메뉴 건너뛰기




Volumn 30, Issue 6, 2012, Pages 315-322

TiO 2 nanotubes for bone regeneration

Author keywords

Mesenchymal stem cell; Nanostructure; Osteoblast; TiO 2 nanotube

Indexed keywords

BONE REGENERATION; CLINICAL USE; CURRENT TRENDS; ELECTROCHEMICAL ANODIZATIONS; MESENCHYMAL STEM CELL; NANO-METER REGIMES; NANOTUBE SURFACE; ORTHOPEDIC IMPLANT; ORTHOPEDIC MATERIALS; OSTEOGENIC CELLS; STRUCTURAL HIERARCHIES; SURFACE NANOSTRUCTURE; TIO;

EID: 84861346240     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2012.02.005     Document Type: Review
Times cited : (303)

References (78)
  • 1
    • 33846076037 scopus 로고    scopus 로고
    • Nanobiomaterial applications in orthopedics
    • Christenson E.M., et al. Nanobiomaterial applications in orthopedics. J. Orthop. Res. 2007, 25:11-22.
    • (2007) J. Orthop. Res. , vol.25 , pp. 11-22
    • Christenson, E.M.1
  • 2
    • 79958051496 scopus 로고    scopus 로고
    • Nanotopographical control of stem cell differentiation
    • McNamara L.E., et al. Nanotopographical control of stem cell differentiation. J. Tissue Eng. 2010, 2010:120623.
    • (2010) J. Tissue Eng. , vol.2010 , pp. 120623
    • McNamara, L.E.1
  • 3
    • 0037097175 scopus 로고    scopus 로고
    • Electrospun nanofibrous structure: a novel scaffold for tissue engineering
    • Li W.J., et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 2002, 60:613-621.
    • (2002) J. Biomed. Mater. Res. , vol.60 , pp. 613-621
    • Li, W.J.1
  • 4
    • 33645776769 scopus 로고    scopus 로고
    • Aseptic loosening, not only a question of wear: a review of different theories
    • Sundfeldt M., et al. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006, 77:177-197.
    • (2006) Acta Orthop. , vol.77 , pp. 177-197
    • Sundfeldt, M.1
  • 5
    • 70349146591 scopus 로고    scopus 로고
    • Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface
    • Brammer K.S., et al. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Acta Biomater. 2009, 5:3215-3223.
    • (2009) Acta Biomater. , vol.5 , pp. 3215-3223
    • Brammer, K.S.1
  • 7
    • 33646188804 scopus 로고    scopus 로고
    • Nanostructured surfaces for bone biotemplating applications
    • Popat K.C., et al. Nanostructured surfaces for bone biotemplating applications. J. Orthop. Res. 2006, 24:619-627.
    • (2006) J. Orthop. Res. , vol.24 , pp. 619-627
    • Popat, K.C.1
  • 8
    • 34247490766 scopus 로고    scopus 로고
    • Influence of engineered titania nanotubular surfaces on bone cells
    • Popat K.C., et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007, 28:3188-3197.
    • (2007) Biomaterials , vol.28 , pp. 3188-3197
    • Popat, K.C.1
  • 9
    • 13944282875 scopus 로고    scopus 로고
    • Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture
    • Swan E.E.L., et al. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mat. Res. Part A 2005, 72A:288-295.
    • (2005) J. Biomed. Mat. Res. Part A , vol.72 A , pp. 288-295
    • Swan, E.E.L.1
  • 10
    • 73849099801 scopus 로고    scopus 로고
    • Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays
    • Bauer S., et al. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. Integr. Biol. 2009, 1:525-532.
    • (2009) Integr. Biol. , vol.1 , pp. 525-532
    • Bauer, S.1
  • 11
    • 63149176535 scopus 로고    scopus 로고
    • 2 nanotube surfaces: 15nm - an optimal length scale of surface topography for cell adhesion and differentiation
    • 2 nanotube surfaces: 15nm - an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009, 5:666-671.
    • (2009) Small , vol.5 , pp. 666-671
    • Park, J.1
  • 12
    • 34547370396 scopus 로고    scopus 로고
    • 2 nanotube diameter directs cell fate
    • 2 nanotube diameter directs cell fate. Nano Lett. 2007, 7:1686-1691.
    • (2007) Nano Lett. , vol.7 , pp. 1686-1691
    • Park, J.1
  • 13
    • 60549098069 scopus 로고    scopus 로고
    • Stem cell fate dictated solely by altered nanotube dimension
    • Oh S., et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2130-2135.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2130-2135
    • Oh, S.1
  • 14
    • 84655161951 scopus 로고    scopus 로고
    • Advances in bone repair with nanobiomaterials: mini-review
