-
2
-
-
84865683314
-
Thoughts and facts about antibiotics: where we are now and where we are heading
-
Berdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J. Antibiot. 2012, 65:385-395.
-
(2012)
J. Antibiot.
, vol.65
, pp. 385-395
-
-
Berdy, J.1
-
3
-
-
78649712445
-
The continuing crisis in antibiotic resistance
-
French G.L. The continuing crisis in antibiotic resistance. Int. J. Antimicrob. Agents 2010, 36S3:S3-S7.
-
(2010)
Int. J. Antimicrob. Agents
, pp. S3-S7
-
-
French, G.L.1
-
4
-
-
58149143261
-
What's new on the antimicrobial horizon?
-
Song J.-H. What's new on the antimicrobial horizon?. Int. J. Antimicrob. Agents 2008, 32:S207-S213.
-
(2008)
Int. J. Antimicrob. Agents
, vol.32
, pp. S207-S213
-
-
Song, J.-H.1
-
6
-
-
67249101200
-
Advances in antibacterial therapy against emerging bacterial pathogens
-
Pournaras S., Iosifidis E., Roilidesb E. Advances in antibacterial therapy against emerging bacterial pathogens. Semin. Hematol. 2009, 46:198-211.
-
(2009)
Semin. Hematol.
, vol.46
, pp. 198-211
-
-
Pournaras, S.1
Iosifidis, E.2
Roilidesb, E.3
-
7
-
-
77958151574
-
The global need for effective antibiotics: challenges and recent advances
-
Högberg L.D., Heddini A., Cars O. The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci. 2010, 31:509-515.
-
(2010)
Trends Pharmacol. Sci.
, vol.31
, pp. 509-515
-
-
Högberg, L.D.1
Heddini, A.2
Cars, O.3
-
9
-
-
1042278915
-
The relationship between peptide structure and antibacterial activity
-
Powers J.-P.S., Hancock R.E.W. The relationship between peptide structure and antibacterial activity. Peptides 2003, 24(11):1681-1691.
-
(2003)
Peptides
, vol.24
, Issue.11
, pp. 1681-1691
-
-
Powers, J.-P.S.1
Hancock, R.E.W.2
-
11
-
-
33748413776
-
Antibacterial peptides for therapeutic use: obstacles and realistic outlook
-
Marr A.K., Gooderham W.J., Hancock R.E.W. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 2006, 6(5):468-472.
-
(2006)
Curr. Opin. Pharmacol.
, vol.6
, Issue.5
, pp. 468-472
-
-
Marr, A.K.1
Gooderham, W.J.2
Hancock, R.E.W.3
-
12
-
-
33845699790
-
Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies
-
Hancock R.E.W., Sahl H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24(12):1551-1557.
-
(2006)
Nat. Biotechnol.
, vol.24
, Issue.12
, pp. 1551-1557
-
-
Hancock, R.E.W.1
Sahl, H.G.2
-
13
-
-
80051546187
-
Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals?
-
Brogden N.K., Brogden K.A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals?. Int. J. Antimicrob. Agents 2011, 38(3):217-225.
-
(2011)
Int. J. Antimicrob. Agents
, vol.38
, Issue.3
, pp. 217-225
-
-
Brogden, N.K.1
Brogden, K.A.2
-
14
-
-
84857411069
-
Designing antimicrobial peptides: form follows function
-
Fjell C.D., et al. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov. 2012, 11(1):37-51.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, Issue.1
, pp. 37-51
-
-
Fjell, C.D.1
-
15
-
-
84868120048
-
Antimicrobial peptides for therapeutic applications: a review
-
Seo M.-D., et al. Antimicrobial peptides for therapeutic applications: a review. Molecules 2012, 17(10):12276-12286.
-
(2012)
Molecules
, vol.17
, Issue.10
, pp. 12276-12286
-
-
Seo, M.-D.1
-
16
-
-
84877318780
-
Antimicrobial peptides stage a comeback
-
Fox J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol. 2013, 31(5):379-382.
-
(2013)
Nat. Biotechnol.
, vol.31
, Issue.5
, pp. 379-382
-
-
Fox, J.L.1
-
17
-
-
75449102744
-
De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications
-
Tew G.N., et al. De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc. Chem. Res. 2009, 43(1):30-39.
-
(2009)
Acc. Chem. Res.
, vol.43
, Issue.1
, pp. 30-39
-
-
Tew, G.N.1
-
18
-
-
84862001187
-
Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections
-
Engler A.C., et al. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. NanoToday 2012, 7:201-222.
-
(2012)
NanoToday
, vol.7
, pp. 201-222
-
-
Engler, A.C.1
-
20
-
-
81255136231
-
"Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era
-
Huh A.J., Kwon Y.J. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156(2):128-145.
-
(2011)
J. Control. Release
, vol.156
, Issue.2
, pp. 128-145
-
-
Huh, A.J.1
Kwon, Y.J.2
-
21
-
-
84866401949
-
Antibacterial properties of nanoparticles
-
Hajipour M.J., et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30(10):499-511.
-
(2012)
Trends Biotechnol.
, vol.30
, Issue.10
, pp. 499-511
-
-
Hajipour, M.J.1
-
22
-
-
84855824016
-
Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging
-
Parveen S., Misra R., Sahoo S.K. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: NBM 2012, 8(2):147-166.
-
(2012)
Nanomedicine: NBM
, vol.8
, Issue.2
, pp. 147-166
-
-
Parveen, S.1
Misra, R.2
Sahoo, S.K.3
-
23
-
-
14544282377
-
Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?
-
Brogden K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat. Rev. Microbiol. 2005, 3(3):238-250.
-
(2005)
Nat. Rev. Microbiol.
, vol.3
, Issue.3
, pp. 238-250
-
-
Brogden, K.A.1
-
24
-
-
0032717048
-
Diversity of antimicrobial peptides and their mechanisms of action
-
Epand R.M., Vogel H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta Biomembr. 1999, 1462(1):11-28.
