-
1
-
-
79953742744
-
-
Humana Press, Springer Science + Business Media, LLC. Humana Press, Tatowa, NJ, USA
-
Jain KK. Drug delivery systems. Humana Press, Springer Science + Business Media, LLC. Humana Press, Tatowa, NJ, USA; 2008. p. 1-50
-
(2008)
Drug Delivery Systems
, pp. 1-50
-
-
Jain, K.K.1
-
2
-
-
3042685415
-
Drug deliverysystems: Past, present, and future
-
Mainardes RM, Silva LP. Drug deliverysystems: past, present, and future. Curr Drug Targets 2004;5:449-55
-
(2004)
Curr Drug Targets
, vol.5
, pp. 449-455
-
-
Mainardes, R.M.1
Silva, L.P.2
-
3
-
-
0034677966
-
Drug discovery: A hystorical perspective
-
Drews J. Drug discovery: a hystorical perspective. Science 2000;287:1960-4
-
(2000)
Science
, vol.287
, pp. 1960-1964
-
-
Drews, J.1
-
4
-
-
34547864243
-
Drug delivery strategies for poorly water-soluble drugs
-
Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 2007;4:403-16
-
(2007)
Expert Opin Drug Deliv
, vol.4
, pp. 403-416
-
-
Fahr, A.1
Liu, X.2
-
5
-
-
13844297094
-
The impact of nanobiotechnology on the development of new drug delivery systems
-
Kayser O, Lemke A, Trejo NH. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6:3-5
-
(2005)
Curr Pharm Biotechnol
, vol.6
, pp. 3-5
-
-
Kayser, O.1
Lemke, A.2
Trejo, N.H.3
-
6
-
-
56949102614
-
The origins and evolution of "controlled" drug delivery systems
-
Hoffman AS. The origins and evolution of "controlled" drug delivery systems. J Control Release 2008;132:153-63
-
(2008)
J Control Release
, vol.132
, pp. 153-163
-
-
Hoffman, A.S.1
-
7
-
-
0141765877
-
Small scale systems for in vivo drug delivery
-
Van D, McGuire T, Langer R. Small scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184-91
-
(2003)
Nat Biotechnol
, vol.21
, pp. 1184-1191
-
-
Van D1
McGuire, T.2
Langer, R.3
-
8
-
-
22644443612
-
Nanomedicine gets clinical
-
Duncan R. Nanomedicine gets clinical. Nanotoday 2005;8:16-17
-
(2005)
Nanotoday
, vol.8
, pp. 16-17
-
-
Duncan, R.1
-
9
-
-
84859497376
-
Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric, films, rods, and wafers
-
Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric, films, rods, and wafers. J Control Release 2012;159:14-26
-
(2012)
J Control Release
, vol.159
, pp. 14-26
-
-
Wolinsky, J.B.1
Colson, Y.L.2
Grinstaff, M.W.3
-
10
-
-
29244468290
-
Drug/device combinations for local drug therapies and infection prophylaxis
-
Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 2006;27:2450-67
-
(2006)
Biomaterials
, vol.27
, pp. 2450-2467
-
-
Wu, P.1
Grainger, D.W.2
-
11
-
-
54349086594
-
Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing
-
Ainslie KM, Desai TM. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip 2008;8:1864-78
-
(2008)
Lab Chip
, vol.8
, pp. 1864-1878
-
-
Ainslie, K.M.1
Desai, T.M.2
-
12
-
-
50949087869
-
Antibiotic-eluting medical devices for various applications
-
Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release 2008;130:202-15
-
(2008)
J Control Release
, vol.130
, pp. 202-215
-
-
Zilberman, M.1
Elsner, J.J.2
-
13
-
-
0037462995
-
Microfabricated drug delivery systems: From particles to pores
-
Tao SL, Desai TA. Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 2003;55:315-28
-
(2003)
Adv Drug Deliv Rev
, vol.55
, pp. 315-328
-
-
Tao, S.L.1
Desai, T.A.2
-
14
-
-
84863969949
-
Functional nanoporous membranes for drug delivery
-
Jeon G, Seung Yang Y, Kim JK. Functional nanoporous membranes for drug delivery. J Mater Chem 2012;22:14814-34
-
(2012)
J Mater Chem
, vol.22
, pp. 14814-14834
-
-
Jeon, G.1
Seung Yang, Y.2
Kim, J.K.3
-
15
-
-
76749093607
-
Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices
-
Gultepe E, Nagesha D, Sridhar S, Amiji M. Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 2010;62:305-15
-
(2010)
Adv Drug Deliv Rev
, vol.62
, pp. 305-315
-
-
Gultepe, E.1
Nagesha, D.2
Sridhar, S.3
Amiji, M.4
-
16
-
-
77951491570
-
Drug delivery from internally implanted biomedical devices used in traumatology and in orthopedic surgery
-
Arruebo M, Vilaboa N, Santamaria J. Drug delivery from internally implanted biomedical devices used in traumatology and in orthopedic surgery. Exp Opin Drug Deliv 2010;7:1-15
-
(2010)
Exp Opin Drug Deliv
, vol.7
, pp. 1-15
-
-
Arruebo, M.1
Vilaboa, N.2
Santamaria, J.3
-
17
-
-
71249116409
-
Self-ordered nanopore and nanotube platforms for drug delivery
-
Losic D, Simovic S. Self-ordered nanopore and nanotube platforms for drug delivery. Exp Opin Drug Deliv 2009;6:1363-81
-
(2009)
Exp Opin Drug Deliv
, vol.6
, pp. 1363-1381
-
-
Losic, D.1
Simovic, S.2
-
19
-
-
0000811689
-
Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy
-
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interfac Anal 1999;27:629-37
-
(1999)
Surf Interfac Anal
, vol.27
, pp. 629-637
-
-
Zwilling, V.1
Darque-Ceretti, E.2
Boutry-Forveille, A.3
-
20
-
-
34047222476
-
Synthesis and application of highly ordered arrays of TiO2 nanotubes
-
Grimes CA. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 2007;17:1451-7
-
(2007)
J Mater Chem
, vol.17
, pp. 1451-1457
-
-
Grimes, C.A.1
-
21
-
-
44449173500
-
TiO (2) nanotubes: Self-organized electrochemical formation, properties and applications
-
Macak JM, Tsuchiya H, Ghicov A, et al. TiO(2) nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 2007;11:3-18
-
(2007)
Curr Opin Solid State Mater Sci
, vol.11
, pp. 3-18
-
-
Macak, J.M.1
Tsuchiya, H.2
Ghicov, A.3
-
22
-
-
84868488407
-
Engineering biocompatible implant surfaces, Part I: Materials and surfaces
-
Bauer S, Schmuki P, et al. Engineering biocompatible implant surfaces, Part I: materials and surfaces. Prog Mater Sci 2013;58:261-326
-
(2013)
Prog Mater Sci
, vol.58
, pp. 261-326
-
-
Bauer, S.1
Schmuki, P.2
-
24
-
-
77949401164
-
Synthesis and applications of electrochemically self-assembled titania nanotube arrays
-
Rani S, Roy SC, Paulose M, et al. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys Chem Chem Phys 2010;12:2780-800
-
(2010)
Phys Chem Chem Phys
, vol.12
, pp. 2780-2800
-
-
Rani, S.1
Roy, S.C.2
Paulose, M.3
-
25
-
-
84864632246
-
Local drug delivery to the bone by drugreleasing implants: Perspectives of nanoengineered titania nanotube arrays
-
Gulati K, Aw MS, Findlay D, Losic D. Local drug delivery to the bone by drugreleasing implants: perspectives of nanoengineered titania nanotube arrays. Ther Deliv 2012;3:857-73
-
(2012)
Ther Deliv
, vol.3
, pp. 857-873
-
-
Gulati, K.1
Aw, M.S.2
Findlay, D.3
Losic, D.4
-
26
-
-
84889681553
-
Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: Concepts for controlling drug release
-
Aw MS, Kurian M, Losic D. Non-eroding drug-releasing implants with ordered nanoporous and nanotubular structures: concepts for controlling drug release. Biomater Sci 2014;2:10-34
-
(2014)
Biomater Sci
, vol.2
, pp. 10-34
-
-
Aw, M.S.1
Kurian, M.2
Losic, D.3
-
27
-
-
79952853037
-
Self ordering electrochemistry: A simple approach for engineering nanopore and nanotube arrays for emerging applications
-
Losic D, Velleman L, Kant K, et al. Self ordering electrochemistry: a simple approach for engineering nanopore and nanotube arrays for emerging applications. Aust J Chem 2011;64:294-301
-
(2011)
Aust J Chem
, vol.64
, pp. 294-301
-
-
Losic, D.1
Velleman, L.2
Kant, K.3
-
28
-
-
67449089567
-
Self-ordering electrochemistry: A review on growth andfunctionality of TiO2 nanotubes and other self-aligned MOx structures
-
Ghicov A, Schmuki P. Self-ordering electrochemistry: a review on growth andfunctionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 2009;20:2791-808.