    • Zhang Z.G., et al. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 2011, 63:437-443.
    • (2011) Cytotechnology , vol.63 , pp. 437-443
    • Zhang, Z.G.1
  • 15
    • 33644795037 scopus 로고    scopus 로고
    • Cell-extracellular matrix interactions relevant to vascular tissue engineering
    • In Tissue Engineering Prosthetic Vascular Grafts (Zilla, P. and Greisler, H., eds), Landes
    • Massia, S.P. (1999) Cell-extracellular matrix interactions relevant to vascular tissue engineering. In Tissue Engineering Prosthetic Vascular Grafts (Zilla, P. and Greisler, H., eds), pp. 583-593, Landes.
    • (1999) , pp. 583-593
    • Massia, S.P.1
  • 16
    • 33749599209 scopus 로고    scopus 로고
    • Nanomedicine for implants: a review of studies and necessary experimental tools
    • Liu H., Webster T.J. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 2006, 28:354-369.
    • (2006) Biomaterials , vol.28 , pp. 354-369
    • Liu, H.1    Webster, T.J.2
  • 17
    • 77951153747 scopus 로고    scopus 로고
    • Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications
    • Liu H., Webster T.J. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int. J. Nanomed. 2010, 5:299-313.
    • (2010) Int. J. Nanomed. , vol.5 , pp. 299-313
    • Liu, H.1    Webster, T.J.2
  • 18
    • 29244438146 scopus 로고    scopus 로고
    • Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium
    • Sato M., et al. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials 2006, 27:2358-2369.
    • (2006) Biomaterials , vol.27 , pp. 2358-2369
    • Sato, M.1
  • 19
    • 5044234358 scopus 로고    scopus 로고
    • Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings
    • Sato M., et al. Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. Biomaterials 2005, 26:1349-1357.
    • (2005) Biomaterials , vol.26 , pp. 1349-1357
    • Sato, M.1
  • 20
    • 2542628135 scopus 로고    scopus 로고
    • Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)
    • Jin H.J., et al. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 2004, 5:711-717.
    • (2004) Biomacromolecules , vol.5 , pp. 711-717
    • Jin, H.J.1
  • 21
    • 0242442506 scopus 로고    scopus 로고
    • Human bone marrow stromal cell responses on electrospun silk fibroin mats
    • Jin H.J., et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 2004, 25:1039-1047.
    • (2004) Biomaterials , vol.25 , pp. 1039-1047
    • Jin, H.J.1
  • 22
    • 40449087422 scopus 로고    scopus 로고
    • Enhanced osteoblast functions on anodized titanium with nanotube-like structures
    • Yao C., et al. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res. A 2008, 85:157-166.
    • (2008) J. Biomed. Mater. Res. A , vol.85 , pp. 157-166
    • Yao, C.1
  • 24
    • 33750075431 scopus 로고    scopus 로고
    • Anodization: a promising nano-modification technique of titanium implants for orthopedic applications
    • Yao C., Webster T.J. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. J. Nanosci. Nanotechnol. 2006, 6:2682-2692.
    • (2006) J. Nanosci. Nanotechnol. , vol.6 , pp. 2682-2692
    • Yao, C.1    Webster, T.J.2
  • 25
    • 37549004764 scopus 로고    scopus 로고
    • The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium
    • Khang D., et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008, 29:970-983.
    • (2008) Biomaterials , vol.29 , pp. 970-983
    • Khang, D.1
  • 26
    • 49649116140 scopus 로고    scopus 로고
    • In vitro differentiation potential of mesenchymal stem cells
    • Gimble J.M., et al. In vitro differentiation potential of mesenchymal stem cells. Transfusion Med. Hemotherapy 2008, 35:228-238.
    • (2008) Transfusion Med. Hemotherapy , vol.35 , pp. 228-238
    • Gimble, J.M.1
  • 27
    • 72149130003 scopus 로고    scopus 로고
    • Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells
    • Yim E.K., et al. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010, 31:1299-1306.
    • (2010) Biomaterials , vol.31 , pp. 1299-1306
    • Yim, E.K.1
  • 28
    • 0033168855 scopus 로고    scopus 로고
    • Osteoblast adhesion on nanophase ceramics
    • Webster T.J., et al. Osteoblast adhesion on nanophase ceramics. Biomaterials 1999, 20:1221-1227.
    • (1999) Biomaterials , vol.20 , pp. 1221-1227
    • Webster, T.J.1