-
(1999)
Biochim. Biophys. Acta Biomembr.
, vol.1462
, Issue.1
, pp. 11-28
-
-
Epand, R.M.1
Vogel, H.J.2
-
25
-
-
0031740520
-
Magainins as paradigm for the mode of action of pore forming polypeptides
-
Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim. Biophys. Acta 1998, 1376(3):391.
-
(1998)
Biochim. Biophys. Acta
, vol.1376
, Issue.3
, pp. 391
-
-
Matsuzaki, K.1
-
26
-
-
84977727466
-
L'hydrogel et l'hydrate cristallin de l'oxyde de cuivre
-
van Bemmelen J.M. L'hydrogel et l'hydrate cristallin de l'oxyde de cuivre. Recl. Trav. Chim. Pays-Bas 1894, 13(8):271-274.
-
(1894)
Recl. Trav. Chim. Pays-Bas
, vol.13
, Issue.8
, pp. 271-274
-
-
van Bemmelen, J.M.1
-
27
-
-
84873254444
-
Hydrogels for delivery of bioactive agents: a historical perspective
-
Lee S.C., Kwon I.K., Park K. Hydrogels for delivery of bioactive agents: a historical perspective. Adv. Drug Deliv. Rev. 2013, 65(1):17-20.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, Issue.1
, pp. 17-20
-
-
Lee, S.C.1
Kwon, I.K.2
Park, K.3
-
28
-
-
0011757065
-
Hydrophilic gels for biological use
-
Wichterle O., Lim D. Hydrophilic gels for biological use. Nature 1960, 185(4706):117-118.
-
(1960)
Nature
, vol.185
, Issue.4706
, pp. 117-118
-
-
Wichterle, O.1
Lim, D.2
-
29
-
-
84870253512
-
Hydrogels for biomedical applications
-
Hoffman A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64(Supplement(0)):18-23.
-
(2012)
Adv. Drug Deliv. Rev.
, vol.64
, Issue.SUPPL.0
, pp. 18-23
-
-
Hoffman, A.S.1
-
30
-
-
33745135423
-
Hydrogels in biology and medicine: from molecular principles to bionanotechnology
-
Peppas N.A., et al. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006, 18(11):1345-1360.
-
(2006)
Adv. Mater.
, vol.18
, Issue.11
, pp. 1345-1360
-
-
Peppas, N.A.1
-
31
-
-
84863229467
-
Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications
-
Li Y., Rodrigues J., Tomas H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 2012, 41(6):2193-2221.
-
(2012)
Chem. Soc. Rev.
, vol.41
, Issue.6
, pp. 2193-2221
-
-
Li, Y.1
Rodrigues, J.2
Tomas, H.3
-
32
-
-
84861076436
-
Hydrogels for protein delivery
-
Vermonden T., Censi R., Hennink W.E. Hydrogels for protein delivery. Chem. Rev. 2012, 112(5):2853-2888.
-
(2012)
Chem. Rev.
, vol.112
, Issue.5
, pp. 2853-2888
-
-
Vermonden, T.1
Censi, R.2
Hennink, W.E.3
-
33
-
-
84862648049
-
Hydrogels for protein delivery in tissue engineering
-
Censi R., et al. Hydrogels for protein delivery in tissue engineering. J. Control. Release 2012, 161(2):680-692.
-
(2012)
J. Control. Release
, vol.161
, Issue.2
, pp. 680-692
-
-
Censi, R.1
-
34
-
-
70349229162
-
Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering
-
Chung H.J., Park T.G. Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 2009, 4(5):429-437.
-
(2009)
Nano Today
, vol.4
, Issue.5
, pp. 429-437
-
-
Chung, H.J.1
Park, T.G.2
-
35
-
-
0035385135
-
Hydrogels for tissue engineering
-
Lee K.Y., Mooney D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101(7):1869-1880.
-
(2001)
Chem. Rev.
, vol.101
, Issue.7
, pp. 1869-1880
-
-
Lee, K.Y.1
Mooney, D.J.2
-
36
-
-
67650169752
-
Hydrogels as extracellular matrix mimics for 3D cell culture
-
Tibbitt M.W., Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 2009, 103(4):655-663.
-
(2009)
Biotechnol. Bioeng.
, vol.103
, Issue.4
, pp. 655-663
-
-
Tibbitt, M.W.1
Anseth, K.S.2
-
37
-
-
84862652414
-
Advances in bioactive hydrogels to probe and direct cell fate
-
DeForest C.A., Anseth K.S. Advances in bioactive hydrogels to probe and direct cell fate. Annu. Rev. Chem. Biomol. Eng. 2012, 3(1):421-444.
-
(2012)
Annu. Rev. Chem. Biomol. Eng.
, vol.3
, Issue.1
, pp. 421-444
-
-
DeForest, C.A.1
Anseth, K.S.2
-
38
-
-
79952700273
-
Biomaterials based on chitin and chitosan in wound dressing applications
-
Jayakumar R., et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29(3):322-337.
-
(2011)
Biotechnol. Adv.
, vol.29
, Issue.3
, pp. 322-337
-
-
Jayakumar, R.1
-
39
-
-
84882870530
-
A review of the biomaterials technologies for infection-resistant surfaces
-
Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34(34):8533-8554.
-
(2013)
Biomaterials
, vol.34
, Issue.34
, pp. 8533-8554
-
-
Campoccia, D.1
Montanaro, L.2
Arciola, C.R.3
-
40
-
-
84881669481
-
A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces
-
Campoccia D., Montanaro L., Arciola C.R. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 2013, 34(33):8018-8029.
-
(2013)
Biomaterials
, vol.34
, Issue.33
, pp. 8018-8029
-
-
Campoccia, D.1
Montanaro, L.2
Arciola, C.R.3
-
41
-
-
84874373115
-
Recent progress of in situ formed gels for biomedical applications
-
Ko D.Y., et al. Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013, 38(3-4):672-701.
-
(2013)
Prog. Polym. Sci.
