메뉴 건너뛰기




Volumn 54, Issue 12, 2014, Pages 3344-3361

Time-averaged distributions of solute and solvent motions: Exploring proton wires of GFP and PfM2DH

Author keywords

[No Author keywords available]

Indexed keywords

CHROMOPHORES; HYDROGEN; HYDROGEN BONDS; MOLECULAR DYNAMICS; PROTEINS; SOLVATION; SOLVENTS;

EID: 84919663273     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci500571h     Document Type: Article
Times cited : (28)

References (79)
  • 1
    • 77955810437 scopus 로고    scopus 로고
    • New Hypotheses about the Structure-Function of Proprotein Convertase Subtilisin/kexin Type 9: Analysis of the Epidermal Growth Factor-like Repeat A Docking Site Using WaterMap
    • Pearlstein, R. A.; Hu, Q.-Y.; Zhou, J.; Yowe, D.; Levell, J.; Dale, B.; Kaushik, V. K.; Daniels, D.; Hanrahan, S.; Sherman, W.; Abel, R. New Hypotheses about the Structure-Function of Proprotein Convertase Subtilisin/kexin Type 9: Analysis of the Epidermal Growth Factor-like Repeat A Docking Site Using WaterMap Proteins 2010, 78, 2571-2586
    • (2010) Proteins , vol.78 , pp. 2571-2586
    • Pearlstein, R.A.1    Hu, Q.-Y.2    Zhou, J.3    Yowe, D.4    Levell, J.5    Dale, B.6    Kaushik, V.K.7    Daniels, D.8    Hanrahan, S.9    Sherman, W.10    Abel, R.11
  • 2
    • 84872600203 scopus 로고    scopus 로고
    • The Translocation Kinetics of Antibiotics through Porin OmpC: Insights from Structure-Based Solvation Mapping Using WaterMap
    • Tran, Q.-T.; Williams, S.; Farid, R.; Erdemli, G.; Pearlstein, R. The Translocation Kinetics of Antibiotics through Porin OmpC: Insights from Structure-Based Solvation Mapping Using WaterMap Proteins 2013, 81, 291-299
    • (2013) Proteins , vol.81 , pp. 291-299
    • Tran, Q.-T.1    Williams, S.2    Farid, R.3    Erdemli, G.4    Pearlstein, R.5
  • 3
    • 84882868265 scopus 로고    scopus 로고
    • Contributions of Water Transfer Energy to Protein-Ligand Association and Dissociation Barriers: Watermap Analysis of a Series of p38α MAP Kinase Inhibitors
    • Pearlstein, R. A.; Sherman, W.; Abel, R. Contributions of Water Transfer Energy to Protein-Ligand Association and Dissociation Barriers: Watermap Analysis of a Series of p38α MAP Kinase Inhibitors Proteins 2013, 81, 1509-1526
    • (2013) Proteins , vol.81 , pp. 1509-1526
    • Pearlstein, R.A.1    Sherman, W.2    Abel, R.3
  • 4
    • 84867555063 scopus 로고    scopus 로고
    • Grid Inhomogeneous Solvation Theory: Hydration Structure and Thermodynamics of the Miniature Receptor cucurbit[7]uril
    • Nguyen, C. N.; Young, T. K.; Gilson, M. K. Grid Inhomogeneous Solvation Theory: Hydration Structure and Thermodynamics of the Miniature Receptor cucurbit[7]uril J. Chem. Phys. 2012, 137, 044101
    • (2012) J. Chem. Phys. , vol.137 , pp. 044101
    • Nguyen, C.N.1    Young, T.K.2    Gilson, M.K.3
  • 5
    • 33846524439 scopus 로고    scopus 로고
    • Motifs for Molecular Recognition Exploiting Hydrophobic Enclosure in Protein-ligand Binding
    • Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Motifs for Molecular Recognition Exploiting Hydrophobic Enclosure in Protein-ligand Binding Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 808-813
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 808-813
    • Young, T.1    Abel, R.2    Kim, B.3    Berne, B.J.4    Friesner, R.A.5
  • 6
    • 84862910105 scopus 로고    scopus 로고
    • Computing the Thermodynamic Contributions of Interfacial Water
    • Methods in Molecular Biology; Springer: Clifton, NJ
    • Li, Z.;; Lazaridis, T. Computing the Thermodynamic Contributions of Interfacial Water. Computational Drug Discovery and Design; Methods in Molecular Biology; Springer: Clifton, NJ, 2012; Vol. 819, pp 393-404.