  • 29
    • 36749093527 scopus 로고    scopus 로고
    • The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder
    • Dalby M.J., et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007, 6:997-1003.
    • (2007) Nat. Mater. , vol.6 , pp. 997-1003
    • Dalby, M.J.1
  • 30
    • 33847219981 scopus 로고    scopus 로고
    • Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces
    • Popat K.C., et al. Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. J. Biomed. Mater. Res. A 2007, 80:955-964.
    • (2007) J. Biomed. Mater. Res. A , vol.80 , pp. 955-964
    • Popat, K.C.1
  • 31
    • 60549098069 scopus 로고    scopus 로고
    • Stem cell fate dictated solely by altered nanotube dimension
    • Oh S., et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2130-2135.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2130-2135
    • Oh, S.1
  • 32
    • 67349170022 scopus 로고    scopus 로고
    • Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells
    • Sjostrom T., et al. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 2009, 5:1433-1441.
    • (2009) Acta Biomater. , vol.5 , pp. 1433-1441
    • Sjostrom, T.1
  • 33
    • 33646020417 scopus 로고    scopus 로고
    • Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers
    • Hosseinkhani H., et al. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 2006, 27:4079-4086.
    • (2006) Biomaterials , vol.27 , pp. 4079-4086
    • Hosseinkhani, H.1
  • 34
    • 74449088993 scopus 로고    scopus 로고
    • The regulation of tendon stem cell differentiation by the alignment of nanofibers
    • Yin Z., et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 2010, 31:2163-2175.
    • (2010) Biomaterials , vol.31 , pp. 2163-2175
    • Yin, Z.1
  • 35
    • 77952910297 scopus 로고    scopus 로고
    • Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces
    • Dolatshahi-Pirouz A., et al. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano 2010, 4:2874-2882.
    • (2010) ACS Nano , vol.4 , pp. 2874-2882
    • Dolatshahi-Pirouz, A.1
  • 36
    • 77955148590 scopus 로고    scopus 로고
    • Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media
    • You M.H., et al. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 2010, 11:1856-1862.
    • (2010) Biomacromolecules , vol.11 , pp. 1856-1862
    • You, M.H.1
  • 37
    • 79955009111 scopus 로고    scopus 로고
    • In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering
    • Wang G., et al. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng. Part A 2011, 17:1341-1349.
    • (2011) Tissue Eng. Part A , vol.17 , pp. 1341-1349
    • Wang, G.1
  • 38
    • 77952730422 scopus 로고    scopus 로고
    • The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs
    • Mendonca G., et al. The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs. J. Biomed. Mater. Res. A 2010, 94:169-179.
    • (2010) J. Biomed. Mater. Res. A , vol.94 , pp. 169-179
    • Mendonca, G.1
  • 39
    • 33745004453 scopus 로고    scopus 로고
    • Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds
    • Moroni L., et al. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 2006, 27:4911-4922.
    • (2006) Biomaterials , vol.27 , pp. 4911-4922
    • Moroni, L.1
  • 40
    • 77956469278 scopus 로고    scopus 로고
    • 2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation
    • 2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J. Biomed. Mater. Res. A 2010, 94:1012-1022.
    • (2010) J. Biomed. Mater. Res. A , vol.94 , pp. 1012-1022
    • Yu, W.Q.1
  • 41
    • 70349934306 scopus 로고    scopus 로고
    • Engineering substrate topography at the micro- and nanoscale to control cell function
    • Bettinger C.J., et al. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem. Int. Ed. Engl. 2009, 48:5406-5415.
    • (2009) Angew Chem. Int. Ed. Engl. , vol.48 , pp. 5406-5415
    • Bettinger, C.J.1
  • 42
    • 33744793740 scopus 로고    scopus 로고
    • Loosening and osteolysis associated with metal-on-metal bearings: A local effect of metal hypersensitivity?
    • Jacobs J.J., Hallab N.J. Loosening and osteolysis associated with metal-on-metal bearings: A local effect of metal hypersensitivity?. J. Bone Joint Surg. Am. 2006, 88:1171-1172.