, vol.38
, Issue.3-4
, pp. 672-701
-
-
Ko, D.Y.1
-
42
-
-
84855590862
-
Antimicrobial and antiviral hydrogels
-
Malmsten M. Antimicrobial and antiviral hydrogels. Soft Matter 2011, 7(19):8725-8736.
-
(2011)
Soft Matter
, vol.7
, Issue.19
, pp. 8725-8736
-
-
Malmsten, M.1
-
43
-
-
84891697603
-
Antimicrobial hydrogels for the treatment of infection
-
Salomé Veiga A., Schneider J.P. Antimicrobial hydrogels for the treatment of infection. Pept. Sci. 2013, 100(6):637-644.
-
(2013)
Pept. Sci.
, vol.100
, Issue.6
, pp. 637-644
-
-
Salomé Veiga, A.1
Schneider, J.P.2
-
44
-
-
79955478547
-
Chitosan-a versatile semi-synthetic polymer in biomedical applications
-
Dash M., et al. Chitosan-a versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36(8):981-1014.
-
(2011)
Prog. Polym. Sci.
, vol.36
, Issue.8
, pp. 981-1014
-
-
Dash, M.1
-
45
-
-
77955412875
-
Biomedical applications of chitin and chitosan based nanomaterials-a short review
-
Jayakumar R., et al. Biomedical applications of chitin and chitosan based nanomaterials-a short review. Carbohydr. Polym. 2010, 82(2):227-232.
-
(2010)
Carbohydr. Polym.
, vol.82
, Issue.2
, pp. 227-232
-
-
Jayakumar, R.1
-
46
-
-
84882279252
-
Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids
-
Larsson M., et al. Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Prog. Polym. Sci. 2013, 38(9):1307-1328.
-
(2013)
Prog. Polym. Sci.
, vol.38
, Issue.9
, pp. 1307-1328
-
-
Larsson, M.1
-
47
-
-
33645549194
-
A special report on the chitosan-based hemostatic dressing: experience in current combat operations
-
Wedmore I., et al. A special report on the chitosan-based hemostatic dressing: experience in current combat operations. J. Trauma. Acute Care Surg. 2006, 60(3):655-658. 10.1097/01.ta.0000199392.91772.44.
-
(2006)
J. Trauma. Acute Care Surg.
, vol.60
, Issue.3
, pp. 655-658
-
-
Wedmore, I.1
-
48
-
-
77955653147
-
Antibacterial activity and biocompatibility of a chitosan-γ-poly(glutamic acid) polyelectrolyte complex hydrogel
-
Tsao C.T., et al. Antibacterial activity and biocompatibility of a chitosan-γ-poly(glutamic acid) polyelectrolyte complex hydrogel. Carbohydr. Res. 2010, 345(12):1774-1780.
-
(2010)
Carbohydr. Res.
, vol.345
, Issue.12
, pp. 1774-1780
-
-
Tsao, C.T.1
-
49
-
-
79951509063
-
Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials
-
Tsao C.T., et al. Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr. Polym. 2011, 84(2):812-819.
-
(2011)
Carbohydr. Polym.
, vol.84
, Issue.2
, pp. 812-819
-
-
Tsao, C.T.1
-
50
-
-
79151481148
-
A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability
-
Li P., et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat. Mater. 2011, 10(2):149-156.
-
(2011)
Nat. Mater.
, vol.10
, Issue.2
, pp. 149-156
-
-
Li, P.1
-
51
-
-
84455173128
-
Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use
-
Aziz M.A., et al. Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob. Agents Chemother. 2012, 56(1):280-287.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, Issue.1
, pp. 280-287
-
-
Aziz, M.A.1
-
52
-
-
67649980479
-
Synthesis and characterization of chitosan/ dextran-based hydrogels for surgical use
-
Liu G., et al. Synthesis and characterization of chitosan/ dextran-based hydrogels for surgical use. Macromol. Symp. 2009, 279(1):151-157.
-
(2009)
Macromol. Symp.
, vol.279
, Issue.1
, pp. 151-157
-
-
Liu, G.1
-
53
-
-
84866941403
-
Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels
-
Mohamed N.A., Fahmy M.M. Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int. J. Mol. Sci. 2012, 13(9):11194-11209.
-
(2012)
Int. J. Mol. Sci.
, vol.13
, Issue.9
, pp. 11194-11209
-
-
Mohamed, N.A.1
Fahmy, M.M.2
-
54
-
-
84875797004
-
Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents
-
Mohamed N.A., Al-mehbad N.Y. Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents. Int. J. Biol. Macromol. 2013, 57:111-117.
-
(2013)
Int. J. Biol. Macromol.
, vol.57
, pp. 111-117
-
-
Mohamed, N.A.1
Al-mehbad, N.Y.2
-
55
-
-
84887902882
-
Synthesis and antibacterial activities of quaternary ammonium salt of gelatin
-
Jiang Q., et al. Synthesis and antibacterial activities of quaternary ammonium salt of gelatin. J. Macromol. Sci. B 2013, 133-141.
-
(2013)
J. Macromol. Sci. B
, pp. 133-141
-
-
Jiang, Q.1
-
56
-
-
16244400792
-
Amphiphilic polymethacrylate derivatives as antimicrobial agents
-
Kuroda K., DeGrado W.F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 2005, 127(12):4128-4129.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, Issue.12
, pp. 4128-4129
-
-
Kuroda, K.1
DeGrado, W.F.2
-
57
-
-
58449135719
-
The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives
-
Kuroda K., Caputo G.A., DeGrado W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem. Eur. J. 2009, 15(5):1123-1133.
-
(2009)
Chem. Eur. J.
, vol.15
, Issue.5
, pp. 1123-1133
-
-
Kuroda, K.1
Caputo, G.A.2
DeGrado, W.F.3
-
58
-
-
67049095706
-
Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities
-
Palermo E.F., Kuroda K. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities. Biomacromolecules 2009, 10(6):1416-1428.