    • (2012) Computational Drug Discovery and Design , vol.819 , pp. 393-404
    • Li, Z.1    Lazaridis, T.2
  • 7
    • 69349089776 scopus 로고    scopus 로고
    • Ligand Mapping on Protein Surfaces by the 3D-RISM Theory: Toward Computational Fragment-Based Drug Design
    • Imai, T.; Oda, K.; Kovalenko, A.; Hirata, F.; Kidera, A. Ligand Mapping on Protein Surfaces by the 3D-RISM Theory: Toward Computational Fragment-Based Drug Design J. Am. Chem. Soc. 2009, 131, 12430-12440
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 12430-12440
    • Imai, T.1    Oda, K.2    Kovalenko, A.3    Hirata, F.4    Kidera, A.5
  • 9
    • 84887096390 scopus 로고    scopus 로고
    • Combining Solvent Thermodynamic Profiles with Functionality Maps of the Hsp90 Binding Site to Predict the Displacement of Water Molecules
    • Haider, K.; Huggins, D. J. Combining Solvent Thermodynamic Profiles with Functionality Maps of the Hsp90 Binding Site to Predict the Displacement of Water Molecules J. Chem. Inf. Model. 2013, 53, 2571-2586
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2571-2586
    • Haider, K.1    Huggins, D.J.2
  • 10
    • 67749089303 scopus 로고    scopus 로고
    • How is the Reactivity of Cytochrome P450cam Affected by Thr252X Mutation? A QM/MM Study for X = Serine, Valine, Alanine, Glycine
    • Altarsha, M.; Benighaus, T.; Kumar, D.; Thiel, W. How Is the Reactivity of Cytochrome P450cam Affected by Thr252X Mutation? A QM/MM Study for X = Serine, Valine, Alanine, Glycine J. Am. Chem. Soc. 2009, 131, 4755-4763
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 4755-4763
    • Altarsha, M.1    Benighaus, T.2    Kumar, D.3    Thiel, W.4
  • 11
    • 67650329864 scopus 로고    scopus 로고
    • QM/MM Study of the Second Proton Transfer in the Catalytic Cycle of the D251N Mutant of Cytochrome P450cam
    • Altarsha, M.; Wang, D.; Benighaus, T.; Kumar, D.; Thiel, W. QM/MM Study of the Second Proton Transfer in the Catalytic Cycle of the D251N Mutant of Cytochrome P450cam J. Phys. Chem. B 2009, 113, 9577-9588
    • (2009) J. Phys. Chem. B , vol.113 , pp. 9577-9588
    • Altarsha, M.1    Wang, D.2    Benighaus, T.3    Kumar, D.4    Thiel, W.5
  • 13
    • 77951811922 scopus 로고    scopus 로고
    • How Does the Reductase Help to Regulate the Catalytic Cycle of Cytochrome P450 3A4 Using the Conserved Water Channel?
