-
1
-
-
79751477368
-
A glimpse of various pathogenetic mechanisms of diabetic nephropathy
-
Kanwar YS, Sun L, Xie P, Liu FY, Chen S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol Mech Dis. 2011;6:395-423
-
(2011)
Annu Rev Pathol Mech Dis.
, vol.6
, pp. 395-423
-
-
Kanwar, Y.S.1
Sun, L.2
Xie, P.3
Liu, F.Y.4
Chen, S.5
-
2
-
-
37549035027
-
Diabetic nephropathy: Mechanisms of renal disease progression
-
KanwarYS,WadaJ, Sun L, et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med. 2008;233(1):4-11
-
(2008)
Exp Biol Med.
, vol.233
, Issue.1
, pp. 4-11
-
-
Kanwar, Y.S.1
Wada, J.2
Sun, L.3
-
3
-
-
67449083682
-
The mesangial cell revisited: No cell is an island
-
Schlöndorff D, Banas B. The mesangial cell revisited: no cell is an island. J Am Soc Nephrol. 2009;20(6):1179-1187
-
(2009)
J Am Soc Nephrol.
, vol.20
, Issue.6
, pp. 1179-1187
-
-
Schlöndorff, D.1
Banas, B.2
-
4
-
-
0037406905
-
Glucose, glycation, and RAGE: Implications for amplification of cellular dysfunction in diabetic nephropathy
-
Wendt T, Tanji N, Guo J, et al. Glucose, glycation, and RAGE: Implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1383-1395
-
(2003)
J Am Soc Nephrol.
, vol.14
, Issue.5
, pp. 1383-1395
-
-
Wendt, T.1
Tanji, N.2
Guo, J.3
-
5
-
-
44449132702
-
Role of AGEs in diabetic nephropathy
-
Fukami K, Yamagishi S, Ueda S, Okuda S. Role of AGEs in diabetic nephropathy. Curr Pharm Des. 2008;14(10):946-952
-
(2008)
Curr Pharm Des.
, vol.14
, Issue.10
, pp. 946-952
-
-
Fukami, K.1
Yamagishi, S.2
Ueda, S.3
Okuda, S.4
-
6
-
-
77953729130
-
Advanced glycation end products, oxidative stress and diabetic nephropathy
-
Yamagishi SI, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev. 2010; 3(2):101-108
-
(2012)
Oxid Med Cell Longev.
, vol.3
, Issue.2
, pp. 101-108
-
-
Yamagishi, S.I.1
Matsui, T.2
-
8
-
-
79955661471
-
Mammalian sirt1 insights on its biological functions
-
Rahman S, Islam R. Mammalian Sirt1: Insights on its biological functions. Cell Commun Signal. 2011;9:1-8
-
(2011)
Cell Commun Signal.
, vol.9
, pp. 1-8
-
-
Rahman, S.1
Islam, R.2
-
9
-
-
84887415137
-
Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes
-
Hasegawa K, Wakino S, Simic P, et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med. 2013;19(11):1496-1504
-
(2013)
Nat Med.
, vol.19
, Issue.11
, pp. 1496-1504
-
-
Hasegawa, K.1
Wakino, S.2
Simic, P.3
-
10
-
-
84872008953
-
Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy
-
Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: Relationship with aging and diabetic nephropathy. Clin Sci (Lond). 2013;124(3):153-164
-
(2013)
Clin Sci (Lond).
, vol.124
, Issue.3
, pp. 153-164
-
-
Kitada, M.1
Kume, S.2
Takeda-Watanabe, A.3
Kanasaki, K.4
Koya, D.5
-
11
-
-
84884519280
-
Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-ß1 by activating the Nrf2/ARE pathway in glomerular mesangial cells
-
Huang K, Huang J, Xie X, et al. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-ß1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic Biol Med. 2013;65:528-540
-
(2013)
Free Radic Biol Med.
, vol.65
, pp. 528-540
-
-
Huang, K.1
Huang, J.2
Xie, X.3
-
12
-
-
13244298289
-
Nobel committee tags ubiquitin for distinction
-
Goldberg AL. Nobel committee tags ubiquitin for distinction. Neuron. 2005;45(3):339-344
-
(2005)
Neuron.