-
(2009)
Biomacromolecules
, vol.10
, Issue.6
, pp. 1416-1428
-
-
Palermo, E.F.1
Kuroda, K.2
-
59
-
-
80053955350
-
Block versus random amphiphilic copolymers as antibacterial agents
-
Oda Y., et al. Block versus random amphiphilic copolymers as antibacterial agents. Biomacromolecules 2011, 12(10):3581-3591.
-
(2011)
Biomacromolecules
, vol.12
, Issue.10
, pp. 3581-3591
-
-
Oda, Y.1
-
60
-
-
84861121216
-
Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers
-
Palermo E.F., Vemparala S., Kuroda K. Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules 2012, 13(5):1632-1641.
-
(2012)
Biomacromolecules
, vol.13
, Issue.5
, pp. 1632-1641
-
-
Palermo, E.F.1
Vemparala, S.2
Kuroda, K.3
-
61
-
-
84861162086
-
Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization
-
Mizutani M., et al. Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization. Biomacromolecules 2012, 13(5):1554-1563.
-
(2012)
Biomacromolecules
, vol.13
, Issue.5
, pp. 1554-1563
-
-
Mizutani, M.1
-
62
-
-
84887596476
-
Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity
-
Locock K.E.S., et al. Guanylated polymethacrylates: a class of potent antimicrobial polymers with low hemolytic activity. Biomacromolecules 2013, 14(11):4021-4031.
-
(2013)
Biomacromolecules
, vol.14
, Issue.11
, pp. 4021-4031
-
-
Locock, K.E.S.1
-
63
-
-
10044226415
-
Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives
-
Ilker M.F., et al. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives. J. Am. Chem. Soc. 2004, 126(48):15870-15875.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, Issue.48
, pp. 15870-15875
-
-
Ilker, M.F.1
-
64
-
-
48249133981
-
Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach
-
Lienkamp K., et al. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 2008, 130(30):9836-9843.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, Issue.30
, pp. 9836-9843
-
-
Lienkamp, K.1
-
65
-
-
70350510814
-
"Doubly selective" antimicrobial polymers: how do they differentiate between bacteria?
-
Lienkamp K., et al. "Doubly selective" antimicrobial polymers: how do they differentiate between bacteria?. Chem. Eur. J. 2009, 15(43):11710-11714.
-
(2009)
Chem. Eur. J.
, vol.15
, Issue.43
, pp. 11710-11714
-
-
Lienkamp, K.1
-
66
-
-
64149114343
-
Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity
-
Colak S., et al. Hydrophilic modifications of an amphiphilic polynorbornene and the effects on its hemolytic and antibacterial activity. Biomacromolecules 2009, 10(2):353-359.
-
(2009)
Biomacromolecules
, vol.10
, Issue.2
, pp. 353-359
-
-
Colak, S.1
-
67
-
-
57049118019
-
Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties
-
Gabriel G.J., et al. Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 2008, 9(11):2980-2983.
-
(2008)
Biomacromolecules
, vol.9
, Issue.11
, pp. 2980-2983
-
-
Gabriel, G.J.1
-
68
-
-
34347355205
-
Studies on the preparation and antibacterial properties of quaternized polyethyleneimine
-
Gao B., Zhang X., Zhu Y. Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. J. Biomater. Sci. Polym. Ed. 2007, 18:531-544.
-
(2007)
J. Biomater. Sci. Polym. Ed.
, vol.18
, pp. 531-544
-
-
Gao, B.1
Zhang, X.2
Zhu, Y.3
-
69
-
-
34948895071
-
From multifunctionalized poly (ethylene imine) s toward antimicrobial coatings
-
Pasquier N., et al. From multifunctionalized poly (ethylene imine) s toward antimicrobial coatings. Biomacromolecules 2007, 8(9):2874-2882.
-
(2007)
Biomacromolecules
, vol.8
, Issue.9
, pp. 2874-2882
-
-
Pasquier, N.1
-
70
-
-
60549093615
-
Amphiphilic branched polymers as antimicrobial agents
-
Pasquier N., et al. Amphiphilic branched polymers as antimicrobial agents. Macromol. Biosci. 2008, 8:903-915.
-
(2008)
Macromol. Biosci.
, vol.8
, pp. 903-915
-
-
Pasquier, N.1
-
71
-
-
84868219098
-
Identification of synthetic host defense peptide mimics that exert dual antimicrobial and anti-inflammatory activities
-
Som A., et al. Identification of synthetic host defense peptide mimics that exert dual antimicrobial and anti-inflammatory activities. Clin. Vaccine Immunol. 2012, 19:1784-1791.
-
(2012)
Clin. Vaccine Immunol.
, vol.19
, pp. 1784-1791
-
-
Som, A.1
-
72
-
-
0037117538
-
De novo design of biomimetic antimicrobial polymers
-
Tew G.N., et al. De novo design of biomimetic antimicrobial polymers. Proc. Natl. Acad. Sci. 2002, 99(8):5110-5114.
-
(2002)
Proc. Natl. Acad. Sci.
, vol.99
, Issue.8
, pp. 5110-5114
-
-
Tew, G.N.1
-
73
-
-
84863836926
-
Synthetic mimics of antimicrobial peptides with immunomodulatory responses
-
Thaker H.D., et al. Synthetic mimics of antimicrobial peptides with immunomodulatory responses. J. Am. Chem. Soc. 2012, 134(27):11088-11091.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, Issue.27
, pp. 11088-11091
-
-
Thaker, H.D.1
-
74
-
-
37849015194
-
Mimicry of antimicrobial host-defense peptides by random copolymers
-
Mowery B.P., et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J. Am. Chem. Soc. 2007, 129(50):15474-15476.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.50
, pp. 15474-15476
-
-
Mowery, B.P.1
-
75
-
-
77953304728
-
Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers
-
Dohm M.T., et al. Biophysical mimicry of lung surfactant protein B by random nylon-3 copolymers. J. Am. Chem. Soc. 2010, 132(23):7957-7967.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.23
, pp. 7957-7967
-
-
Dohm, M.T.1
-
76
-
-
84863169815
-
C-Terminal functionalization of nylon-3 polymers: effects of c-terminal groups on antibacterial and hemolytic activities
-
Zhang J., et al. C-Terminal functionalization of nylon-3 polymers: effects of c-terminal groups on antibacterial and hemolytic activities. Biomacromolecules 2011, 13(2):323-331.