-
(2009)
Chem Commun
, vol.20
, pp. 2791-2808
-
-
Ghicov, A.1
Schmuki, P.2
-
29
-
-
84856049833
-
Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection
-
Gulati K, Aw MS, Losic D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res Lett 2011;6:571 .
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 571
-
-
Gulati, K.1
Aw, M.S.2
Losic, D.3
-
30
-
-
17044428584
-
High-aspect-ratio TiO2 nanotubes by anodization of titanium
-
Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed 2005;44(14):2100-2
-
(2005)
Angew Chem Int Ed
, vol.44
, Issue.14
, pp. 2100-2102
-
-
Macak, J.M.1
Tsuchiya, H.2
Schmuki, P.3
-
31
-
-
17044393277
-
The effect of electrolyte composition on the fabrication of selforganized titanium oxide nanotube arrays by anodic oxidation
-
Cai QY, Paulose M, Varghese OK, Grimes CA. The effect of electrolyte composition on the fabrication of selforganized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 2005;20:230-6
-
(2005)
J Mater Res
, vol.20
, pp. 230-236
-
-
Cai, Q.Y.1
Paulose, M.2
Varghese, O.K.3
Grimes, C.A.4
-
32
-
-
34250349643
-
A new benchmark for TiO2 nanotube array growth by anodization
-
Prakasam HE, Shankar K, Paulose M, et al. A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 2007;111:7235-41
-
(2007)
J Phys Chem C
, vol.111
, pp. 7235-7241
-
-
Prakasam, H.E.1
Shankar, K.2
Paulose, M.3
-
33
-
-
70449093719
-
Tailoring the surface functionalities of titania nanotube arrays
-
Vasilev K, Poh Z, Kant K, et al. Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 2010;31(3):532-40
-
(2010)
Biomaterials
, vol.31
, Issue.3
, pp. 532-540
-
-
Vasilev, K.1
Poh, Z.2
Kant, K.3
-
34
-
-
34748919139
-
Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte
-
Allam NK, Grimes CA. Formation of vertically oriented TiO2 nanotube arrays using a fluoride free HCl aqueous electrolyte. J Phys Chem C 2007;111(35):13028-32
-
(2007)
J Phys Chem C
, vol.111
, Issue.35
, pp. 13028-13032
-
-
Allam, N.K.1
Grimes, C.A.2
-
35
-
-
44249118758
-
Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes
-
Paulose M, Peng L, Popat KC, et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 2008;319(1-2):199-205
-
(2008)
J Membr Sci
, vol.319
, Issue.1-2
, pp. 199-205
-
-
Paulose, M.1
Peng, L.2
Popat, K.C.3
-
36
-
-
53549088894
-
Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace
-
Albu SP, Kim D, Schmuki P. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem Int Ed Engl 2008;47(10):1916-19
-
(2008)
Angew Chem Int Ed Engl
, vol.47
, Issue.10
, pp. 1916-1919
-
-
Albu, S.P.1
Kim, D.2
Schmuki, P.3
-
37
-
-
84863012598
-
Hierarchically branched titania nanotubes with tailored diameters and branch numbers
-
Chen B, Lu K. Hierarchically branched titania nanotubes with tailored diameters and branch numbers. Langmuir 2012;28:2937-43
-
(2012)
Langmuir
, vol.28
, pp. 2937-2943
-
-
Chen, B.1
Lu, K.2
-
38
-
-
55749106778
-
Formation of double-walled TiO2 nanotubes and robust anatase membranes
-
Albu SP, Ghicov A, Aldabergenova S, et al. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 2008;20(21):4135-9
-
(2008)
Adv Mater
, vol.20
, Issue.21
, pp. 4135-4139
-
-
Albu, S.P.1
Ghicov, A.2
Aldabergenova, S.3
-
39
-
-
14844339036
-
Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes
-
Oh SH, Finones RR, Daraio C, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005;26(24):4938-43
-
(2005)
Biomaterials
, vol.26
, Issue.24
, pp. 4938-4943
-
-
Oh, S.H.1
Finones, R.R.2
Daraio, C.3
-
40
-
-
79952191951
-
Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite
-
Dey T, Roy P, Fabry B, Schmuki P. Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite. Acta Biomater 2011;7:1873-9.
-
(2011)
Acta Biomater
, vol.7
, pp. 1873-1879
-
-
Dey, T.1
Roy, P.2
Fabry, B.3
Schmuki, P.4
-
41
-
-
78049431450
-
Micropatterned TiO 2 nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid
-
Pittrof A, Bauer S, Schmuki P. Micropatterned TiO 2 nanotube surfaces for site-selective nucleation of hydroxyapatite from simulated body fluid. Acta Biomater 2011;7:424-31
-
(2011)
Acta Biomater
, vol.7
, pp. 424-431
-
-
Pittrof, A.1
Bauer, S.2
Schmuki, P.3
-
42
-
-
84870536720
-
Light-assisted anodized TiO2 nanotube arrays
-
Smith YR, Sarma B, Mohanty SK, Misra M. Light-assisted anodized TiO2 nanotube arrays. ACS Appl Mater Interfaces 2012;4(11):5883-90
-
(2012)
ACS Appl Mater Interfaces
, vol.4
, Issue.11
, pp. 5883-5890
-
-
Smith, Y.R.1
Sarma, B.2
Mohanty, S.K.3
Misra, M.4
-
43
-
-
84881135717
-
Sonochemical assisted synthesis of nanostructured titanium oxide by anodic oxidation
-
Neupane MP, Park IS, Bae TS, Lee MH. Sonochemical assisted synthesis of nanostructured titanium oxide by anodic oxidation. J Alloys Compound 2013;581:418-22
-
(2013)
J Alloys Compound
, vol.581
, pp. 418-422
-
-
Neupane, M.P.1
Park, I.S.2
Bae, T.S.3
Lee, M.H.4
-
44
-
-
0035372012
-
Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium
-
Matsuno H, Yokoyama A, Watari F, et al. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001;22:1253-62
-
(2001)
Biomaterials
, vol.22
, pp. 1253-1262
-
-
Matsuno, H.1
Yokoyama, A.2
Watari, F.3
-
45
-
-
34247490766
-
Influence of engineered titania nanotubular surfaces on bone cells
-
Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007;28:3188-97.