, vol.45
, Issue.3
, pp. 339-344
-
-
Goldberg, A.L.1
-
13
-
-
46249124976
-
Deubiquitylation and regulation of the immune response
-
Sun SC. Deubiquitylation and regulation of the immune response. Nat Rev Immunol. 2008;8(7):501-511
-
(2008)
Nat Rev Immunol.
, vol.8
, Issue.7
, pp. 501-511
-
-
Sun, S.C.1
-
14
-
-
35348931646
-
Mechanisms, biology and inhibitors of deubiquitinating enzymes
-
Love KR, Catic A, Schlieker C, Ploegh HL. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol. 2007; 3(11):697-705
-
(2007)
Nat Chem Biol.
, vol.3
, Issue.11
, pp. 697-705
-
-
Love, K.R.1
Catic, A.2
Schlieker, C.3
Ploegh, H.L.4
-
15
-
-
56749161705
-
Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: Emerging patterns and molecular principles
-
Edelmann MJ, Kessler BM. Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: Emerging patterns and molecular principles. Biochim Biophys Acta. 2008;1782(12):809-816
-
(2008)
Biochim Biophys Acta.
, vol.1782
, Issue.12
, pp. 809-816
-
-
Edelmann, M.J.1
Kessler, B.M.2
-
16
-
-
77949733627
-
Emerging roles of deubiquitinases in cancer-Associated pathways
-
Sacco JJ, Coulson JM, Clague MJ, Urbé S. Emerging roles of deubiquitinases in cancer-Associated pathways. IUBMB Life. 2010; 62(2):140-157
-
(2012)
IUBMB Life.
, vol.62
, Issue.2
, pp. 140-157
-
-
Sacco, J.J.1
Coulson, J.M.2
Clague, M.J.3
Urbé, S.4
-
17
-
-
84874228973
-
The ways and means that fine tune Sirt1 activity
-
Revollo JR, Li X. The ways and means that fine tune Sirt1 activity. Trends Biochem Sci. 2013;38(3):160-167
-
(2013)
Trends Biochem Sci.
, vol.38
, Issue.3
, pp. 160-167
-
-
Revollo, J.R.1
Li, X.2
-
18
-
-
62149130110
-
Cellular regulation of SIRT1
-
Milner J. Cellular regulation of SIRT1. Curr Pharm Des. 2009; 15(1):39-44
-
(2009)
Curr Pharm Des.
, vol.15
, Issue.1
, pp. 39-44
-
-
Milner, J.1
-
19
-
-
84867702707
-
Sirtuin activators and inhibitors
-
Villalba JM, Alcaín FJ. Sirtuin activators and inhibitors. Biofactors. 2012;38(5):349-359
-
(2012)
Biofactors.
, vol.38
, Issue.5
, pp. 349-359
-
-
Villalba, J.M.1
Alcaín, F.J.2
-
20
-
-
84864667383
-
Regulation of sirtuin function by posttranslational modifications
-
Flick F, Lüscher B. Regulation of sirtuin function by posttranslational modifications. Front Pharmacol. 2012;3:29
-
(2012)
Front Pharmacol.
, vol.3
, pp. 29
-
-
Flick, F.1
Lüscher, B.2
-
21
-
-
77954470727
-
Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide
-
Sasaki T, Kim HJ, Kobayashi M, et al. Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology. 2010;151(6):2556-2566
-
(2012)
Endocrinology.
, vol.151
, Issue.6
, pp. 2556-2566
-
-
Sasaki, T.1
Kim, H.J.2
Kobayashi, M.3
-
22
-
-
74049084565
-
Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase
-
Hong EH, Lee SJ, Kim JS, et al. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem. 2010;285(2):1283-1295
-
(2012)
J Biol Chem.
, vol.285
, Issue.2
, pp. 1283-1295
-
-
Hong, E.H.1
Lee, S.J.2
Kim, J.S.3
-
23
-
-
79959355078
-
Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun Nterminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity
-
Gao Z, Zhang J, Kheterpal I, Kennedy N, Davis RJ, Ye JP. Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun Nterminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem. 2011;286(25):22227-22234
-
(2011)
J Biol Chem.