    • Fishelovitch, D.; Shaik, S.; Wolfson, H. J.; Nussinov, R. How Does the Reductase Help to Regulate the Catalytic Cycle of Cytochrome P450 3A4 Using the Conserved Water Channel? J. Phys. Chem. B 2010, 114, 5964-5970
    • (2010) J. Phys. Chem. B , vol.114 , pp. 5964-5970
    • Fishelovitch, D.1    Shaik, S.2    Wolfson, H.J.3    Nussinov, R.4
  • 14
    • 60549091531 scopus 로고    scopus 로고
    • The Role of Arginine 38 in Horseradish Peroxidase Enzyme Revisited: A Computational Investigation
    • Tatoli, S.; Zazza, C.; Sanna, N.; Palma, A.; Aschi, M. The Role of Arginine 38 in Horseradish Peroxidase Enzyme Revisited: A Computational Investigation Biophys. Chem. 2009, 141, 87-93
    • (2009) Biophys. Chem. , vol.141 , pp. 87-93
    • Tatoli, S.1    Zazza, C.2    Sanna, N.3    Palma, A.4    Aschi, M.5
  • 16
    • 0242669318 scopus 로고    scopus 로고
    • Protein Side-Chain Motion and Hydration in Proton-Transfer Pathways. Results for Cytochrome p450cam
    • Taraphder, S.; Hummer, G. Protein Side-Chain Motion and Hydration in Proton-Transfer Pathways. Results for Cytochrome p450cam J. Am. Chem. Soc. 2003, 125, 3931-3940
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 3931-3940
    • Taraphder, S.1    Hummer, G.2
  • 17
    • 67649534573 scopus 로고    scopus 로고
    • Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis†
    • Shinobu, A.; Agmon, N. Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis† J. Phys. Chem. A 2009, 113, 7253-7266
    • (2009) J. Phys. Chem. A , vol.113 , pp. 7253-7266
    • Shinobu, A.1    Agmon, N.2
  • 19
    • 33645693765 scopus 로고    scopus 로고
    • Transition in the Temperature-Dependence of GFP Fluorescence: From Proton Wires to Proton Exit
    • Leiderman, P.; Huppert, D.; Agmon, N. Transition in the Temperature-Dependence of GFP Fluorescence: From Proton Wires to Proton Exit Biophys. J. 2006, 90, 1009-1018
    • (2006) Biophys. J. , vol.90 , pp. 1009-1018
    • Leiderman, P.1    Huppert, D.2    Agmon, N.3
  • 20
    • 55649096544 scopus 로고    scopus 로고
    • A Potential Energy Function for Heterogeneous Proton-Wires. Ground and Photoactive States of the Proton-Wire in the Green Fluorescent Protein
    • Vendrell, O.; Gelabert, R.; Moreno, M.; Lluch, J. M. A Potential Energy Function for Heterogeneous Proton-Wires. Ground and Photoactive States of the Proton-Wire in the Green Fluorescent Protein J. Chem. Theory Comput. 2008, 4, 1138-1150
    • (2008) J. Chem. Theory Comput. , vol.4 , pp. 1138-1150
    • Vendrell, O.1    Gelabert, R.2    Moreno, M.3    Lluch, J.M.4
  • 21
    • 12344266417 scopus 로고    scopus 로고
    • Studies of Proton Translocations in Biological Systems: Simulating Proton Transport in Carbonic Anhydrase by EVB-Based Models
    • Braun-Sand, S.; Strajbl, M.; Warshel, A. Studies of Proton Translocations in Biological Systems: Simulating Proton Transport in Carbonic Anhydrase by EVB-Based Models Biophys. J. 2004, 87, 2221-2239
    • (2004) Biophys. J. , vol.87 , pp. 2221-2239
    • Braun-Sand, S.1    Strajbl, M.2    Warshel, A.3
  • 22
    • 0033577309 scopus 로고    scopus 로고
    • Solvent Dynamics and Mechanism of Proton Transfer in Human Carbonic Anhydrase II
    • Toba, S.; Colombo, G.; Merz, K. M. Solvent Dynamics and Mechanism of Proton Transfer in Human Carbonic Anhydrase II J. Am. Chem. Soc. 1999, 121, 2290-2302
    • (1999) J. Am. Chem. Soc. , vol.121 , pp. 2290-2302
    • Toba, S.1    Colombo, G.2    Merz, K.M.3
  • 23
    • 67749114486 scopus 로고    scopus 로고