-
(2007)
Biomaterials
, vol.28
, pp. 3188-3197
-
-
Popat, K.C.1
Leoni, L.2
Grimes, C.A.3
Desai, T.A.4
-
47
-
-
78649382670
-
Titania nanotubes: Novel nanostructures for improved osseointegration
-
Swami N, Cui Z, Nair LS. Titania nanotubes: novel nanostructures for improved osseointegration. J Heat Transfer 2010;133:034002-8
-
(2010)
J Heat Transfer
, vol.133
, pp. 034002-034008
-
-
Swami, N.1
Cui, Z.2
Nair, L.S.3
-
48
-
-
75749148812
-
Titanium dioxide nanotubes enhance bone bonding in vivo
-
Bjursten LM, Rasmusson L, Oh S, et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res 2010;92A:1218-24
-
(2010)
J Biomed Mater Res
, vol.92 A
, pp. 1218-1224
-
-
Bjursten, L.M.1
Rasmusson, L.2
Oh, S.3
-
49
-
-
34548041132
-
Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibioticloaded titania nanotubes
-
Popat KC, Eltgroth M, LaTempa TJ, et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibioticloaded titania nanotubes. Biomaterials 2007;28:4880-8
-
(2007)
Biomaterials
, vol.28
, pp. 4880-4888
-
-
Popat, K.C.1
Eltgroth, M.2
Latempa, T.J.3
-
50
-
-
36048996366
-
Titania nanotubes: A novel platform for drug-eluting coatings for medical implants
-
Popat KC, Eltgroth M, La Tempa TJ, et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants. Small 2007;3:1878-81
-
(2007)
Small
, vol.3
, pp. 1878-1881
-
-
Popat, K.C.1
Eltgroth, M.2
La Tempa, T.J.3
-
51
-
-
60549103749
-
Increased chondrocyte adhesion on nanotubular anodized titanium
-
Burns K, Yao C, Webster TJ. Increased chondrocyte adhesion on nanotubular anodized titanium. J Biomed Mater Res Part A 2009;88A:561-8
-
(2009)
J Biomed Mater Res Part A
, vol.88 A
, pp. 561-568
-
-
Burns, K.1
Yao, C.2
Webster, T.J.3
-
52
-
-
33745600877
-
Significantly accelerated osteoblast cellgrowth on aligned TiO2 nanotubes
-
Oh S, Daraio C, Chen LH, et al. Significantly accelerated osteoblast cellgrowth on aligned TiO2 nanotubes. J Biomed Mater Res Part A 2006;78A:97-103.
-
(2006)
J Biomed Mater Res Part A
, vol.78 A
, pp. 97-103
-
-
Oh, S.1
Daraio, C.2
Chen, L.H.3
-
53
-
-
33746769729
-
Titanium oxide nanotubes with controlled morphology for enhanced bone growth
-
Oh S, Jin S. Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C 2006;26:1301-6
-
(2006)
Mater Sci Eng C
, vol.26
, pp. 1301-1306
-
-
Oh, S.1
Jin, S.2
-
54
-
-
60549098069
-
Stem cell fate dictated solely by altered nanotube dimension
-
Oh S, Brammer KS, Li YSJ, et al. Stem cell fate dictated solely by altered nanotube dimension. PNAS 2009;106:2130-5
-
(2009)
PNAS
, vol.106
, pp. 2130-2135
-
-
Oh, S.1
Brammer, K.S.2
Li, Y.S.J.3
-
55
-
-
34547370396
-
Nanosize and vitality: TiO2 nanotube diameter directs cell fate
-
Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: tiO2 nanotube diameter directs cell fate. Nano Lett 2007;7(6):1686-91
-
(2007)
Nano Lett
, vol.7
, Issue.6
, pp. 1686-1691
-
-
Park, J.1
Bauer, S.2
Von Der Mark, K.3
Schmuki, P.4
-
56
-
-
63149176535
-
TiO2 nanotube surfaces: 15 nm - An optimal length scale of surface topography for cell adhesion and differentiation
-
Park J, Bauer S, Schlegel KA, et al. TiO2 nanotube surfaces: 15 nm - an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009;5(6):666-71.
-
(2009)
Small
, vol.5
, Issue.6
, pp. 666-671
-
-
Park, J.1
Bauer, S.2
Schlegel, K.A.3
-
57
-
-
77950060018
-
Nanotube surface triggers increased chondrocyte extracellular matrix production
-
Brammer KS, Oh S, Frandsen CJ, et al. Nanotube surface triggers increased chondrocyte extracellular matrix production. Mater Sci Eng C 2010;30:518-25
-
(2010)
Mater Sci Eng C
, vol.30
, pp. 518-525
-
-
Brammer, K.S.1
Oh, S.2
Frandsen, C.J.3
-
58
-
-
43149103938
-
Enhanced cellular mobility guided by TiO2 nanotube surfaces
-
Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano Lett 2008;8:786-93
-
(2008)
Nano Lett
, vol.8
, pp. 786-793
-
-
Brammer, K.S.1
Oh, S.2
Gallagher, J.O.3
Jin, S.4
-
59
-
-
79955612414
-
Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays
-
Smith BS, Yoriya S, Johnson T, Popat KC. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater 2011;7:2686-96
-
(2011)
Acta Biomater
, vol.7
, pp. 2686-2696
-
-
Smith, B.S.1
Yoriya, S.2
Johnson, T.3
Popat, K.C.4
-
60
-
-
79551484495
-
Tunable functionality and toxicity studies of titanium dioxide nanotube layers
-
Feschet-Chassot E, Raspal V, Awitor OK, et al. Tunable functionality and toxicity studies of titanium dioxide nanotube layers. Thin Solid Films 2011;519(8):2564-8
-
(2011)
Thin Solid Films
, vol.519
, Issue.8
, pp. 2564-2568
-
-
Feschet-Chassot, E.1
Raspal, V.2
Awitor, O.K.3
-
61
-
-
48649083386
-
Improved attachment of mesenchymal stem cells on superhydrophobic TiO2 nanotubes
-
Bauer S, Park J, von der Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on superhydrophobic TiO2 nanotubes. Acta Biomater 2008;4:1576-82
-
(2008)
Acta Biomater
, vol.4
, pp. 1576-1582
-
-
Bauer, S.1
Park, J.2
Von Der Mark, K.3
Schmuki, P.4
-
62
-
-
84855970224
-
Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion
-
Gulati K, Ramakrishnan S, Aw MS, et al. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 2012;8:449-56
-
(2012)
Acta Biomater
, vol.8
, pp. 449-456
-
-
Gulati, K.1
Ramakrishnan, S.2
Aw, M.S.3
-
63
-
-
65549171021
-
Vivo evaluation of anodic TiO (2) Nanotubes: An experimental study in the Pig
-
von Wilmowsky C, Bauer S, Lutz R, et al. In vivo evaluation of anodic TiO (2) nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater 2009;89B(1):165-71.