, vol.286
, Issue.25
, pp. 22227-22234
-
-
Gao, Z.1
Zhang, J.2
Kheterpal, I.3
Kennedy, N.4
Davis, R.J.5
Ye, J.P.6
-
24
-
-
4544329815
-
Bimodal effect of advanced glycation end products on mesangial cell proliferation is mediated by neutral ceramidase regulation and endogenous sphingolipids
-
Geoffroy K, Wiernsperger N, Lagarde M, El Bawab S. Bimodal effect of advanced glycation end products on mesangial cell proliferation is mediated by neutral ceramidase regulation and endogenous sphingolipids. J Biol Chem. 2004;279(33):34343-34352
-
(2004)
J Biol Chem.
, vol.279
, Issue.33
, pp. 34343-34352
-
-
Geoffroy, K.1
Wiernsperger, N.2
Lagarde, M.3
El Bawab, S.4
-
25
-
-
49649090145
-
RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes
-
Perrone L, Peluso G, Melone MA. RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. J Cell Physiol. 2008;217(1):60-71
-
(2008)
J Cell Physiol.
, vol.217
, Issue.1
, pp. 60-71
-
-
Perrone, L.1
Peluso, G.2
Melone, M.A.3
-
26
-
-
70350371629
-
Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor γ transactivation
-
Xie YB, Park JH, Kim DK, et al. Transcriptional corepressor SMILE recruits SIRT1 to inhibit nuclear receptor estrogen receptor-related receptor γ transactivation. J Biol Chem. 2009;284(42):28762-28774
-
(2009)
J Biol Chem.
, vol.284
, Issue.42
, pp. 28762-28774
-
-
Xie, Y.B.1
Park, J.H.2
Kim, D.K.3
-
27
-
-
27244443314
-
The ubiquitin signal: Assembly, recognition and termination. Symposium on ubiquitin and signaling
-
Wilkinson KD, Ventii KH, Friedrich KL, Mullally JE. The ubiquitin signal: Assembly, recognition and termination. Symposium on ubiquitin and signaling. EMBO Rep. 2005;6(9):815-820
-
(2005)
EMBO Rep.
, vol.6
, Issue.9
, pp. 815-820
-
-
Wilkinson, K.D.1
Ventii, K.H.2
Friedrich, K.L.3
Mullally, J.E.4
-
28
-
-
84890197334
-
The complexity of recognition of ubiquitinated substrates by the 26S proteasome
-
Ciechanover A, Stanhill A. The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim Biophys Acta. 2014;1843(1):86-96
-
(1843)
Biochim Biophys Acta.
, vol.2014
, Issue.1
, pp. 86-96
-
-
Ciechanover, A.1
Stanhill, A.2
-
29
-
-
84881118554
-
Cellular signalling of the receptor for advanced glycation end products (RAGE)
-
Xie J, Méndez JD, Méndez-Valenzuela V, Aguilar-Hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 2013;25(11):2185-2197
-
(2013)
Cell Signal.
, vol.25
, Issue.11
, pp. 2185-2197
-
-
Xie, J.1
Méndez, J.D.2
Méndez-Valenzuela, V.3
Aguilar-Hernández, M.M.4
-
30
-
-
66249144685
-
Identification and characterization of proteins interacting with SIRT1 and SIRT3: Implications in the antiaging and metabolic effects of sirtuins
-
Law IK, Liu L, Xu A, et al. Identification and characterization of proteins interacting with SIRT1 and SIRT3: Implications in the antiaging and metabolic effects of sirtuins. Proteomics. 2009;9(9): 2444-2456
-
(2009)
Proteomics.
, vol.9
, Issue.9
, pp. 2444-2456
-
-
Law, I.K.1
Liu, L.2
Xu, A.3
-
31
-
-
84861461517
-
USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development
-
Lin ZH, Yang HY, Kong QF, et al. USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell. 2012;46(4):1-11
-
(2012)
Mol Cell.
, vol.46
, Issue.4
, pp. 1-11
-
-
Lin, Z.H.1
Yang, H.Y.2
Kong, Q.F.3
-
32
-
-
17144432071
-
AGEs activate mesangial TGF-ß-Smad signaling via an angiotensin II type i receptor interaction
-
Fukami K, Ueda S, Yamagishi S, et al. AGEs activate mesangial TGF-ß-Smad signaling via an angiotensin II type I receptor interaction. Kidney Int. 2004;66(6):2137-2147
-
(2004)
Kidney Int.