-
(2011)
Biomacromolecules
, vol.13
, Issue.2
, pp. 323-331
-
-
Zhang, J.1
-
77
-
-
84876053735
-
Nylon-3 polymers with selective antifungal activity
-
Liu R., et al. Nylon-3 polymers with selective antifungal activity. J. Am. Chem. Soc. 2013, 135(14):5270-5273.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, Issue.14
, pp. 5270-5273
-
-
Liu, R.1
-
78
-
-
84883102627
-
Effects of cyclic vs acyclic hydrophobic subunits on the chemical structure and biological properties of nylon-3 copolymers
-
Chakraborty S., et al. Effects of cyclic vs acyclic hydrophobic subunits on the chemical structure and biological properties of nylon-3 copolymers. ACS Macro Lett. 2013, 2(8):753-756.
-
(2013)
ACS Macro Lett.
, vol.2
, Issue.8
, pp. 753-756
-
-
Chakraborty, S.1
-
79
-
-
79955872857
-
Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides
-
Engler A.C., et al. Effects of side group functionality and molecular weight on the activity of synthetic antimicrobial polypeptides. Biomacromolecules 2011, 12(5):1666-1674.
-
(2011)
Biomacromolecules
, vol.12
, Issue.5
, pp. 1666-1674
-
-
Engler, A.C.1
-
80
-
-
73949132404
-
High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-amino acid-N-carboxyanhydrides
-
Zhou C., et al. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-amino acid-N-carboxyanhydrides. Biomacromolecules 2009, 11(1):60-67.
-
(2009)
Biomacromolecules
, vol.11
, Issue.1
, pp. 60-67
-
-
Zhou, C.1
-
81
-
-
79955113253
-
Biodegradable nanostructures with selective lysis of microbial membranes
-
Nederberg F., et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011, 3(5):409-414.
-
(2011)
Nat. Chem.
, vol.3
, Issue.5
, pp. 409-414
-
-
Nederberg, F.1
-
82
-
-
81355161733
-
Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane
-
Qiao Y., et al. Highly dynamic biodegradable micelles capable of lysing Gram-positive and Gram-negative bacterial membrane. Biomaterials 2012, 33:1146-1153.
-
(2012)
Biomaterials
, vol.33
, pp. 1146-1153
-
-
Qiao, Y.1
-
83
-
-
84867753786
-
Broad spectrum antimicrobial supramolecular assemblies with distinctive size and shape
-
Fukushima K., et al. Broad spectrum antimicrobial supramolecular assemblies with distinctive size and shape. ACS Nano 2012, 6:9191-9199.
-
(2012)
ACS Nano
, vol.6
, pp. 9191-9199
-
-
Fukushima, K.1
-
84
-
-
84890127698
-
Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria
-
Ng V.W.L., et al. Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv. Mater. 2013, 25:2730-2736.
-
(2013)
Adv. Mater.
, vol.25
, pp. 2730-2736
-
-
Ng, V.W.L.1
-
85
-
-
84890376034
-
Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach
-
Engler A.C., et al. Antimicrobial polycarbonates: investigating the impact of balancing charge and hydrophobicity using a same-centered polymer approach. Biomacromolecules 2013, 14:4331-4339.
-
(2013)
Biomacromolecules
, vol.14
, pp. 4331-4339
-
-
Engler, A.C.1
-
86
-
-
84888621419
-
Biodegradable broad-spectrum antimicrobial polycarbonates: investigating the role of chemical structure on activity and selectivity
-
Chin W., et al. Biodegradable broad-spectrum antimicrobial polycarbonates: investigating the role of chemical structure on activity and selectivity. Macromolecules 2013, 46(22):8797-8807.
-
(2013)
Macromolecules
, vol.46
, Issue.22
, pp. 8797-8807
-
-
Chin, W.1
-
87
-
-
84871335392
-
Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition
-
Liu S.Q., et al. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Adv. Mater. 2012, 24(48):6484-6489.
-
(2012)
Adv. Mater.
, vol.24
, Issue.48
, pp. 6484-6489
-
-
Liu, S.Q.1
-
88
-
-
0032718949
-
Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems
-
Lohner K., Prenner E.J. Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems. Biochim. Biophys. Acta Biomembr. 1999, 1462(1-2):141-156.
-
(1999)
Biochim. Biophys. Acta Biomembr.
, vol.1462
, Issue.1-2
, pp. 141-156
-
-
Lohner, K.1
Prenner, E.J.2
-
89
-
-
0032839616
-
Structures of Gram-negative cell walls and their derived membrane vesicles
-
Beveridge T.J. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999, 181(16):4725-4733.
-
(1999)
J. Bacteriol.
, vol.181
, Issue.16
, pp. 4725-4733
-
-
Beveridge, T.J.1
-
90
-
-
84871965109
-
Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies
-
Li Y., et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew. Chem. Int. Ed. 2013, 52(2):674-678.
-
(2013)
Angew. Chem. Int. Ed.
, vol.52
, Issue.2
, pp. 674-678
-
-
Li, Y.1
-
91
-
-
77649210916
-
Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications
-
Jiang S., Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 2010, 22(9):920-932.
-
(2010)
Adv. Mater.
, vol.22
, Issue.9
, pp. 920-932
-
-
Jiang, S.1
Cao, Z.2
-
92
-
-
84867690548
-
Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles
-
Cao Z., Jiang S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 2012, 7(5):404-413.