-
(2009)
J Biomed Mater Res B Appl Biomater
, vol.89 B
, Issue.1
, pp. 165-171
-
-
Von Wilmowsky, C.1
Bauer, S.2
Lutz, R.3
-
64
-
-
75749148812
-
Titanium dioxide nanotubes enhance bone bonding in vivo
-
Bjursten LM, Rasmusson L, Oh S, et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 2010;92:1218-24
-
(2010)
J Biomed Mater Res A
, vol.92
, pp. 1218-1224
-
-
Bjursten, L.M.1
Rasmusson, L.2
Oh, S.3
-
65
-
-
33748295044
-
Medical device regulations. Global overview and guiding principles
-
WHO, Geneva
-
Medical device regulations. Global overview and guiding principles. World Health Organization, WHO, Geneva; 2003
-
(2003)
World Health Organization
-
-
-
67
-
-
29544435482
-
Research strategies for safety evaluation of nanomaterials
-
Tsuji JS, Maynard AD, Howard PC, et al. Research strategies for safety evaluation of nanomaterials. Toxicol Sci 2006;89:42-50
-
(2006)
Toxicol Sci
, vol.89
, pp. 42-50
-
-
Tsuji, J.S.1
Maynard, A.D.2
Howard, P.C.3
-
68
-
-
0014002045
-
High concentration of injected titanium dioxide in abdominal lymph nodes
-
Huggins CB, Froehlich JP. High concentration of injected titanium dioxide in abdominal lymph nodes. J Exp Med 1966;124:1099-106
-
(1966)
J Exp Med
, vol.124
, pp. 1099-1106
-
-
Huggins, C.B.1
Froehlich, J.P.2
-
69
-
-
81855161641
-
Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels
-
Nuevo-Ordóñez Y, Montes-Bayón M, Blanco-González E, et al. Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal Bioanal Chem 2011;doi: 10.1007/s00216-011-5232-8
-
(2011)
Anal Bioanal Chem
-
-
Nuevo-Ordóñez, Y.1
Montes-Bayón, M.2
Blanco-González, E.3
-
70
-
-
84864919690
-
Biocompatibility and toxicity of nanoparticles and nanotubes
-
2012:Article ID 548389
-
Li X, Wang L, Fan Y, et al. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater 2012;2012:Article ID 548389
-
(2012)
J Nanomater
-
-
Li, X.1
Wang, L.2
Fan, Y.3
-
71
-
-
84884291060
-
Polymeric micelles for multidrug delivery and combination therapy
-
Aw MS, Kurian M, Losic D. Polymeric micelles for multidrug delivery and combination therapy. Chem Eur J 2013;19:12586-601 .
-
(2013)
Chem Eur J
, vol.19
, pp. 12586-12601
-
-
Aw, M.S.1
Kurian, M.2
Losic, D.3
-
72
-
-
60849100507
-
Magnetically guided titania nanotubes for site-selective photocatalysis and drug release
-
Shrestha NK, Macak JM, Schmidt-Stein F, et al. Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 2009;48:969-72
-
(2009)
Angew Chem Int Ed
, vol.48
, pp. 969-972
-
-
Shrestha, N.K.1
Macak, J.M.2
Schmidt-Stein, F.3
-
73
-
-
84864618008
-
Polymer micelles for delayed release of therapeutics from drug-releasing Surfaces with nanotubular structures
-
Aw MS, Addai-Mensah J, Losic D. Polymer micelles for delayed release of therapeutics from drug-releasing Surfaces with nanotubular structures. Macromol Biosci 2012;12:1048-52
-
(2012)
Macromol Biosci
, vol.12
, pp. 1048-1052
-
-
Aw, M.S.1
Addai-Mensah, J.2
Losic, D.3
-
74
-
-
84871612416
-
Temperature-responsive controlled drug delivery system based on titanium nanotubes
-
Cai K, Jiang F, Luo Z, Chen X. Temperature-responsive controlled drug delivery system based on titanium nanotubes. Adv Eng Mater 2010;12:B565-70
-
(2010)
Adv Eng Mater
, vol.12 B
, pp. 565-570
-
-
Cai, K.1
Jiang, F.2
Luo, Z.3
Chen, X.4
-
75
-
-
84857843847
-
A multi-drug delivery system with sequential release using titania nanotube arrays
-
Aw MS, Addai-Mensah J, Losic D. A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun 2012;48:3348-50
-
(2012)
Chem Commun
, vol.48
, pp. 3348-3350
-
-
Aw, M.S.1
Addai-Mensah, J.2
Losic, D.3
-
76
-
-
79955595113
-
Polymeric micelles in porous and nanotube materials as a new system for extended delivery of poorly soluble drugs
-
Aw MS, Simovic S, Addai-Mensah J, Losic D. Polymeric micelles in porous and nanotube materials as a new system for extended delivery of poorly soluble drugs. J Mater Chem 2011;21:7082-9
-
(2011)
J Mater Chem
, vol.21
, pp. 7082-7089
-
-
Aw, M.S.1
Simovic, S.2
Addai-Mensah, J.3
Losic, D.4
-
77
-
-
84902148318
-
Controlled release and bioactivity of the monoclonal antibody rituximab from a porous matrix: A potential in situ therapeutic device
-
Simovic S, Diener KR, Bachhuka A, et al. Controlled release and bioactivity of the monoclonal antibody rituximab from a porous matrix: a potential in situ therapeutic device. Mater Lett 2014;130:210-14
-
(2014)
Mater Lett
, vol.130
, pp. 210-214
-
-
Simovic, S.1
Diener, K.R.2
Bachhuka, A.3
-
78
-
-
84888229334
-
Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion
-
Çal?şkan N, Bayram C, Erdal E, et al. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater Sci Eng C 2014;35:100-5
-
(2014)
Mater Sci Eng C
, vol.35
, pp. 100-105
-
-
Çalşkan, N.1
Bayram, C.2
Erdal, E.3
-
79
-
-
76349120421
-
Controlled drug release from porous materials by plasma polymer deposition
-
Simovic S, Losic D, Vasilev K. Controlled drug release from porous materials by plasma polymer deposition. Chem Commun 2010;46(8):1317-19
-
(2010)
Chem Commun
, vol.46
, Issue.8
, pp. 1317-1319
-
-
Simovic, S.1
Losic, D.2
Vasilev, K.3
-
80
-
-
80051905993
-
Controlled release from porous platforms
-
Simovic S, Losic D, Vasilev K. Controlled release from porous platforms. Pharm Technol 2011;35(8):68-71
-
(2011)
Pharm Technol
, vol.35
, Issue.8
, pp. 68-71
-
-
Simovic, S.1
Losic, D.2
Vasilev, K.3
-
81
-
-
44949178364
-
Surface modification of nanoporous alumina membranes by plasma polymerization
-
Losic D, Cole MA, Dollmann B, et al. Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology 2008;19:245704
-
(2008)
Nanotechnology
, vol.19
, pp. 245704
-
-
Losic, D.1
Cole, M.A.2
Dollmann, B.3
-
83
-
-
84870190036
-
Fabrication of selenium-deposited and chitosancoated titania nanotubes with anticancer and antibacterial properties
-
Chen X, Cai K, Fang J, et al. Fabrication of selenium-deposited and chitosancoated titania nanotubes with anticancer and antibacterial properties. Colloids Surf B Biointerfaces 2013;103:149-57
-
(2013)
Colloids Surf B Biointerfaces
, vol.103
, pp. 149-157
-
-
Chen, X.1
