-
1
-
-
33746001269
-
Antibacterial natural products in medicinal chemistry - exodus or revival?
-
von Nussbaum F., et al. Antibacterial natural products in medicinal chemistry - exodus or revival?. Angew. Chem. Int. Ed. 2006, 45:5072-5129.
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 5072-5129
-
-
von Nussbaum, F.1
-
2
-
-
4444239270
-
International dissemination of antibiotic resistant strains of bacterial pathogens
-
Witte W. International dissemination of antibiotic resistant strains of bacterial pathogens. Infect. Genet. Evol. 2004, 4:187-191.
-
(2004)
Infect. Genet. Evol.
, vol.4
, pp. 187-191
-
-
Witte, W.1
-
3
-
-
5644242046
-
Magnetic contrast agents for optical coherence tomography
-
Oldenburg A.L., et al. Magnetic contrast agents for optical coherence tomography. Proc. of SPIE 2004, 5316:91-98.
-
(2004)
Proc. of SPIE
, vol.5316
, pp. 91-98
-
-
Oldenburg, A.L.1
-
4
-
-
0034680092
-
A colorimetric sensor array for odour visualization
-
Rakow N.A., Suslick K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406:710-713.
-
(2000)
Nature
, vol.406
, pp. 710-713
-
-
Rakow, N.A.1
Suslick, K.S.2
-
5
-
-
33646000316
-
Co-selection of antibiotic and metal resistance
-
Baker-Austin C., et al. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14:176-182.
-
(2006)
Trends Microbiol.
, vol.14
, pp. 176-182
-
-
Baker-Austin, C.1
-
6
-
-
81255136231
-
"Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era
-
Huh A.J., Kwon Y.J. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release 2011, 156:128-145.
-
(2011)
J. Control. Release
, vol.156
, pp. 128-145
-
-
Huh, A.J.1
Kwon, Y.J.2
-
7
-
-
21344446416
-
Nanoscience, nanotechnology, and chemistry
-
Whitesides G.M. Nanoscience, nanotechnology, and chemistry. Small 2005, 1:172-179.
-
(2005)
Small
, vol.1
, pp. 172-179
-
-
Whitesides, G.M.1
-
8
-
-
52649162838
-
Nanomaterials at work in biomedical research
-
Xia Y. Nanomaterials at work in biomedical research. Nat. Mater. 2008, 7:758-760.
-
(2008)
Nat. Mater.
, vol.7
, pp. 758-760
-
-
Xia, Y.1
-
9
-
-
84866345109
-
Bacteria
-
John Wiley & Sons Ltd, West Sussex, England, ISBN 0-470-09027-8
-
Singleton P. Bacteria. Biology, Biotechnology and Medicine 2004, John Wiley & Sons Ltd, West Sussex, England, 570 pp., ISBN 0-470-09027-8. 6th ed.
-
(2004)
Biology, Biotechnology and Medicine
, pp. 570
-
-
Singleton, P.1
-
10
-
-
33750319466
-
Surface proteins of gram-positive bacteria and how they get there
-
Scott J.R., Barnett T.C. Surface proteins of gram-positive bacteria and how they get there. Annu. Rev. Microbiol. 2006, 60:397-423.
-
(2006)
Annu. Rev. Microbiol.
, vol.60
, pp. 397-423
-
-
Scott, J.R.1
Barnett, T.C.2
-
11
-
-
0029818808
-
The biochemistry and genetics of capsular polysaccharide production in bacteria
-
Roberts I.S. The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 1996, 50:285-315.
-
(1996)
Annu. Rev. Microbiol.
, vol.50
, pp. 285-315
-
-
Roberts, I.S.1
-
12
-
-
84862524630
-
Bacterial effects and protein corona evaluations: crucial ignored factors for prediction of bio-efficacy of various forms of silver nanoparticles
-
Ashkarran A.A., et al. Bacterial effects and protein corona evaluations: crucial ignored factors for prediction of bio-efficacy of various forms of silver nanoparticles. Chem. Res. Toxicol. 2012, 25:1231-1242.
-
(2012)
Chem. Res. Toxicol.
, vol.25
, pp. 1231-1242
-
-
Ashkarran, A.A.1
-
13
-
-
79951814018
-
Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus
-
Baek Y.W., An Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 2011, 409:1603-1608.
-
(2011)
Sci. Total Environ.