-
(2012)
Nano Today
, vol.7
, Issue.5
, pp. 404-413
-
-
Cao, Z.1
Jiang, S.2
-
93
-
-
84863263035
-
Reversibly switching the function of a surface between attacking and defending against bacteria
-
Cao Z., et al. Reversibly switching the function of a surface between attacking and defending against bacteria. Angew. Chem. Int. Ed. 2012, 51(11):2602-2605.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, Issue.11
, pp. 2602-2605
-
-
Cao, Z.1
-
94
-
-
84880926352
-
Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties
-
Cao B., et al. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv. Healthc. Mater. 2013, 2(8):1096-1102.
-
(2013)
Adv. Healthc. Mater.
, vol.2
, Issue.8
, pp. 1096-1102
-
-
Cao, B.1
-
95
-
-
84880926371
-
The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer
-
Cao B., et al. The impact of structure on elasticity, switchability, stability and functionality of an all-in-one carboxybetaine elastomer. Biomaterials 2013, 34(31):7592-7600.
-
(2013)
Biomaterials
, vol.34
, Issue.31
, pp. 7592-7600
-
-
Cao, B.1
-
96
-
-
84919480899
-
-
Inherently antimcrobial quaternary amine hydrogel wound dressings. United States Patent, 2000. 6039940A.
-
Perrault, J.J. and C.G. Rouns, Inherently antimcrobial quaternary amine hydrogel wound dressings. United States Patent, 2000. 6039940A.
-
-
-
Perrault, J.J.1
Rouns, C.G.2
-
97
-
-
70349652041
-
Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels
-
Bertal K., et al. Antimicrobial activity of novel biocompatible wound dressings based on triblock copolymer hydrogels. J. Mater. Sci. 2009, 44(23):6233-6246.
-
(2009)
J. Mater. Sci.
, vol.44
, Issue.23
, pp. 6233-6246
-
-
Bertal, K.1
-
98
-
-
52649147539
-
Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels
-
Madsen J., et al. Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Biomacromolecules 2008, 9(8):2265-2275.
-
(2008)
Biomacromolecules
, vol.9
, Issue.8
, pp. 2265-2275
-
-
Madsen, J.1
-
99
-
-
79953024441
-
Bifunctional hydrogel coatings for water purification membranes: improved fouling resistance and antimicrobial activity
-
La Y.-H., et al. Bifunctional hydrogel coatings for water purification membranes: improved fouling resistance and antimicrobial activity. J. Membr. Sci. 2011, 372(1-2):285-291.
-
(2011)
J. Membr. Sci.
, vol.372
, Issue.1-2
, pp. 285-291
-
-
La, Y.-H.1
-
100
-
-
78649921152
-
Antimicrobial hydrogels formed by crosslinking polyallylamine with aldaric acid derivatives
-
Andrews M.A., et al. Antimicrobial hydrogels formed by crosslinking polyallylamine with aldaric acid derivatives. J. Appl. Polym. Sci. 2011, 119(6):3244-3252.
-
(2011)
J. Appl. Polym. Sci.
, vol.119
, Issue.6
, pp. 3244-3252
-
-
Andrews, M.A.1
-
101
-
-
36749074939
-
Inherent antibacterial activity of a peptide-based β-hairpin hydrogel
-
Salick D.A., et al. Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J. Am. Chem. Soc. 2007, 129(47):14793-14799.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.47
, pp. 14793-14799
-
-
Salick, D.A.1
-
102
-
-
70350475630
-
Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus
-
Salick D.A., Pochan D.J., Schneider J.P. Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv. Mater. 2009, 21(41):4120-4123.
-
(2009)
Adv. Mater.
, vol.21
, Issue.41
, pp. 4120-4123
-
-
Salick, D.A.1
Pochan, D.J.2
Schneider, J.P.3
-
103
-
-
84867138802
-
Arginine-rich self-assembling peptides as potent antibacterial gels
-
Veiga A.S., et al. Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 2012, 33(35):8907-8916.
-
(2012)
Biomaterials
, vol.33
, Issue.35
, pp. 8907-8916
-
-
Veiga, A.S.1
-
104
-
-
84879860546
-
Stimuli-responsive self-assembling peptides made from antibacterial peptides
-
Liu Y., et al. Stimuli-responsive self-assembling peptides made from antibacterial peptides. Nanoscale 2013, 5(14):6413-6421.
-
(2013)
Nanoscale
, vol.5
, Issue.14
, pp. 6413-6421
-
-
Liu, Y.1
-
105
-
-
77950590085
-
Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent
-
Debnath S., et al. Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J. Phys. Chem. B 2010, 114(13):4407-4415.
-
(2010)
J. Phys. Chem. B
, vol.114
, Issue.13
, pp. 4407-4415
-
-
Debnath, S.1
-
106
-
-
36049033046
-
Intracellular hydrogelation of small molecules inhibits bacterial growth
-
Yang Z., et al. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew. Chem. Int. Ed. 2007, 46(43):8216-8219.
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, Issue.43
, pp. 8216-8219
-
-
Yang, Z.1
-
107
-
-
84885107296
-
Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles
-
Hughes M., et al. Antimicrobial properties of enzymatically triggered self-assembling aromatic peptide amphiphiles. Biomater. Sci. 2013, 1(11):1138-1142.
-
(2013)
Biomater. Sci.
, vol.1
, Issue.11
, pp. 1138-1142
-
-
Hughes, M.1
-
108
-
-
79951579755
-
A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine
-
Zhou C., et al. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 2011, 32(11):2704-2712.
-
(2011)
Biomaterials
, vol.32
, Issue.11
, pp. 2704-2712
-
-
Zhou, C.1
-
109
-
-
84855942897
-
Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing
-
Song A., Rane A.A., Christman K.L. Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing. Acta Biomater. 2012, 8(1):41-50.
-
(2012)
Acta Biomater.
, vol.8
, Issue.1
, pp. 41-50
-
-
Song, A.1
Rane, A.A.2
Christman, K.L.3
-
110
-
-
84871965109
-
Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies
-
Li Y., et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew. Chem. 2013, 52(2):674-678.
-
(2013)
Angew. Chem.