    • Tightly Connected Water Wires Facilitate Fast Proton Uptake at the Proton Entrance of Proton Pumping Proteins
    • Gu, W.; Helms, V. Tightly Connected Water Wires Facilitate Fast Proton Uptake at The Proton Entrance of Proton Pumping Proteins J. Am. Chem. Soc. 2009, 131, 2080-2081
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 2080-2081
    • Gu, W.1    Helms, V.2
  • 24
    • 0030011088 scopus 로고    scopus 로고
    • Structure and Dynamics of a Proton Wire: A Theoretical Study of H+ Translocation along the Single-File Water Chain in the Gramicidin A Channel
    • Pomès, R.; Roux, B. Structure and Dynamics of a Proton Wire: A Theoretical Study of H+ Translocation along the Single-File Water Chain in the Gramicidin A Channel Biophys. J. 1996, 71, 19-39
    • (1996) Biophys. J. , vol.71 , pp. 19-39
    • Pomès, R.1    Roux, B.2
  • 26
    • 1842445237 scopus 로고    scopus 로고
    • The Transfer of Protons in Water Wires inside Proteins
    • Cukierman, S. The Transfer of Protons in Water Wires inside Proteins Front. Biosci. J. Virtual Libr. 2003, 8, s1118-s1139
    • (2003) Front. Biosci. J. Virtual Libr. , vol.8 , pp. 1118-s1139
    • Cukierman, S.1
  • 27
    • 0035070279 scopus 로고    scopus 로고
    • The Formation and Dynamics of Proton Wires in Channel Environments
    • Brewer, M. L.; Schmitt, U. W.; Voth, G. A. The Formation and Dynamics of Proton Wires in Channel Environments Biophys. J. 2001, 80, 1691-1702
    • (2001) Biophys. J. , vol.80 , pp. 1691-1702
    • Brewer, M.L.1    Schmitt, U.W.2    Voth, G.A.3
  • 28
    • 0037726809 scopus 로고    scopus 로고
    • Water-Gated Mechanism of Proton Translocation by Cytochrome c Oxidase
    • Wikström, M.; Verkhovsky, M. I.; Hummer, G. Water-Gated Mechanism of Proton Translocation by Cytochrome c Oxidase Biochim. Biophys. Acta 2003, 1604, 61-65
    • (2003) Biochim. Biophys. Acta , vol.1604 , pp. 61-65
    • Wikström, M.1    Verkhovsky, M.I.2    Hummer, G.3
  • 29
    • 84875036999 scopus 로고    scopus 로고
    • Quinone-Dependent Proton Transfer Pathways in the Photosynthetic Cytochrome b6f Complex
    • Hasan, S. S.; Yamashita, E.; Baniulis, D.; Cramer, W. A. Quinone-Dependent Proton Transfer Pathways in the Photosynthetic Cytochrome b6f Complex Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4297-4302
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 4297-4302
    • Hasan, S.S.1    Yamashita, E.2    Baniulis, D.3    Cramer, W.A.4
  • 30
    • 79960979207 scopus 로고    scopus 로고
    • Proton Transfer via a Transient Linear Water-Molecule Chain in a Membrane Protein
    • Freier, E.; Wolf, S.; Gerwert, K. Proton Transfer via a Transient Linear Water-Molecule Chain in a Membrane Protein Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 11435-11439
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 11435-11439
    • Freier, E.1    Wolf, S.2    Gerwert, K.3
  • 31
    • 0025823857 scopus 로고
    • Proton Conductance by the Gramicidin Water Wire. Model for Proton Conductance in the F1F0 ATPases?
    • Akeson, M.; Deamer, D. W. Proton Conductance by the Gramicidin Water Wire. Model for Proton Conductance in the F1F0 ATPases? Biophys. J. 1991, 60, 101-109
    • (1991) Biophys. J. , vol.60 , pp. 101-109
    • Akeson, M.1    Deamer, D.W.2
  • 32
    • 0026332339 scopus 로고
    • Water is Required for Proton Transfer from Aspartate-96 to the Bacteriorhodopsin Schiff Base
    • Cao, Y.; Váró, G.; Chang, M.; Ni, B. F.; Needleman, R.; Lanyi, J. K. Water Is Required for Proton Transfer from Aspartate-96 to the Bacteriorhodopsin Schiff Base Biochemistry (Mosc.) 1991, 30, 10972-10979