, vol.66
, Issue.6
, pp. 2137-2147
-
-
Fukami, K.1
Ueda, S.2
Yamagishi, S.3
-
33
-
-
0037377697
-
RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy
-
Wendt TM, Tanji N, Guo J, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol. 2003;162(4):1123-1137
-
(2003)
Am J Pathol.
, vol.162
, Issue.4
, pp. 1123-1137
-
-
Wendt, T.M.1
Tanji, N.2
Guo, J.3
-
34
-
-
77955375901
-
Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse
-
Reiniger N, Lau K, McCalla D, et al. Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse. Diabetes. 2010;59(8):2043-2054
-
(2012)
Diabetes.
, vol.59
, Issue.8
, pp. 2043-2054
-
-
Reiniger, N.1
Lau, K.2
McCalla, D.3
-
35
-
-
77957685095
-
Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor
-
Sourris KC, Morley AL, Koitka A, et al. Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor. Diabetologia. 2010;53(11):2442-2451
-
(2012)
Diabetologia.
, vol.53
, Issue.11
, pp. 2442-2451
-
-
Sourris, K.C.1
Morley, A.L.2
Koitka, A.3
-
36
-
-
84867757240
-
Advanced-glycation-end-product-induced formation of immunoproteasomes: Involvement of RAGE and Jak2/STAT1
-
Grimm S, Ott C, Hörlacher M, Weber D, Höhn A, Grune T. Advanced-glycation-end-product-induced formation of immunoproteasomes: Involvement of RAGE and Jak2/STAT1. Biochem J. 2012;448(1):127-139
-
(2012)
Biochem J.
, vol.448
, Issue.1
, pp. 127-139
-
-
Grimm, S.1
Ott, C.2
Hörlacher, M.3
Weber, D.4
Höhn, A.5
Grune, T.6
-
37
-
-
79955134104
-
AGEs decrease insulin synthesis in pancreaticß-cell by repressing Pdx-1 protein expression at the post-translational level
-
Shu T, Zhu Y, Wang H, Lin Y,MaZ, Han X. AGEs decrease insulin synthesis in pancreaticß-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS One. 2011;6(4):e18782
-
(2011)
PLoS One.
, vol.6
, Issue.4
, pp. e18782
-
-
Shu, T.1
Zhu, Y.2
Wang, H.3
Lin, Y.4
Ma, Z.5
Han, X.6
-
38
-
-
84875221298
-
Depletion of the receptor for advanced glycation end products (RAGE) sensitizes towards apoptosis via p53 and p73 posttranslational regulation
-
Brune M, Müller M, Melino G, Bierhaus A, Schilling T, Nawroth PP. Depletion of the receptor for advanced glycation end products (RAGE) sensitizes towards apoptosis via p53 and p73 posttranslational regulation. Oncogene. 2013;32(11):1460-1468
-
(2013)
Oncogene.
, vol.32
, Issue.11
, pp. 1460-1468
-
-
Brune, M.1
Müller, M.2
Melino, G.3
Bierhaus, A.4
Schilling, T.5
Nawroth, P.P.6
-
39
-
-
38149078715
-
The putative cancer stem cell marker USP22 is a subunit of thehumanSAGAcomplex required for activated transcription and cell-cycle progression
-
Zhang XY, Varthi M, Sykes SM, et al. The putative cancer stem cell marker USP22 is a subunit of thehumanSAGAcomplex required for activated transcription and cell-cycle progression. Mol Cell. 2008; 29(1):102-111
-
(2008)
Mol Cell.
, vol.29
, Issue.1
, pp. 102-111
-
-
Zhang, X.Y.1
Varthi, M.2
Sykes, S.M.3
-
40
-
-
45849133054
-
USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A
-
Zhang XY, Pfeiffer HK, Thorne AW, McMahon SB. USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle. 2008;7(11):1522-1524
-
(2008)
Cell Cycle.