, vol.409
, pp. 1603-1608
-
-
Baek, Y.W.1
An, Y.J.2
-
14
-
-
64049092699
-
Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast
-
Lu C., et al. Slow growth induces heat-shock resistance in normal and respiratory-deficient yeast. Mol. Biol. Cell 2009, 20:891-903.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 891-903
-
-
Lu, C.1
-
15
-
-
0024210157
-
Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?
-
Brown M.R., et al. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?. J. Antimicrob. Chemother. 1988, 22:777-780.
-
(1988)
J. Antimicrob. Chemother.
, vol.22
, pp. 777-780
-
-
Brown, M.R.1
-
16
-
-
0035014383
-
Mechanisms of biofilm resistance to antimicrobial agents
-
Mah T.F., O'Toole G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9:34-39.
-
(2001)
Trends Microbiol.
, vol.9
, pp. 34-39
-
-
Mah, T.F.1
O'Toole, G.A.2
-
17
-
-
0035992362
-
Mechanisms of antibiotic resistance in bacterial biofi{ligature}lms
-
Stewart P.S. Mechanisms of antibiotic resistance in bacterial biofi{ligature}lms. Int. J. Med. Microbiol. 2002, 292:107-113.
-
(2002)
Int. J. Med. Microbiol.
, vol.292
, pp. 107-113
-
-
Stewart, P.S.1
-
18
-
-
84859152270
-
Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat
-
Mahmoudi M., Serpooshan V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 2012, 6:2656-2664.
-
(2012)
ACS Nano
, vol.6
, pp. 2656-2664
-
-
Mahmoudi, M.1
Serpooshan, V.2
-
19
-
-
78650214941
-
Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles
-
Park H., et al. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods 2011, 84:41-45.
-
(2011)
J. Microbiol. Methods
, vol.84
, pp. 41-45
-
-
Park, H.1
-
20
-
-
77950629120
-
Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal
-
Landini P., et al. Molecular mechanisms of compounds affecting bacterial biofilm formation and dispersal. Appl. Microbiol. Biotechnol. 2010, 86:813-823.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.86
, pp. 813-823
-
-
Landini, P.1
-
21
-
-
0035152224
-
Biofilm exopolysaccharides: a strong and sticky framework
-
Sutherland I. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 2001, 147:3-9.
-
(2001)
Microbiology
, vol.147
, pp. 3-9
-
-
Sutherland, I.1
-
22
-
-
79957551591
-
Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria
-
Bolla J.M., et al. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett. 2011, 585:1682-1690.
-
(2011)
FEBS Lett.
, vol.585
, pp. 1682-1690
-
-
Bolla, J.M.1
-
23
-
-
70349631616
-
Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter
-
Fabrega J., et al. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009, 43:7285-7290.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 7285-7290
-
-
Fabrega, J.1
-
24
-
-
79961001550
-
Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds
-
Lara H.H., et al. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 2011, 9:30.
-
(2011)
J. Nanobiotechnol.
, vol.9
, pp. 30
-
-
Lara, H.H.1
-
25
-
-
79955604192
-
The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants
-
Musee N., et al. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J. Environ. Monit. 2011, 13:1164-1183.
-
(2011)
J. Environ. Monit.
, vol.13
, pp. 1164-1183
-
-
Musee, N.1
-
26
-
-
84862313120
-
Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles
-
Lellouche J., et al. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int. J. Nanomed. 2012, 7:1175-1188.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 1175-1188
-
-
Lellouche, J.1
-
27
-
-
84859154786
-
ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility
-
Applerot G., et al. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv. 2012, 2:2314-2321.
-
(2012)
RSC Adv.
, vol.2
, pp. 2314-2321
-
-
Applerot, G.1
-
28
-
-
33749424643
-
Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism
-
Thill A., et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 2006, 40:6151-6156.
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 6151-6156
-
-
Thill, A.1
-
29
-
-
80053922007
-
Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation
-
Soenen S.J., et al. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6:446-465.
-
(2011)
Nano Today
, vol.6
, pp. 446-465
-
-
Soenen, S.J.1
-
30
-
-
67649491055
-
Understanding biophysicochemical interactions at the nano-bio interface
-
Nel A.E., et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8:543-557.
-
(2009)
Nat. Mater.
, vol.8
, pp. 543-557
-
-
Nel, A.E.1
-
31
-
-
84555191775
-
Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites
-
Allahverdiyev A.M., et al. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites. Future microbiol. 2011, 6:933-940.