    • (1991) Biochemistry (Mosc.) , vol.30 , pp. 10972-10979
    • Cao, Y.1    Váró, G.2    Chang, M.3    Ni, B.F.4    Needleman, R.5    Lanyi, J.K.6
  • 33
    • 84881242014 scopus 로고    scopus 로고
    • Charge Transport along Proton Wires
    • Karahka, M. L.; Kreuzer, H. J. Charge Transport along Proton Wires Biointerphases 2013, 8, 13
    • (2013) Biointerphases , vol.8 , pp. 13
    • Karahka, M.L.1    Kreuzer, H.J.2
  • 34
    • 0037130658 scopus 로고    scopus 로고
    • The Active Site of a Zinc-Dependent Metalloproteinase Influences the Computed pKa of Ligands Coordinated to the Catalytic Zinc Ion
    • Cross, J. B.; Duca, J. S.; Kaminski, J. J.; Madison, V. S. The Active Site of a Zinc-Dependent Metalloproteinase Influences the Computed pKa of Ligands Coordinated to the Catalytic Zinc Ion J. Am. Chem. Soc. 2002, 124, 11004-11007
    • (2002) J. Am. Chem. Soc. , vol.124 , pp. 11004-11007
    • Cross, J.B.1    Duca, J.S.2    Kaminski, J.J.3    Madison, V.S.4
  • 36
    • 0033580290 scopus 로고    scopus 로고
    • The Nature of the Hydrated Excess Proton in Water
    • Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The Nature of the Hydrated Excess Proton in Water Nature 1999, 397, 601-604
    • (1999) Nature , vol.397 , pp. 601-604
    • Marx, D.1    Tuckerman, M.E.2    Hutter, J.3    Parrinello, M.4
  • 37
    • 74849104881 scopus 로고    scopus 로고
    • Proton Transport in Carbonic Anhydrase: Insights from Molecular Simulation
    • Maupin, C. M.; Voth, G. A. Proton Transport in Carbonic Anhydrase: Insights from Molecular Simulation Biochim. Biophys. Acta 2010, 1804, 332-341
    • (2010) Biochim. Biophys. Acta , vol.1804 , pp. 332-341
    • Maupin, C.M.1    Voth, G.A.2
  • 38
    • 84879771824 scopus 로고    scopus 로고
    • Car-Parrinello Molecular Dynamics/Molecular Mechanics (CPMD/MM) Simulation Study of Coupling and Uncoupling Mechanisms of Cytochrome P450cam
    • Lian, P.; Li, J.; Wang, D.-Q.; Wei, D.-Q. Car-Parrinello Molecular Dynamics/Molecular Mechanics (CPMD/MM) Simulation Study of Coupling and Uncoupling Mechanisms of Cytochrome P450cam J. Phys. Chem. B 2013, 117, 7849-7856
    • (2013) J. Phys. Chem. B , vol.117 , pp. 7849-7856
    • Lian, P.1    Li, J.2    Wang, D.-Q.3    Wei, D.-Q.4
  • 39
    • 84860390150 scopus 로고    scopus 로고
    • Green Fluorescent Protein: A Perspective
    • Remington, S. J. Green Fluorescent Protein: A Perspective Protein Sci. Publ. Protein Soc. 2011, 20, 1509-1519
    • (2011) Protein Sci. Publ. Protein Soc. , vol.20 , pp. 1509-1519
    • Remington, S.J.1
  • 40
    • 0344211501 scopus 로고    scopus 로고
    • Crystal Structure of Pseudomonas Fluorescens Mannitol 2-Dehydrogenase: Evidence for a Very Divergent Long-Chain Dehydrogenase Family
    • Kavanagh, K. L.; Klimacek, M.; Nidetzky, B.; Wilson, D. K. Crystal Structure of Pseudomonas Fluorescens Mannitol 2-Dehydrogenase: Evidence for a Very Divergent Long-Chain Dehydrogenase Family Chem. Biol. Interact. 2003, 143-144, 551-558
    • (2003) Chem. Biol. Interact. , vol.143-144 , pp. 551-558
    • Kavanagh, K.L.1    Klimacek, M.2    Nidetzky, B.3    Wilson, D.K.4
  • 42
    • 0029757121 scopus 로고    scopus 로고
    • Ultra-Fast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer
    • Chattoraj, M.; King, B. A.; Bublitz, G. U.; Boxer, S. G. Ultra-Fast Excited State Dynamics in Green Fluorescent Protein: Multiple States and Proton Transfer Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 8362-8367