, vol.7
, Issue.11
, pp. 1522-1524
-
-
Zhang, X.Y.1
Pfeiffer, H.K.2
Thorne, A.W.3
McMahon, S.B.4
-
41
-
-
80052281618
-
USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1
-
Atanassov BS, Dent SY. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1.EMBORep. 2011; 12(9):924-930
-
(2011)
EMBORep.
, vol.12
, Issue.9
, pp. 924-930
-
-
Atanassov, B.S.1
Dent, S.Y.2
-
42
-
-
84876339680
-
A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex
-
Armour SM, Bennett EJ, Braun CR, et al. A high-confidence interaction map identifies SIRT1 as a mediator of acetylation of USP22 and the SAGA coactivator complex. Mol Cell Biol. 2013;33(8): 1487-1502
-
(2013)
Mol Cell Biol.
, vol.33
, Issue.8
, pp. 1487-1502
-
-
Armour, S.M.1
Bennett, E.J.2
Braun, C.R.3
-
43
-
-
84882395972
-
The epigenetic modifier ubiquitin specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of Sex determining region Y-box 2 (SOX2)
-
Sussman RT, Stanek TJ, Esteso P, Gearhart JD, Knudsen KE, Mc-Mahon SB. The epigenetic modifier ubiquitin specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of Sex determining region Y-box 2 (SOX2). J Biol Chem. 2013;288(33):24234-24246
-
(2013)
J Biol Chem.
, vol.288
, Issue.33
, pp. 24234-24246
-
-
Sussman, R.T.1
Stanek, T.J.2
Esteso, P.3
Gearhart, J.D.4
Knudsen, K.E.5
Mc-Mahon, S.B.6
-
44
-
-
0346333293
-
The proteasome as a target for cancer therapy
-
Voorhees PM, Dees EC, O'Neil B, Orlowski RZ. The proteasome as a target for cancer therapy. Clin Cancer Res. 2003;9(17):6316-6325
-
(2003)
Clin Cancer Res.
, vol.9
, Issue.17
, pp. 6316-6325
-
-
Voorhees, P.M.1
Dees, E.C.2
O'neil, B.3
Orlowski, R.Z.4
-
45
-
-
2642551603
-
Development of the proteasome inhibitor Veleade (Bortezomib)
-
Adams J, Kauffillan M. Development of the proteasome inhibitor Veleade (Bortezomib). Cancer Invesr. 2004;22(2):304-311
-
(2004)
Cancer Invesr.
, vol.22
, Issue.2
, pp. 304-311
-
-
Adams, J.1
Kauffillan, M.2
-
46
-
-
84874189145
-
Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders
-
Song R, Peng W, Zhang Y, et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature. 2013; 494(7437):375-379
-
(2013)
Nature.
, vol.494
, Issue.7437
, pp. 375-379
-
-
Song, R.1
Peng, W.2
Zhang, Y.3
-
47
-
-
33644787193
-
The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: Effects of rosiglitazone treatment
-
Marfella R, D'Amico M, Esposito K, et al. The ubiquitin-proteasome system and inflammatory activity in diabetic atherosclerotic plaques: Effects of rosiglitazone treatment. Diabetes. 2006;55(3): 622-632
-
(2006)
Diabetes.
, vol.55
, Issue.3
, pp. 622-632
-
-
Marfella, R.1
D'amico, M.2
Esposito, K.3
-
48
-
-
50949116171
-
Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina
-
Kurihara T, Ozawa Y, Nagai N, et al. Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina. Diabetes. 2008;57(8):2191-2198
-
(2008)
Diabetes.
, vol.57
, Issue.8
, pp. 2191-2198
-
-
Kurihara, T.1
Ozawa, Y.2
Nagai, N.3
-
49
-
-
84893360692
-
MG132 ameliorates kidney lesions by inhibiting the degradation of Smad7 in streptozotocin-induced diabetic nephropathy
-
Gao CL, Aqie K, Zhu JH, et al. MG132 ameliorates kidney lesions by inhibiting the degradation of Smad7 in streptozotocin-induced diabetic nephropathy. J Diabetes Res. 2014;2014:918396.
-
(2014)
J Diabetes Res.
, vol.2014
, pp. 918396
-
-
Gao, C.L.1
Aqie, K.2
Zhu, J.H.3
|