Cai, K.2
Fang, J.3
-
84
-
-
84896723566
-
The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts
-
Gao A, Hang R, Huang X, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials 2014;35(13):4223-35
-
(2014)
Biomaterials
, vol.35
, Issue.13
, pp. 4223-4235
-
-
Gao, A.1
Hang, R.2
Huang, X.3
-
85
-
-
76449110495
-
Combination therapy in multiple sclerosis
-
Conway D, Cohen JA. Combination therapy in multiple sclerosis. Lancet Neurol 2010;9:299-308
-
(2010)
Lancet Neurol
, vol.9
, pp. 299-308
-
-
Conway, D.1
Cohen, J.A.2
-
86
-
-
84864589877
-
Controlling drug release from titania nanotube arrays using polymer nanocarriers and biopolymer coating
-
Aw MS, Gulati K, Losic D. Controlling drug release from titania nanotube arrays using polymer nanocarriers and biopolymer coating. Biomater Nanobiotech 2011;2:477-84
-
(2011)
Biomater Nanobiotech
, vol.2
, pp. 477-484
-
-
Aw, M.S.1
Gulati, K.2
Losic, D.3
-
88
-
-
84858745023
-
Magnetic-responsive delivery of drugcarriers using titania nanotube arrays
-
Aw MS, Addai-Mensah J, Losic D. Magnetic-responsive delivery of drugcarriers using titania nanotube arrays. J Mater Chem 2012;22:6561-3
-
(2012)
J Mater Chem
, vol.22
, pp. 6561-6563
-
-
Aw, M.S.1
Addai-Mensah, J.2
Losic, D.3
-
89
-
-
84873048624
-
Ultrasound enhanced release of therapeutics from drugreleasing implants based on titania nanotube arrays
-
Aw MS, Losic D. Ultrasound enhanced release of therapeutics from drugreleasing implants based on titania nanotube arrays. Int J Pharm 2013;443:154-62
-
(2013)
Int J Pharm
, vol.443
, pp. 154-162
-
-
Aw, M.S.1
Losic, D.2
-
90
-
-
84906227467
-
Radiofrequency-triggered release for ondemand delivery of therapeutics from titania nanotube drug-eluting implants
-
Bariana M, Aw MS, Moore E, et al. Radiofrequency-triggered release for ondemand delivery of therapeutics from titania nanotube drug-eluting implants. Nanomed 2014;9(8):1263-75.
-
(2014)
Nanomed
, vol.9
, Issue.8
, pp. 1263-1275
-
-
Bariana, M.1
Aw, M.S.2
Moore, E.3
-
91
-
-
80255141928
-
A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform
-
Sirivisoot S, Pareta RA, Webster TJ. A conductive nanostructured polymer electrodeposited on titanium as a controllable, local drug delivery platform. J Biomed Mater Res A 2011;99A(4):586-97
-
(2011)
J Biomed Mater Res A
, vol.99 A
, Issue.4
, pp. 586-597
-
-
Sirivisoot, S.1
Pareta, R.A.2
Webster, T.J.3
-
92
-
-
79251535610
-
Electrically controlled drug release from nanostructured polypyrrole coated on titanium
-
Sirivisoot S, Pareta R, Webster TJ. Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 2011;22(8):085101
-
(2011)
Nanotechnology
, vol.22
, Issue.8
, pp. 085101
-
-
Sirivisoot, S.1
Pareta, R.2
Webster, T.J.3
-
93
-
-
34548700171
-
Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications
-
Sirivisoot S, Yao C, Xiao X, et al. Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnology 2007;18(36):365102
-
(2007)
Nanotechnology
, vol.18
, Issue.36
, pp. 365102
-
-
Sirivisoot, S.1
Yao, C.2
Xiao, X.3
-
94
-
-
47249105511
-
Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation
-
Sirivisoot S, Webster TJ. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology 2008;19(29):295101
-
(2008)
Nanotechnology
, vol.19
, Issue.29
, pp. 295101
-
-
Sirivisoot, S.1
Webster, T.J.2
-
95
-
-
73249127019
-
Bone tissue engineering: A review in bone biomimetics and drug delivery strategies
-
Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009;25(6):1539-60
-
(2009)
Biotechnol Prog
, vol.25
, Issue.6
, pp. 1539-1560
-
-
Porter, J.R.1
Ruckh, T.T.2
Popat, K.C.3
-
96
-
-
0034284550
-
Therapeutic approaches to bone diseases
-
Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000;289:1508-14
-
(2000)
Science
, vol.289
, pp. 1508-1514
-
-
Rodan, G.A.1
Martin, T.J.2
-
97
-
-
70350304283
-
In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone
-
Ainslie KM, Tao SL, Popat KC, et al. In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A 2009;91A(3):647-55
-
(2009)
J Biomed Mater Res A
, vol.91 A
, Issue.3
, pp. 647-655
-
-
Ainslie, K.M.1
Tao, S.L.2
Popat, K.C.3
-
98
-
-
69749101287
-
Enhanced osteoblast adhesion to drugcoated anodized nanotubular titanium surfaces
-
Aninwene GE, Yao C, Webster TJ. Enhanced osteoblast adhesion to drugcoated anodized nanotubular titanium surfaces. Int.J. Nanomed 2008;3(2):257-64
-
(2008)
Int.J. Nanomed
, vol.3
, Issue.2
, pp. 257-264
-
-
Aninwene, G.E.1
Yao, C.2
Webster, T.J.3
-
99
-
-
57049176037
-
The management of osteoarthritis: An overview and call to appropriate conservative treatment
-
Hunter DJ, Lo GH. The management of osteoarthritis: an overview and call to appropriate conservative treatment. Med Clin North Am 2009;93(1):127-43
-
(2009)
Med Clin North Am
, vol.93
, Issue.1
, pp. 127-143
-
-
Hunter, D.J.1
Lo, G.H.2
-
100
-
-
33747812542
-
Reducing implant-related infections: Active release strategies
-
Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006;35(9):780-9
-
(2006)
Chem Soc Rev
, vol.35
, Issue.9
, pp. 780-789
-
-
Hetrick, E.M.1
Schoenfisch, M.H.2
-
101
-
-
84887358143
-
Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: In vivo and in vitro studies
-
Zhang H, Sun Y, Tian A, et al. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomedicine 2013;8:4379-89
-
(2013)
Int J Nanomedicine
, vol.8
, pp. 4379-4389
-
-
Zhang, H.1
Sun, Y.2
Tian, A.3
-
102
-
-
71649105816
-
Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method
-
Yao C, Webster TJ. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J Biomed Mater Res B Appl Biomater 2009;91B(2):587-95
-
(2009)
J Biomed Mater Res B Appl Biomater
, vol.91 B
, Issue.2
, pp. 587-595
-
-
Yao, C.1
Webster, T.J.2
-
103
-
-
79957901154
-
Antibacterial nano-structured titania coating incorporated with silver nanoparticles
-
Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011;32(24):5706-16
-
(2011)
Biomaterials
, vol.32
, Issue.24
, pp. 5706-5716
-
-
Zhao, L.1
Wang, H.2
Huo, K.3
-
104
-
-
84655170097
-
Local delivery of antimicrobial peptides using self-organized TiO(2) nanotube arrays for peri-implant infections