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 8362-8367
    • Chattoraj, M.1    King, B.A.2    Bublitz, G.U.3    Boxer, S.G.4
  • 44
    • 50349096091 scopus 로고    scopus 로고
    • Balance between Ultrafast Parallel Reactions in the Green Fluorescent Protein Has a Structural Origin
    • Van Thor, J. J.; Ronayne, K. L.; Towrie, M.; Sage, J. T. Balance between Ultrafast Parallel Reactions in the Green Fluorescent Protein Has a Structural Origin Biophys. J. 2008, 95, 1902-1912
    • (2008) Biophys. J. , vol.95 , pp. 1902-1912
    • Van Thor, J.J.1    Ronayne, K.L.2    Towrie, M.3    Sage, J.T.4
  • 45
    • 22144472527 scopus 로고    scopus 로고
    • Proton Pathways in Green Fluorescence Protein
    • Agmon, N. Proton Pathways in Green Fluorescence Protein Biophys. J. 2005, 88, 2452-2461
    • (2005) Biophys. J. , vol.88 , pp. 2452-2461
    • Agmon, N.1
  • 47
    • 14844302645 scopus 로고    scopus 로고
    • Observation of Excited-State Proton Transfer in Green Fluorescent Protein Using Ultrafast Vibrational Spectroscopy
    • Stoner-Ma, D.; Jaye, A. A.; Matousek, P.; Towrie, M.; Meech, S. R.; Tonge, P. J. Observation of Excited-State Proton Transfer in Green Fluorescent Protein Using Ultrafast Vibrational Spectroscopy J. Am. Chem. Soc. 2005, 127, 2864-2865
    • (2005) J. Am. Chem. Soc. , vol.127 , pp. 2864-2865
    • Stoner-Ma, D.1    Jaye, A.A.2    Matousek, P.3    Towrie, M.4    Meech, S.R.5    Tonge, P.J.6
  • 48
    • 0031663369 scopus 로고    scopus 로고
    • The Green Fluorescent Protein
    • Tsien, R. Y. The Green Fluorescent Protein Annu. Rev. Biochem. 1998, 67, 509-544
    • (1998) Annu. Rev. Biochem. , vol.67 , pp. 509-544
    • Tsien, R.Y.1
  • 51
    • 38649117900 scopus 로고    scopus 로고
    • An Alternate Proton Acceptor for Excited-State Proton Transfer in Green Fluorescent Protein: Rewiring GFP
    • Stoner-Ma, D.; Jaye, A. A.; Ronayne, K. L.; Nappa, J.; Meech, S. R.; Tonge, P. J. An Alternate Proton Acceptor for Excited-State Proton Transfer in Green Fluorescent Protein: Rewiring GFP J. Am. Chem. Soc. 2008, 130, 1227-1235
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 1227-1235
    • Stoner-Ma, D.1    Jaye, A.A.2    Ronayne, K.L.3    Nappa, J.4    Meech, S.R.5    Tonge, P.J.6
  • 52
  • 54
    • 78751679987 scopus 로고    scopus 로고
    • Computer Modeling of the Structure and Spectra of Fluorescent Proteins
    • Nemukhin, A. V.; Grigorenko, B. L.; Savitsky, A. P. Computer Modeling of the Structure and Spectra of Fluorescent Proteins Acta Naturae 2009, 1, 33-43
    • (2009) Acta Naturae , vol.1 , pp. 33-43
    • Nemukhin, A.V.1    Grigorenko, B.L.2    Savitsky, A.P.3
  • 55
    • 0037022637 scopus 로고    scopus 로고
    • Proton Shuttle in Green Fluorescent Protein Studied by Dynamic Simulations
    • Lill, M. A.; Helms, V. Proton Shuttle in Green Fluorescent Protein Studied by Dynamic Simulations Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2778-2781
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 2778-2781
    • Lill, M.A.1    Helms, V.2
  • 56
    • 10844242118 scopus 로고    scopus 로고
    • Molecular Modeling of Green Fluorescent Protein: Structural Effects of Chromophore Deprotonation
    • Patnaik, S. S.; Trohalaki, S.; Pachter, R. Molecular Modeling of Green Fluorescent Protein: Structural Effects of Chromophore Deprotonation Biopolymers 2004, 75, 441-452
    • (2004) Biopolymers , vol.75 , pp. 441-452
    • Patnaik, S.S.1    Trohalaki, S.2    Pachter, R.3
  • 57
    • 0000839619 scopus 로고    scopus 로고