-
(2011)
Future microbiol.
, vol.6
, pp. 933-940
-
-
Allahverdiyev, A.M.1
-
32
-
-
84855332528
-
Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria
-
Guzman M., et al. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 2012, 8:37-45.
-
(2012)
Nanomedicine
, vol.8
, pp. 37-45
-
-
Guzman, M.1
-
33
-
-
77249158806
-
Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay
-
Pan X., et al. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere 2010, 79:113-116.
-
(2010)
Chemosphere
, vol.79
, pp. 113-116
-
-
Pan, X.1
-
34
-
-
0032844704
-
Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism
-
Maness P.-C., et al. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 1999, 65:4094-4098.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 4094-4098
-
-
Maness, P.-C.1
-
35
-
-
79551524682
-
2 phototoxicity for bacteria
-
2 phototoxicity for bacteria. J. Hazard. Mater. 2011, 186:306-312.
-
(2011)
J. Hazard. Mater.
, vol.186
, pp. 306-312
-
-
Wan, Y.1
-
36
-
-
84860915923
-
A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage
-
Pramanik A., et al. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf. B 2012, 96:50-55.
-
(2012)
Colloids Surf. B
, vol.96
, pp. 50-55
-
-
Pramanik, A.1
-
37
-
-
79959794790
-
Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria
-
Wang S., et al. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol. Ind. Health 2011, 27:547-554.
-
(2011)
Toxicol. Ind. Health
, vol.27
, pp. 547-554
-
-
Wang, S.1
-
38
-
-
39649093183
-
Contribution of copper ion resistance for survival of Escherichia coli on metallic copper surfaces
-
Santo C.E., et al. Contribution of copper ion resistance for survival of Escherichia coli on metallic copper surfaces. Appl. Environ. Microbiol. 2007, 74:977-986.
-
(2007)
Appl. Environ. Microbiol.
, vol.74
, pp. 977-986
-
-
Santo, C.E.1
-
39
-
-
79951814018
-
Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus
-
Baek Y.-W., An Y.-J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ. 2011, 409:1603-1608.
-
(2011)
Sci. Total Environ.
, vol.409
, pp. 1603-1608
-
-
Baek, Y.-W.1
An, Y.-J.2
-
40
-
-
40949113637
-
Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus
-
Heinlaan M., et al. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 2008, 71:1308-1316.
-
(2008)
Chemosphere
, vol.71
, pp. 1308-1316
-
-
Heinlaan, M.1
-
41
-
-
84862161155
-
Antimicrobial and synergistic effects of silver nanoparticles synthesized using: Soil fungi of high altitudes of Eastern Himalaya
-
Devi L.S., Joshi S.R. Antimicrobial and synergistic effects of silver nanoparticles synthesized using: Soil fungi of high altitudes of Eastern Himalaya. Mycobiology 2012, 40:27-34.
-
(2012)
Mycobiology
, vol.40
, pp. 27-34
-
-
Devi, L.S.1
Joshi, S.R.2
-
42
-
-
77951166121
-
Deposition of silver nanoparticles on titanium surface for antibacterial effect
-
Juan L., et al. Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int. J. Nanomed. 2010, 5:261-267.
-
(2010)
Int. J. Nanomed.
, vol.5
, pp. 261-267
-
-
Juan, L.1
-
43
-
-
85047686717
-
In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria
-
Leid J.G., et al. In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J. Antimicrob. Chemother. 2012, 67:138-148.
-
(2012)
J. Antimicrob. Chemother.
, vol.67
, pp. 138-148
-
-
Leid, J.G.1
-
44
-
-
2442686414
-
Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria
-
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275:177-182.
-
(2004)
J. Colloid Interface Sci.
, vol.275
, pp. 177-182
-
-
Sondi, I.1
Salopek-Sondi, B.2
-
45
-
-
38849149655
-
Nanotechnology-based drug delivery systems
-
Suri S.S., et al. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007, 2:16.
-
(2007)
J. Occup. Med. Toxicol.
, vol.2
, pp. 16
-
-
Suri, S.S.1
-
46
-
-
43149104125
-
Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria
-
Chen W.J., et al. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 2008, 4:485-491.