-
Ma M, Kazemzadeh-Narbat M, Hui Y, et al. Local delivery of antimicrobial peptides using self-organized TiO(2) nanotube arrays for peri-implant infections. J Biomed Mater Res A 2012;100A(2):278-85
-
(2012)
J Biomed Mater Res A
, vol.100 A
, Issue.2
, pp. 278-285
-
-
Ma, M.1
Kazemzadeh-Narbat, M.2
Hui, Y.3
-
105
-
-
79960472112
-
Diameter of titanium nanotubes influences anti-bacterial efficacy
-
Ercan B, Taylor E, Alpaslan E, Webster TJ. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 2011;22(29):295102
-
(2011)
Nanotechnology
, vol.22
, Issue.29
, pp. 295102
-
-
Ercan, B.1
Taylor, E.2
Alpaslan, E.3
Webster, T.J.4
-
106
-
-
77954384818
-
Surface morphology optimization for osseointegration of coated implants
-
Rungsiyakull C, Li Q, Sun G, et al. Surface morphology optimization for osseointegration of coated implants. Biomaterials 2010;31(27):7196-204
-
(2010)
Biomaterials
, vol.31
, Issue.27
, pp. 7196-7204
-
-
Rungsiyakull, C.1
Li, Q.2
Sun, G.3
-
107
-
-
78649382670
-
Titania nanotubes: Novel nanostructures for improved osseointegration
-
Swami N, Cui ZW, Nair LS. Titania nanotubes: novel nanostructures for improved osseointegration. J Heat Trans 2011;133(3):034002
-
(2011)
J Heat Trans
, vol.133
, Issue.3
, pp. 034002
-
-
Swami, N.1
Cui, Z.W.2
Nair, L.S.3
-
108
-
-
47249086516
-
Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes
-
Kunze J, Mueller L, Macak JM, et al. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 2008;53(23):6995-7003
-
(2008)
Electrochim Acta
, vol.53
, Issue.23
, pp. 6995-7003
-
-
Kunze, J.1
Mueller, L.2
Macak, J.M.3
-
109
-
-
79961134875
-
Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants
-
Neupane MP, Park IS, Bae TS, et al. Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants. J Mater Chem 2011;21(32):12078-82
-
(2011)
J Mater Chem
, vol.21
, Issue.32
, pp. 12078-12082
-
-
Neupane, M.P.1
Park, I.S.2
Bae, T.S.3
-
110
-
-
70350645482
-
Bioactive SrTiO3 nanotube arrays: Strontium delivery platform on Ti-based osteoporotic bone implants
-
Xin Y, Jiang J, Huo K, et al. Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. ACS Nano 2009;3:3228-34
-
(2009)
ACS Nano
, vol.3
, pp. 3228-3234
-
-
Xin, Y.1
Jiang, J.2
Huo, K.3
-
111
-
-
84868131548
-
The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates
-
Zhao L, Wang H, Huo K, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials 2013;34(1):19-29
-
(2013)
Biomaterials
, vol.34
, Issue.1
, pp. 19-29
-
-
Zhao, L.1
Wang, H.2
Huo, K.3
-
112
-
-
79953857478
-
Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells
-
Lai M, Cai K, Zhao L, et al. Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 2011;12(4):1097-105
-
(2011)
Biomacromolecules
, vol.12
, Issue.4
, pp. 1097-1105
-
-
Lai, M.1
Cai, K.2
Zhao, L.3
-
113
-
-
84870338819
-
Characterization of drug-release kinetics in trabecular bone from titania nanotube implants
-
Aw MS, Khalid KA, Gulati K, et al. Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. Int J Nanomedicine 2012;7:4883-92.
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 4883-4892
-
-
Aw, M.S.1
Khalid, K.A.2
Gulati, K.3
-
114
-
-
0142258994
-
Development of a mechanical testing and loading system for trabecular bone studies for long term culture
-
Jones DB, Broeckmann E, Pohl T, Smith EL. Development of a mechanical testing and loading system for trabecular bone studies for long term culture. Eur Cell Mater 2003;5:48-60
-
(2003)
Eur Cell Mater
, vol.5
, pp. 48-60
-
-
Jones, D.B.1
Broeckmann, E.2
Pohl, T.3
Smith, E.L.4
-
115
-
-
33646153774
-
Mechanically loaded ex vivo bone culture system Zetos: Systems and culture preparation
-
Davies CM, Jones DB, Stoddart MJ, et al. Mechanically loaded ex vivo bone culture system Zetos: systems and culture preparation. Eur Cell Mater 2006;11:57-75
-
(2006)
Eur Cell Mater
, vol.11
, pp. 57-75
-
-
Davies, C.M.1
Jones, D.B.2
Stoddart, M.J.3
-
116
-
-
85027955932
-
The effect of hierarchical micro/nanosurface titanium implant on osseointegration inovariectomized sheep
-
Xiao J, Zhou H, Zhao L, et al. The effect of hierarchical micro/nanosurface titanium implant on osseointegration inovariectomized sheep. Osteoporos Int 2011;22(6):1907-13
-
(2011)
Osteoporos Int
, vol.22
, Issue.6
, pp. 1907-1913
-
-
Xiao, J.1
Zhou, H.2
Zhao, L.3
-
117
-
-
33846381749
-
Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein
-
Park J-M, Koak J-Y, Jang J-H, et al. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants 2006;21(6):859-66
-
(2006)
Int J Oral Maxillofac Implants
, vol.21
, Issue.6
, pp. 859-866
-
-
Park, J.-M.1
Koak, J.-Y.2
Jang, J.-H.3
-
118
-
-
0025583364
-
A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws
-
Adell R, Eriksson B, Lekholm U, et al. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347-59
-
(1990)
Int J Oral Maxillofac Implants
, vol.5
, pp. 347-359
-
-
Adell, R.1
Eriksson, B.2
Lekholm, U.3
-
119
-
-
34249978726
-
Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering
-
Moioli EK, Clark PA, Xin X, et al. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 2007;59:308-24
-
(2007)
Adv Drug Deliv Rev
, vol.59
, pp. 308-324
-
-
Moioli, E.K.1
Clark, P.A.2
Xin, X.3
-
120
-
-
84906781823
-
Biofunctional porous anodized titanium implants for enhanced bone regeneration
-
Epub ahead of print
-
Shim IK, Chung HJ, Jung MR, et al. Biofunctional porous anodized titanium implants for enhanced bone regeneration. J Biomed Mater Res A 2013. [Epub ahead of print]
-
(2013)
J Biomed Mater Res A
-
-
Shim, I.K.1
Chung, H.J.2
Jung, M.R.3
-
121
-
-
84855919800
-
TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells
-
Hu Y, Cai KY, Luo Z, et al. TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater 2012;8:439-48
-
(2012)
Acta Biomater
, vol.8
, pp. 439-448
-
-
Hu, Y.1
Cai, K.Y.2
Luo, Z.3
-
122
-
-
84885385108
-
Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible
-
Lee YH, Bhattarai G, Park IS, et al. Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible. Biomaterials 2013;34:10199-208
-
(2013)
Biomaterials