    • Internal Dynamics of Green Fluorescent Protein
    • Helms, V.; Straatsma, T. P.; McCammon, J. A. Internal Dynamics of Green Fluorescent Protein J. Phys. Chem. B 1999, 103, 3263-3269
    • (1999) J. Phys. Chem. B , vol.103 , pp. 3263-3269
    • Helms, V.1    Straatsma, T.P.2    McCammon, J.A.3
  • 58
    • 84885612778 scopus 로고    scopus 로고
    • Proton Transfer in Wild-Type GFP and S205V Mutant is Reduced by Conformational Changes of Residues in the Proton Wire
    • Simkovitch, R.; Huppert, A.; Huppert, D.; Remington, S. J.; Miller, Y. Proton Transfer in Wild-Type GFP and S205V Mutant Is Reduced by Conformational Changes of Residues in the Proton Wire J. Phys. Chem. B 2013, 117, 11921-11931
    • (2013) J. Phys. Chem. B , vol.117 , pp. 11921-11931
    • Simkovitch, R.1    Huppert, A.2    Huppert, D.3    Remington, S.J.4    Miller, Y.5
  • 59
    • 47149110544 scopus 로고    scopus 로고
    • Operation of the Proton Wire in Green Fluorescent Protein. A Quantum Dynamics Simulation
    • Vendrell, O.; Gelabert, R.; Moreno, M.; Lluch, J. M. Operation of the Proton Wire in Green Fluorescent Protein. A Quantum Dynamics Simulation J. Phys. Chem. B 2008, 112, 5500-5511
    • (2008) J. Phys. Chem. B , vol.112 , pp. 5500-5511
    • Vendrell, O.1    Gelabert, R.2    Moreno, M.3    Lluch, J.M.4
  • 60
    • 84881224293 scopus 로고    scopus 로고
    • First-Principles Characterization of the Energy Landscape and Optical Spectra of Green Fluorescent Protein along the AIB Proton Transfer Route
    • Grigorenko, B. L.; Nemukhin, A. V.; Polyakov, I. V.; Morozov, D. I.; Krylov, A. I. First-Principles Characterization of the Energy Landscape and Optical Spectra of Green Fluorescent Protein along the AIB Proton Transfer Route J. Am. Chem. Soc. 2013, 135, 11541-11549
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 11541-11549
    • Grigorenko, B.L.1    Nemukhin, A.V.2    Polyakov, I.V.3    Morozov, D.I.4    Krylov, A.I.5
  • 62
    • 25444439796 scopus 로고    scopus 로고
    • Deprotonation of the Horse Liver Alcohol Dehydrogenase-NAD+ Complex Controls Formation of the Ternary Complexes
    • Kovaleva, E. G.; Plapp, B. V. Deprotonation of the Horse Liver Alcohol Dehydrogenase-NAD+ Complex Controls Formation of the Ternary Complexes Biochemistry (Mosc.) 2005, 44, 12797-12808
    • (2005) Biochemistry (Mosc.) , vol.44 , pp. 12797-12808
    • Kovaleva, E.G.1    Plapp, B.V.2
  • 63
    • 73849134425 scopus 로고    scopus 로고
    • The Oxyanion Hole of Pseudomonas Fluorescens Mannitol 2-Dehydrogenase: A Novel Structural Motif for Electrostatic Stabilization in Alcohol Dehydrogenase Active Sites
    • Klimacek, M.; Nidetzky, B. The Oxyanion Hole of Pseudomonas Fluorescens Mannitol 2-Dehydrogenase: A Novel Structural Motif for Electrostatic Stabilization in Alcohol Dehydrogenase Active Sites Biochem. J. 2010, 425, 455-463
    • (2010) Biochem. J. , vol.425 , pp. 455-463
    • Klimacek, M.1    Nidetzky, B.2
  • 64
    • 84857499524 scopus 로고    scopus 로고
    • Dynamic Mechanism of Proton Transfer in Mannitol 2-Dehydrogenase from Pseudomonas Fluorescens Mobile GLU292 Controls Proton Relay through a Water Channel That Connects the Active Site with Bulk Solvent
    • Klimacek, M.; Brunsteiner, M.; Nidetzky, B. Dynamic Mechanism of Proton Transfer in Mannitol 2-Dehydrogenase from Pseudomonas Fluorescens Mobile GLU292 Controls Proton Relay through a Water Channel That Connects the Active Site with Bulk Solvent J. Biol. Chem. 2012, 287, 6655-6667
    • (2012) J. Biol. Chem. , vol.287 , pp. 6655-6667
