고
    • Learning on-line classification via decorrelated LMS algorithm: application to brain computer interfaces
    • in: A. Hoffman, H. Motoda, T. Scheffer (Eds), DS, LNAI 3735
    • S. Sun, C. Zhang, Learning on-line classification via decorrelated LMS algorithm: application to brain computer interfaces, in: A. Hoffman, H. Motoda, T. Scheffer (Eds), DS 2005 (2005), LNAI 3735, pp. 215-226.
    • (2005) , pp. 215-226
    • Sun, S.1    Zhang, C.2
  • 41
    • 51449117622 scopus 로고    scopus 로고
    • Sparse spatial filter optimization for EEG channel reduction in brain-computer interface
    • Yong X., Ward R.K., Birch G.E. Sparse spatial filter optimization for EEG channel reduction in brain-computer interface. ICASSP 2008, 417-420.
    • (2008) ICASSP , pp. 417-420
    • Yong, X.1    Ward, R.K.2    Birch, G.E.3
  • 43
    • 67149094955 scopus 로고    scopus 로고
    • Composite common spatial pattern for subject-to-subject transfer
    • August
    • Kang H., Nam Y., Choi S. Composite common spatial pattern for subject-to-subject transfer. IEEE Signal Process. Lett. 2009, 16(August (8)):683-686.
    • (2009) IEEE Signal Process. Lett. , vol.16 , Issue.8 , pp. 683-686
    • Kang, H.1    Nam, Y.2    Choi, S.3
  • 44
    • 80655135269 scopus 로고    scopus 로고
    • Spatially regularized common spatial patterns for EEG classification, Inria-00447435
    • (25 January) version
    • F. Lotte, C. Guan, Spatially regularized common spatial patterns for EEG classification, Inria-00447435 (25 January 2010) version 2.
    • (2010) , vol.2
    • Lotte, F.1    Guan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.