, vol.34
, pp. 10199-10208
-
-
Lee, Y.H.1
Bhattarai, G.2
Park, I.S.3
-
123
-
-
77951879149
-
Effect of nano-topographical features of Ti/ TiO2 electrode surface on cell response and electrochemical stability in artificial saliva
-
Demetrescu I, Pirvu C, Mitran V. Effect of nano-topographical features of Ti/ TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry 2010;79:122-9
-
(2010)
Bioelectrochemistry
, vol.79
, pp. 122-129
-
-
Demetrescu, I.1
Pirvu, C.2
Mitran, V.3
-
124
-
-
79959499717
-
Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior
-
Ma Q, Mei S, Ji K, et al. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior. J Biomed Mater Res A 2011;98:274-86
-
(2011)
J Biomed Mater Res A
, vol.98
, pp. 274-286
-
-
Ma, Q.1
Mei, S.2
Ji, K.3
-
125
-
-
84866753873
-
Concentration-and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants
-
Ma Q, Wang W, Chu PK, et al. Concentration-and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants. Int J Nanomed 2011;7:1965-76
-
(2011)
Int J Nanomed
, vol.7
, pp. 1965-1976
-
-
Ma, Q.1
Wang, W.2
Chu, P.K.3
-
127
-
-
84883872861
-
Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes
-
Shokuhfar T, Sinha-Ray S, Sukotjo C, et al. Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. RSC Adv 2013;3:17380-6
-
(2013)
RSC Adv
, vol.3
, pp. 17380-17386
-
-
Shokuhfar, T.1
Sinha-Ray, S.2
Sukotjo, C.3
-
128
-
-
0023153178
-
Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty
-
Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 1987;316:701-6
-
(1987)
N Engl J Med
, vol.316
, pp. 701-706
-
-
Sigwart, U.1
Puel, J.2
Mirkovitch, V.3
-
129
-
-
84855718052
-
A tale of coronary artery disease and myocardial infarction
-
Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med 2012;366:54-63
-
(2012)
N Engl J Med
, vol.366
, pp. 54-63
-
-
Nabel, E.G.1
Braunwald, E.2
-
130
-
-
0028123099
-
A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease
-
Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994;331:489-95
-
(1994)
N Engl J Med
, vol.331
, pp. 489-495
-
-
Serruys, P.W.1
De Jaegere, P.2
Kiemeneij, F.3
-
131
-
-
0037030658
-
A randomized comparison of a sirolimus- eluting stent with a standard stent for coronary revascularization
-
Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus- eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002;346:1773-80
-
(2002)
N Engl J Med
, vol.346
, pp. 1773-1780
-
-
Morice, M.C.1
Serruys, P.W.2
Sousa, J.E.3
-
132
-
-
9144249927
-
A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease
-
Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 2004;350:221-31
-
(2004)
N Engl J Med
, vol.350
, pp. 221-231
-
-
Stone, G.W.1
Ellis, S.G.2
Cox, D.A.3
-
133
-
-
33847167065
-
Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxeleluting stents in routine clinical practice: Data from a large twoinstitutional cohort study
-
Daemen J, Wenaweser P, Tsuchida K, et al. Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxeleluting stents in routine clinical practice: data from a large twoinstitutional cohort study. Lancet 2007;369:667-78
-
(2007)
Lancet
, vol.369
, pp. 667-678
-
-
Daemen, J.1
Wenaweser, P.2
Tsuchida, K.3
-
134
-
-
33847705701
-
Stent thrombosis in randomized clinical trials of drug-eluting stents
-
Mauri L, Hsieh WH, Massaro JM, et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. N Engl J Med 2007;356:1020-9
-
(2007)
N Engl J Med
, vol.356
, pp. 1020-1029
-
-
Mauri, L.1
Hsieh, W.H.2
Massaro, J.M.3
-
135
-
-
84872537353
-
Advances in coronary stent technology - Active drug-loaded stent surfaces for prevention of restenosis and improvement of biocompatibility
-
Sternberg K, Grabow N, Petersen S, et al. Advances in coronary stent technology - Active drug-loaded stent surfaces for prevention of restenosis and improvement of biocompatibility. Curr Pharm Biotechnol 2013;14:76-90
-
(2013)
Curr Pharm Biotechnol
, vol.14
, pp. 76-90
-
-
Sternberg, K.1
Grabow, N.2
Petersen, S.3
-
136
-
-
0242291045
-
Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits
-
Wieneke H, Dirsch O, Sawitowski T, et al. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits. Catheter Cardiovasc Interv 2003;60:399-407
-
(2003)
Catheter Cardiovasc Interv
, vol.60
, pp. 399-407
-
-
Wieneke, H.1
Dirsch, O.2
Sawitowski, T.3
-
137
-
-
19944428938
-
Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimuseluting stents in a porcine model of restenosis
-
Kollum M, Farb A, Schreiber R, et al. Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimuseluting stents in a porcine model of restenosis. Catheter Cardiovasc Interv 2005;64:85-90
-
(2005)
Catheter Cardiovasc Interv
, vol.64
, pp. 85-90
-
-
Kollum, M.1
Farb, A.2
Schreiber, R.3
-
138
-
-
65149085540
-
Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents
-
Fine E, Zhang L, Fenniri H, Webster TJ. Enhanced endothelial cell functions on rosette nanotube-coated titanium vascular stents. Int J Nanomed 2009;4:91-7
-
(2009)
Int J Nanomed
, vol.4
, pp. 91-97
-
-
Fine, E.1
Zhang, L.2
Fenniri, H.3
Webster, T.J.4
-
139
-
-
74849102074
-
Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells
-
Peng L, Andrea J, Barczak AJ, et al. Whole genome expression analysis reveals differential effects of TiO2 nanotubes on vascular cells. Nano Lett 2010;10:143-8
-
(2010)
Nano Lett
, vol.10
, pp. 143-148
-
-
Peng, L.1
Andrea, J.2
Barczak, A.J.3
-
140
-
-
68949120412
-
Gliadel ™ A new method for the treatment of malignant brain tumors
-
Brown D, editor Humana Press, Inc, Totowa, NJ
-
DiMeco F, Brem H, Weingart J, Olivi A. Gliadel- A new method for the treatment of malignant brain tumors. In: Brown D, editor. Drug delivery systems in cancer therapy. Humana Press, Inc, Totowa, NJ; 2003. p. 215-27
-
(2003)
Drug Delivery Systems in Cancer Therapy
, pp. 215-227
-
-
Dimeco, F.1
Brem, H.2
Weingart, J.3
Olivi, A.4
-
141
-
-
84864596515
-
Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain
-
Gulati K, Aw M, Losic D. Nanoengineered drug-releasing Ti wires as an alternative for local delivery of chemotherapeutics in the brain. Int J Nanomed 2012;7:2069-76