, vol.52
, Issue.2
, pp. 674-678
-
-
Li, Y.1
-
111
-
-
84861578125
-
Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections
-
Laverty G., Gorman S.P., Gilmore B.F. Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J. Biomed. Mater. Res. A 2012, 100A(7):1803-1814.
-
(2012)
J. Biomed. Mater. Res. A
, vol.100 A
, Issue.7
, pp. 1803-1814
-
-
Laverty, G.1
Gorman, S.P.2
Gilmore, B.F.3
-
112
-
-
84885384154
-
Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication
-
Lee A.L.Z., et al. Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication. Biomaterials 2013, 34(38):10278-10286.
-
(2013)
Biomaterials
, vol.34
, Issue.38
, pp. 10278-10286
-
-
Lee, A.L.Z.1
-
113
-
-
77956307436
-
The antibiotics market
-
Hamad B. The antibiotics market. Nat. Rev. Drug Discov. 2010, 9(9):675-676.
-
(2010)
Nat. Rev. Drug Discov.
, vol.9
, Issue.9
, pp. 675-676
-
-
Hamad, B.1
-
114
-
-
77952743791
-
Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan
-
Sung J.H., et al. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int. J. Pharm. 2010, 392(1-2):232-240.
-
(2010)
Int. J. Pharm.
, vol.392
, Issue.1-2
, pp. 232-240
-
-
Sung, J.H.1
-
115
-
-
84884287044
-
Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices
-
Concheiro A., Alvarez-Lorenzo C. Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv. Drug Deliv. Rev. 2013, 65(9):1188-1203.
-
(2013)
Adv. Drug Deliv. Rev.
, vol.65
, Issue.9
, pp. 1188-1203
-
-
Concheiro, A.1
Alvarez-Lorenzo, C.2
-
116
-
-
34548767010
-
Antifungal hydrogels
-
Zumbuehl A., et al. Antifungal hydrogels. Proc. Natl. Acad. Sci. 2007, 104(32):12994-12998.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, Issue.32
, pp. 12994-12998
-
-
Zumbuehl, A.1
-
117
-
-
84874136659
-
β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones
-
Glisoni R.J., et al. β-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr. Polym. 2013, 93(2):449-457.
-
(2013)
Carbohydr. Polym.
, vol.93
, Issue.2
, pp. 449-457
-
-
Glisoni, R.J.1
-
118
-
-
42649142947
-
Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications
-
Jones D.S., et al. Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 85B(2):417-426.
-
(2008)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.85 B
, Issue.2
, pp. 417-426
-
-
Jones, D.S.1
-
119
-
-
77954266299
-
Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean
-
Cheng G., et al. Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean. Langmuir 2010, 26(13):10425-10428.
-
(2010)
Langmuir
, vol.26
, Issue.13
, pp. 10425-10428
-
-
Cheng, G.1
-
120
-
-
82955217303
-
A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester
-
Mi L., et al. A thermoresponsive antimicrobial wound dressing hydrogel based on a cationic betaine ester. Adv. Funct. Mater. 2011, 21(21):4028-4034.
-
(2011)
Adv. Funct. Mater.
, vol.21
, Issue.21
, pp. 4028-4034
-
-
Mi, L.1
-
121
-
-
84873385290
-
Dual functionality of antimicrobial and antifouling of poly(n-hydroxyethylacrylamide)/salicylate hydrogels
-
Zhao C., et al. Dual functionality of antimicrobial and antifouling of poly(n-hydroxyethylacrylamide)/salicylate hydrogels. Langmuir 2013, 29(5):1517-1524.
-
(2013)
Langmuir
, vol.29
, Issue.5
, pp. 1517-1524
-
-
Zhao, C.1
-
122
-
-
84883611465
-
Development of a novel antimicrobial seaweed extract-based hydrogel wound dressing
-
Tan S.P., et al. Development of a novel antimicrobial seaweed extract-based hydrogel wound dressing. Int. J. Pharm. 2013, 456(1):10-20.
-
(2013)
Int. J. Pharm.
, vol.456
, Issue.1
, pp. 10-20
-
-
Tan, S.P.1
-
123
-
-
84896547614
-
Novel thermosensitive hydrogels based on methoxy polyethylene glycol-co-poly(lactic acid-co-aromatic anhydride) for cefazolin delivery
-
Lai P.-L., Hong D.-W., Ku K.-L., Lai Z.-T., Chu I.-M. Novel thermosensitive hydrogels based on methoxy polyethylene glycol-co-poly(lactic acid-co-aromatic anhydride) for cefazolin delivery. Nanomedicine: Nanotechnology, Biology and Medicine 2014, 10:553-560.
-
(2014)
Nanomedicine: Nanotechnology, Biology and Medicine
, vol.10
, pp. 553-560
-
-
Lai, P.-L.1
Hong, D.-W.2
Ku, K.-L.3
Lai, Z.-T.4
Chu, I.-M.5
-
125
-
-
84862807954
-
Optical application of poly(HEMA-co-MMA) containing silver nanoparticles and N, N-dimethylacrylamide
-
Sung A.Y., Kim T.-H. Optical application of poly(HEMA-co-MMA) containing silver nanoparticles and N, N-dimethylacrylamide. Korean J. Chem. Eng. 2012, 29(5):686-691.
-
(2012)
Korean J. Chem. Eng.
, vol.29
, Issue.5
, pp. 686-691
-
-
Sung, A.Y.1
Kim, T.-H.2
-
126
-
-
84871343024
-
Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing
-
Singh R., Singh D. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J. Mater. Sci. Mater. Med. 2012, 23(11):2649-2658.
-
(2012)
J. Mater. Sci. Mater. Med.
, vol.23
, Issue.11
, pp. 2649-2658
-
-
Singh, R.1
Singh, D.2
-
127
-
-
84857633268
-
Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles
-
Obradovic B., et al. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J. Mater. Sci. Mater. Med. 2012, 23(1):99-107.
-
(2012)
J. Mater. Sci. Mater. Med.
, vol.23
, Issue.1
, pp. 99-107
-
-
Obradovic, B.1
-
128
-
-
84885950308
-
Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles
-
Agnihotri S., Mukherji S., Mukherji S. Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl. Nanosci. 2012, 2(3):179-188.