-
(2008)
Small
, vol.4
, pp. 485-491
-
-
Chen, W.J.1
-
47
-
-
79959231672
-
Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology
-
Friedman A., et al. Susceptibility of Gram-positive and -negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2011, 2:217-221.
-
(2011)
Virulence
, vol.2
, pp. 217-221
-
-
Friedman, A.1
-
48
-
-
42449161942
-
Toxicological effect of ZnO nanoparticles based on bacteria
-
Huang Z., et al. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 2008, 24:4140-4144.
-
(2008)
Langmuir
, vol.24
, pp. 4140-4144
-
-
Huang, Z.1
-
49
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang Z.L., Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312:242-246.
-
(2006)
Science
, vol.312
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
50
-
-
84859467107
-
Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera
-
Qiu Z., et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:4944-4949.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 4944-4949
-
-
Qiu, Z.1
-
51
-
-
77952980561
-
Bacterial responses to Cu-doped TiO2 nanoparticles
-
Wu B., et al. Bacterial responses to Cu-doped TiO2 nanoparticles. Sci. Total Environ. 2010, 408:1755-1758.
-
(2010)
Sci. Total Environ.
, vol.408
, pp. 1755-1758
-
-
Wu, B.1
-
52
-
-
34247093911
-
Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior
-
Fang J., et al. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ. Sci. Technol. 2007, 41:2636-2642.
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 2636-2642
-
-
Fang, J.1
-
53
-
-
70350749726
-
Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria
-
Simon-Deckers A., et al. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 2009, 43:8423-8429.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 8423-8429
-
-
Simon-Deckers, A.1
-
54
-
-
65549146791
-
A novel nitroreductase of Staphylococcus aureus with S-nitrosoglutathione reductase activity
-
Tavares A.F., et al. A novel nitroreductase of Staphylococcus aureus with S-nitrosoglutathione reductase activity. J. Bacteriol. 2009, 191:3403-3406.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 3403-3406
-
-
Tavares, A.F.1
-
55
-
-
41949119905
-
Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis
-
Jarboe L.R., et al. Determination of the Escherichia coli S-nitrosoglutathione response network using integrated biochemical and systems analysis. J. Biol. Chem. 2008, 283:5148-5157.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 5148-5157
-
-
Jarboe, L.R.1
-
56
-
-
33748801201
-
Maintenance of nitric oxide and redox homeostasis by the salmonella flavohemoglobin hmp
-
Bang I.S., et al. Maintenance of nitric oxide and redox homeostasis by the salmonella flavohemoglobin hmp. J. Biol. Chem. 2006, 281:28039-28047.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 28039-28047
-
-
Bang, I.S.1
-
57
-
-
0036794855
-
Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli
-
Frey A.D., et al. Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Appl. Environ. Microbiol. 2002, 68:4835-4840.
-
(2002)
Appl. Environ. Microbiol.
, vol.68
, pp. 4835-4840
-
-
Frey, A.D.1
-
58
-
-
68249138365
-
Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440
-
Gajjar P., et al. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 2009, 3:9.
-
(2009)
J. Biol. Eng.
, vol.3
, pp. 9
-
-
Gajjar, P.1
-
59
-
-
79956073876
-
Perturbation of an arctic soil microbial community by metal nanoparticles
-
Kumar N., et al. Perturbation of an arctic soil microbial community by metal nanoparticles. J. Hazard. Mater. 2011, 190:816-822.
-
(2011)
J. Hazard. Mater.
, vol.190
, pp. 816-822
-
-
Kumar, N.1
-
60
-
-
33644845162
-
A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440
-
Molina M.A., et al. A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environ. Microbiol. 2006, 8:639-647.
-
(2006)
Environ. Microbiol.
, vol.8
, pp. 639-647
-
-
Molina, M.A.1
-
61
-
-
48049104105
-
Plant immune responses triggered by beneficial microbes
-
Van Wees S.C., et al. Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 2008, 11:443-448.
-
(2008)
Curr. Opin. Plant Biol.
, vol.11
, pp. 443-448
-
-
Van Wees, S.C.1
-
62
-
-
45249123882
-
Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria
-
Choi O., Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42:4583-4588.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 4583-4588
-
-
Choi, O.1
Hu, Z.2
-
63
-
-
79955653722
-
Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles
-
You J., et al. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B: Biointerfaces 2011, 85:161-167.