-
(2012)
Int J Nanomed
, vol.7
, pp. 2069-2076
-
-
Gulati, K.1
Aw, M.2
Losic, D.3
-
142
-
-
75749096016
-
Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium
-
Xiao X, Yang L, Guo M, et al. Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium. Sci China B Chem 2009;52(12):2161-5
-
(2009)
Sci China B Chem
, vol.52
, Issue.12
, pp. 2161-2165
-
-
Xiao, X.1
Yang, L.2
Guo, M.3
-
143
-
-
84863927928
-
Ultrafast growth of highly ordered anodic TiO2 Nanotubes in lactic acid electrolytes
-
So S, Lee K, Schmuki P. Ultrafast growth of highly ordered anodic TiO2 Nanotubes in lactic acid electrolytes. J Am Chem Soc 2012;134(28):11316-18
-
(2012)
J Am Chem Soc
, vol.134
, Issue.28
, pp. 11316-11318
-
-
So, S.1
Lee, K.2
Schmuki, P.3
-
144
-
-
28844508635
-
Self-organized nanotubular oxide layers on Ti-6A1-7Nb and Ti-6A1-4V formed by anodization in NH4F solutions
-
Macak JM, Tsuchiya H, Taveira L, et al. Self-organized nanotubular oxide layers on Ti-6A1-7Nb and Ti-6A1-4V formed by anodization in NH4F solutions. J Biomed Mater Res A 2005;75A(4):928-33
-
(2005)
J Biomed Mater Res A
, vol.75 A
, Issue.4
, pp. 928-933
-
-
Macak, J.M.1
Tsuchiya, H.2
Taveira, L.3
-
145
-
-
78049259603
-
Ultrafast oxide nanotube formation on TiNb TiZr and TiTa alloys by rapid breakdown anodization
-
Jha H, Hahn R, Schmuki P. Ultrafast oxide nanotube formation on TiNb, TiZr and TiTa alloys by rapid breakdown anodization. Electrochim Acta 2010;55(28):8883-7
-
(2010)
Electrochim Acta
, vol.55
, Issue.28
, pp. 8883-8887
-
-
Jha, H.1
Hahn, R.2
Schmuki, P.3
-
146
-
-
79958096968
-
Characterization of self-organized TiO2 nanotubes on Ti-4Zr-22Nb-2Sn alloys and the application in drug delivery system
-
Liang YQ, Cui ZD, Zhu SL, Yang XJ. Characterization of self-organized TiO2 nanotubes on Ti-4Zr-22Nb-2Sn alloys and the application in drug delivery system. J Mater Sci Mater Med 2011;22(3):461-7
-
(2011)
J Mater Sci Mater Med
, vol.22
, Issue.3
, pp. 461-467
-
-
Liang, Y.Q.1
Cui, Z.D.2
Zhu, S.L.3
Yang, X.J.4
-
147
-
-
84856260348
-
Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays
-
Liao J, Lin S, Zhang L, et al. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl Mater Interfaces 2012;4(1):171-7
-
(2012)
ACS Appl Mater Interfaces
, vol.4
, Issue.1
, pp. 171-177
-
-
Liao, J.1
Lin, S.2
Zhang, L.3
-
148
-
-
84899008924
-
Anodic titania nanotubes grown on titanium tubular electrodes
-
Sun L, Wang X, Li M, et al. Anodic titania nanotubes grown on titanium tubular electrodes. Langmuir 2014;30(10):2835-41
-
(2014)
Langmuir
, vol.30
, Issue.10
, pp. 2835-2841
-
-
Sun, L.1
Wang, X.2
Li, M.3
-
149
-
-
77955472045
-
Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents
-
Wei W, Berger S, Hauser C, et al. Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem Commun 2010;12(9):1184-6
-
(2010)
Electrochem Commun
, vol.12
, Issue.9
, pp. 1184-1186
-
-
Wei, W.1
Berger, S.2
Hauser, C.3
-
150
-
-
84879889542
-
TiO2 nanotubes nanochannels and mesosponge: Self-organized formation and applications
-
Kowalski D, Kim D, Schmuki P. TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today 2013;8(3):235-64
-
(2013)
Nano Today
, vol.8
, Issue.3
, pp. 235-264
-
-
Kowalski, D.1
Kim, D.2
Schmuki, P.3
-
151
-
-
84883873284
-
Vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections
-
Chennell P, Feschet-Chassot E, Devers T, et al. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int J Pharm 2013;455(1-2):298-305
-
(2013)
Int J Pharm
, vol.455
, Issue.2
, pp. 298-305
-
-
Chennell, P.1
Feschet-Chassot, E.2
Devers, T.3
-
152
-
-
84874257831
-
Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays
-
Huo K, Zhang X, Wang H, et al. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 2013;34(13):3467-78
-
(2013)
Biomaterials
, vol.34
, Issue.13
, pp. 3467-3478
-
-
Huo, K.1
Zhang, X.2
Wang, H.3
-
153
-
-
84876231462
-
TiO2 nanotubes as animal drug delivery system and in vitro controlled release
-
Lai S, Zhang W, Liu F, et al. TiO2 nanotubes as animal drug delivery system and in vitro controlled release. J Nanosci Nanotechnol 2013;13(1):91-7
-
(2013)
J Nanosci Nanotechnol
, vol.13
, Issue.1
, pp. 91-97
-
-
Lai, S.1
Zhang, W.2
Liu, F.3
-
154
-
-
84879013819
-
Sustained ibuprofen release using composite poly(lactic-coglycolic acid)/titanium dioxide nanotubes from Ti implant surface
-
Jia H, Kerr L. Sustained ibuprofen release using composite poly(lactic-coglycolic acid)/titanium dioxide nanotubes from Ti implant surface. J Pharm Sci 2013;102(7):2341-8
-
(2013)
J Pharm Sci
, vol.102
, Issue.7
, pp. 2341-2348
-
-
Jia, H.1
Kerr, L.2
-
155
-
-
84876908830
-
Immobilization of pamidronic acids on the nanotube surface of titanium discs and their interaction with bone cells
-
Koo T-H, Borah J, Xing Z-C, et al. Immobilization of pamidronic acids on the nanotube surface of titanium discs and their interaction with bone cells. Nanoscale Res Lett 2013;8(1):124
-
(2013)
Nanoscale Res Lett
, vol.8
, Issue.1
, pp. 124
-
-
Koo, T.-H.1
Borah, J.2
Xing, Z.-C.3
-
156
-
-
67349141019
-
Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite
-
Kodama A, Bauer S, Komatsu A, et al. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 2009;5(6):2322-30
-
(2009)
Acta Biomater
, vol.5
, Issue.6
, pp. 2322-2330
-
-
Kodama, A.1
Bauer, S.2
Komatsu, A.3
-
157
-
-
85027929371
-
Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer
-
Moon S-H, Lee S-J, Park I-S, et al. Bioactivity of Ti-6Al-4V alloy implants treated with ibandronate after the formation of the nanotube TiO2 layer. J Biomed Mater Res B Appl Biomater 2012;100B(8):2053-9
-
(2012)
J Biomed Mater Res B Appl Biomater
, vol.100
, Issue.8 B
, pp. 2053-2059
-
-
Moon, S.-H.1
Lee, S.-J.2
Park, I.-S.3
-
158
-
-
84862321699
-
Increased fibroblast functionality on CNN2-loaded titania nanotubes
-
Wei H, Wu S, Feng Z, et al. Increased fibroblast functionality on CNN2-loaded titania nanotubes. Int J Nanomedicine 2012;7:1091-100
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 1091-1100
-
-
Wei, H.1
Wu, S.2
Feng, Z.3
|