-
(2012)
Appl. Nanosci.
, vol.2
, Issue.3
, pp. 179-188
-
-
Agnihotri, S.1
Mukherji, S.2
Mukherji, S.3
-
129
-
-
84875070902
-
Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria
-
Jayaramudu T., et al. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr. Polym. 2013, 95(1):188-194.
-
(2013)
Carbohydr. Polym.
, vol.95
, Issue.1
, pp. 188-194
-
-
Jayaramudu, T.1
-
130
-
-
80755189537
-
Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities
-
El-Sherif H., El-Masry M., Kansoh A. Hydrogels as template nanoreactors for silver nanoparticles formation and their antimicrobial activities. Macromol. Res. 2011, 19(11):1157-1165.
-
(2011)
Macromol. Res.
, vol.19
, Issue.11
, pp. 1157-1165
-
-
El-Sherif, H.1
El-Masry, M.2
Kansoh, A.3
-
131
-
-
79953714547
-
Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application
-
Varaprasad K., et al. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J. Appl. Polym. Sci. 2011, 121(2):784-796.
-
(2011)
J. Appl. Polym. Sci.
, vol.121
, Issue.2
, pp. 784-796
-
-
Varaprasad, K.1
-
132
-
-
84867844025
-
Fabrication of amino acid based silver nanocomposite hydrogels from PVA-poly(acrylamide-co-acryloyl phenylalanine) and their antimicrobial studies
-
Cha H.-R., et al. Fabrication of amino acid based silver nanocomposite hydrogels from PVA-poly(acrylamide-co-acryloyl phenylalanine) and their antimicrobial studies. Bull. Kor. Chem. Soc. 2012, 33(10):3191-3195.
-
(2012)
Bull. Kor. Chem. Soc.
, vol.33
, Issue.10
, pp. 3191-3195
-
-
Cha, H.-R.1
-
133
-
-
84881040256
-
A novel microbial synthesis of catalytically active Ag-alginate biohydrogel and its antimicrobial activity
-
Otari S.V., et al. A novel microbial synthesis of catalytically active Ag-alginate biohydrogel and its antimicrobial activity. Dalton Trans. 2013, 42(27):9966-9975.
-
(2013)
Dalton Trans.
, vol.42
, Issue.27
, pp. 9966-9975
-
-
Otari, S.V.1
-
134
-
-
79953905040
-
Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property
-
Dutta S., et al. Counterion-induced modulation in the antimicrobial activity and biocompatibility of amphiphilic hydrogelators: influence of in-situ-synthesized Ag-nanoparticle on the bactericidal property. Langmuir 2011, 27(8):5000-5008.
-
(2011)
Langmuir
, vol.27
, Issue.8
, pp. 5000-5008
-
-
Dutta, S.1
-
135
-
-
84864443110
-
Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles
-
Grade S., et al. Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. RSC Adv. 2012, 2(18):7190-7196.
-
(2012)
RSC Adv.
, vol.2
, Issue.18
, pp. 7190-7196
-
-
Grade, S.1
-
136
-
-
80054679291
-
Combinatorial activities of ionic silver and sodium hexametaphosphate against microorganisms associated with chronic wounds
-
Humphreys G., et al. Combinatorial activities of ionic silver and sodium hexametaphosphate against microorganisms associated with chronic wounds. J. Antimicrob. Chemother. 2011, 66(11):2556-2561.
-
(2011)
J. Antimicrob. Chemother.
, vol.66
, Issue.11
, pp. 2556-2561
-
-
Humphreys, G.1
-
137
-
-
50349100313
-
Polyphosphate enhances fibrin clot structure
-
Smith S.A., Morrissey J.H. Polyphosphate enhances fibrin clot structure. Blood 2008, 112(7):2810-2816.
-
(2008)
Blood
, vol.112
, Issue.7
, pp. 2810-2816
-
-
Smith, S.A.1
Morrissey, J.H.2
-
138
-
-
35048879342
-
Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings
-
Edwards J.V., Howley P.S. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings. J. Biomed. Mater. Res. A 2007, 83A(2):446-454.
-
(2007)
J. Biomed. Mater. Res. A
, vol.83 A
, Issue.2
, pp. 446-454
-
-
Edwards, J.V.1
Howley, P.S.2
-
139
-
-
84884283812
-
Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute
-
Morais D.S., et al. Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. J. Mater. Sci. Mater. Med. 2013, 24(9):2145-2155.
-
(2013)
J. Mater. Sci. Mater. Med.
, vol.24
, Issue.9
, pp. 2145-2155
-
-
Morais, D.S.1
-
140
-
-
79955900939
-
An antimicrobial zinc based molecule for cross linking poly-acrylic acid
-
James C., et al. An antimicrobial zinc based molecule for cross linking poly-acrylic acid. Eur. Polym. J. 2011, 47(6):1338-1345.
-
(2011)
Eur. Polym. J.
, vol.47
, Issue.6
, pp. 1338-1345
-
-
James, C.1
-
141
-
-
84859611789
-
Fabrication of Au and Ag Bi-metallic nanocomposite for antimicrobial applications
-
Ranga Reddy P., et al. Fabrication of Au and Ag Bi-metallic nanocomposite for antimicrobial applications. J. Appl. Polym. Sci. 2012, 125(2):1357-1362.
-
(2012)
J. Appl. Polym. Sci.
, vol.125
, Issue.2
, pp. 1357-1362
-
-
Ranga Reddy, P.1
-
142
-
-
84861829436
-
Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(N-isopropylacrylamide) hydrogel surface layers
-
Schwartz V.B., et al. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly(N-isopropylacrylamide) hydrogel surface layers. Adv. Funct. Mater. 2012, 22(11):2376-2386.
-
(2012)
Adv. Funct. Mater.
, vol.22
, Issue.11
, pp. 2376-2386
-
-
Schwartz, V.B.1
|