-
(2011)
Colloids Surf. B: Biointerfaces
, vol.85
, pp. 161-167
-
-
You, J.1
-
65
-
-
1842612577
-
Bacterial biofilms: from the natural environment to infectious diseases
-
Hall-Stoodley L., et al. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2:95-108.
-
(2004)
Nat. Rev. Microbiol.
, vol.2
, pp. 95-108
-
-
Hall-Stoodley, L.1
-
66
-
-
84860535938
-
Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci
-
Subbiahdoss G., et al. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater. 2012, 8:2047-2055.
-
(2012)
Acta Biomater.
, vol.8
, pp. 2047-2055
-
-
Subbiahdoss, G.1
-
67
-
-
84866424988
-
Medicine at nanoscale: a new horizon
-
Khan A.U. Medicine at nanoscale: a new horizon. Int. J. Nanomedicine 2012, 7:2997-2998.
-
(2012)
Int. J. Nanomedicine
, vol.7
, pp. 2997-2998
-
-
Khan, A.U.1
-
68
-
-
61549143059
-
Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles
-
Hetrick E.M., et al. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 2009, 30:2782-2789.
-
(2009)
Biomaterials
, vol.30
, pp. 2782-2789
-
-
Hetrick, E.M.1
-
69
-
-
78650681745
-
Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells
-
Sinha R., et al. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour. Technol. 2011, 102:1516-1520.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 1516-1520
-
-
Sinha, R.1
-
70
-
-
41549148118
-
Strain specificity in antimicrobial activity of silver and copper nanoparticles
-
Ruparelia J.P., et al. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008, 4:707-716.
-
(2008)
Acta Biomater.
, vol.4
, pp. 707-716
-
-
Ruparelia, J.P.1
-
71
-
-
63249132825
-
Bacterial toxicity comparison between nano- and micro-scaled oxide particles
-
Jiang W., et al. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 2009, 157:1619-1625.
-
(2009)
Environ. Pollut.
, vol.157
, pp. 1619-1625
-
-
Jiang, W.1
-
72
-
-
79959331328
-
Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species
-
Khan S.S., et al. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. Colloids Surf. B: Biointerfaces 2011, 87:129-138.
-
(2011)
Colloids Surf. B: Biointerfaces
, vol.87
, pp. 129-138
-
-
Khan, S.S.1
-
73
-
-
38849122579
-
Studies of photokilling of bacteria using titanium dioxide nanoparticles
-
Tsuang Y.H., et al. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif. Organs 2008, 32:167-174.
-
(2008)
Artif. Organs
, vol.32
, pp. 167-174
-
-
Tsuang, Y.H.1
-
74
-
-
25444497481
-
The bactericidal effect of silver nanoparticles
-
Morones J.R., et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16:2346-2353.
-
(2005)
Nanotechnology
, vol.16
, pp. 2346-2353
-
-
Morones, J.R.1
-
75
-
-
77952982677
-
Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1
-
Feris K., et al. Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir 2010, 26:4429-4436.
-
(2010)
Langmuir
, vol.26
, pp. 4429-4436
-
-
Feris, K.1
-
76
-
-
75149133151
-
Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria
-
Fayaz A.M., et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 2010, 6:103-109.
-
(2010)
Nanomedicine
, vol.6
, pp. 103-109
-
-
Fayaz, A.M.1
-
77
-
-
77953809544
-
Anti-microbial activities of aerosolized transition metal oxide nanoparticles
-
Wang Z., et al. Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 2010, 80:525-529.
-
(2010)
Chemosphere
, vol.80
, pp. 525-529
-
-
Wang, Z.1
-
78
-
-
77956198837
-
Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli
-
Rispoli F., et al. Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J. Hazard. Mater. 2010, 180:212-216.
-
(2010)
J. Hazard. Mater.
, vol.180
, pp. 212-216
-
-
Rispoli, F.1
-
79
-
-
79954988845
-
Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells
-
Kumar A., et al. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 2011, 83:1124-1132.
-
(2011)
Chemosphere
, vol.83
, pp. 1124-1132
-
-
Kumar, A.1
-
80
-
-
80054026553
-
Effects of silver nanoparticles on wastewater biofilms
-
Sheng Z., Liu Y. Effects of silver nanoparticles on wastewater biofilms. Water Res. 2011, 45:6039-6050.
-
(2011)
Water Res.
, vol.45
, pp. 6039-6050
-
-
Sheng, Z.1
Liu, Y.2
|