    • Klimacek, M.1    Brunsteiner, M.2    Nidetzky, B.3
  • 66
    • 0001041959 scopus 로고    scopus 로고
    • Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method
    • Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: I. Method J. Comput. Chem. 2000, 21, 132-146
    • (2000) J. Comput. Chem. , vol.21 , pp. 132-146
    • Jakalian, A.1    Bush, B.L.2    Jack, D.B.3    Bayly, C.I.4
  • 67
    • 0036890178 scopus 로고    scopus 로고
    • Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation
    • Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, Efficient Generation of High-Quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation J. Comput. Chem. 2002, 23, 1623-1641
    • (2002) J. Comput. Chem. , vol.23 , pp. 1623-1641
    • Jakalian, A.1    Jack, D.B.2    Bayly, C.I.3
  • 68
    • 77951986384 scopus 로고    scopus 로고
    • Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database
    • Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T. Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database J. Chem. Inf. Model. 2010, 50, 572-584
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 572-584
    • Hawkins, P.C.D.1    Skillman, A.G.2    Warren, G.L.3    Ellingson, B.A.4    Stahl, M.T.5
  • 69
    • 3042524904 scopus 로고
    • A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model
    • Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model J. Phys. Chem. 1993, 97, 10269-10280
    • (1993) J. Phys. Chem. , vol.97 , pp. 10269-10280
    • Bayly, C.I.1    Cieplak, P.2    Cornell, W.3    Kollman, P.A.4
  • 70
    • 84919602526 scopus 로고    scopus 로고
    • OpenEye Scientific Software, Santa Fe, NM
    • QUACPAC 1.6.3.1; OpenEye Scientific Software, Santa Fe, NM, 2013.
    • (2013) QUACPAC 1.6.3.1
  • 71
    • 0001398008 scopus 로고    scopus 로고
    • How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?
    • Wang, J.; Cieplak, P.; Kollman, P. A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules? J. Comput. Chem. 2000, 21, 1049-1074
    • (2000) J. Comput. Chem. , vol.21 , pp. 1049-1074
    • Wang, J.1    Cieplak, P.2    Kollman, P.A.3
  • 77
    • 67549086082 scopus 로고    scopus 로고
    • Understanding the Functional Roles of Amino Acid Residues in Enzyme Catalysis
    • Holliday, G. L.; Mitchell, J. B. O.; Thornton, J. M. Understanding the Functional Roles of Amino Acid Residues in Enzyme Catalysis J. Mol. Biol. 2009, 390, 560-577
    • (2009) J. Mol. Biol. , vol.390 , pp. 560-577
    • Holliday, G.L.1    Mitchell, J.B.O.2    Thornton, J.M.3
  • 78
    • 77955582052 scopus 로고    scopus 로고
    • Visualizing Proton Antenna in a High-Resolution Green Fluorescent Protein Structure
    • Shinobu, A.; Palm, G. J.; Schierbeek, A. J.; Agmon, N. Visualizing Proton Antenna in a High-Resolution Green Fluorescent Protein Structure J. Am. Chem. Soc. 2010, 132, 11093-11102
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 11093-11102
    • Shinobu, A.1    Palm, G.J.2    Schierbeek, A.J.3    Agmon, N.4
  • 79
    • 39149119230 scopus 로고    scopus 로고
    • Effect of Temperature on Excited-State Proton Tunneling in Wt-Green Fluorescent Protein
    • Leiderman, P.; Gepshtein, R.; Tsimberov, I.; Huppert, D. Effect of Temperature on Excited-State Proton Tunneling in Wt-Green Fluorescent Protein J. Phys. Chem. B 2008, 112, 1232-1239
    • (2008) J. Phys. Chem. B , vol.112 , pp. 1232-1239
    • Leiderman, P.1    Gepshtein, R.2    Tsimberov, I.3    Huppert, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.