    • (2006) J. Bone Joint Surg. Am. , vol.88 , pp. 1171-1172
    • Jacobs, J.J.1    Hallab, N.J.2
  • 43
    • 80052676864 scopus 로고    scopus 로고
    • Titanium-based biomaterials for preventing stress shielding between implant devices and bone
    • Niinomi M., Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 2011:836587.
    • (2011) Int. J. Biomater. , vol.2011 , pp. 836587
    • Niinomi, M.1    Nakai, M.2
  • 44
    • 79955599520 scopus 로고    scopus 로고
    • 2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells
    • 2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells. Acta Biomater. 2011, 7:2697-2703.
    • (2011) Acta Biomater. , vol.7 , pp. 2697-2703
    • Brammer, K.S.1
  • 45
    • 34250349643 scopus 로고    scopus 로고
    • 2 nanotube array growth by anodization
    • 2 nanotube array growth by anodization. J. Phys. Chem. C 2007, 111:7235-7241.
    • (2007) J. Phys. Chem. C , vol.111 , pp. 7235-7241
    • Prakasam, H.E.1
  • 46
    • 51649125404 scopus 로고    scopus 로고
    • The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation
    • He J., et al. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J. Mater. Sci. Mater. Med. 2008, 19:3465-3472.
    • (2008) J. Mater. Sci. Mater. Med. , vol.19 , pp. 3465-3472
    • He, J.1
  • 47
    • 0345528053 scopus 로고    scopus 로고
    • Probing the tissue to subcellular level structure underlying bone's molecular sieving function
    • Tami A.E., et al. Probing the tissue to subcellular level structure underlying bone's molecular sieving function. Biorheology 2003, 40:577-590.
    • (2003) Biorheology , vol.40 , pp. 577-590
    • Tami, A.E.1
  • 48
    • 33644932947 scopus 로고    scopus 로고
    • Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly
    • Cavalcanti-Adam E.A., et al. Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur. J. Cell Biol. 2006, 85:219-224.
    • (2006) Eur. J. Cell Biol. , vol.85 , pp. 219-224
    • Cavalcanti-Adam, E.A.1
  • 49
    • 84555164231 scopus 로고    scopus 로고
    • Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores
    • Lavenus S., et al. Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur. Cell Mater. 2011, 22:84-96.
    • (2011) Eur. Cell Mater. , vol.22 , pp. 84-96
    • Lavenus, S.1
  • 50
    • 77956094057 scopus 로고    scopus 로고
    • Cell interaction with nanopatterned surface of implants
    • Lavenus S., et al. Cell interaction with nanopatterned surface of implants. Nanomedicine (Lond.) 2010, 5:937-947.
    • (2010) Nanomedicine (Lond.) , vol.5 , pp. 937-947
    • Lavenus, S.1
  • 51
    • 48649083386 scopus 로고    scopus 로고
    • Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes
    • Bauer S., et al. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater. 2008, 4:1576-1582.
    • (2008) Acta Biomater. , vol.4 , pp. 1576-1582
    • Bauer, S.1
  • 52
    • 77949401164 scopus 로고    scopus 로고
    • Synthesis and applications of electrochemically self-assembled titania nanotube arrays
    • Rani S., et al. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 2010, 12:2780-2800.
    • (2010) Phys. Chem. Chem. Phys. , vol.12 , pp. 2780-2800
    • Rani, S.1
  • 53
    • 56349169536 scopus 로고    scopus 로고
    • Mechanotransduction - a field pulling together?
    • Chen C.S. Mechanotransduction - a field pulling together?. J. Cell Sci. 2008, 121:3285-3292.
    • (2008) J. Cell Sci. , vol.121 , pp. 3285-3292
    • Chen, C.S.1
  • 54
    • 24944476564 scopus 로고    scopus 로고
    • Topographically induced direct cell mechanotransduction
    • Dalby M.J. Topographically induced direct cell mechanotransduction. Med. Eng. Phys. 2005, 27:730-742.
    • (2005) Med. Eng. Phys. , vol.27 , pp. 730-742
    • Dalby, M.J.1
  • 55
    • 29744458411 scopus 로고    scopus 로고
    • Mechanisms of mechanotransduction
    • Orr A.W., et al. Mechanisms of mechanotransduction. Dev. Cell 2006, 10:11-20.
    • (2006) Dev. Cell , vol.10 , pp. 11-20
    • Orr, A.W.1
  • 56
    • 77956209117 scopus 로고    scopus 로고
    • Nanotopography/mechanical induction of stem-cell differentiation
    • Teo B.K., et al. Nanotopography/mechanical induction of stem-cell differentiation. Methods Cell Biol. 2010, 98:241-294.
    • (2010) Methods Cell Biol. , vol.98 , pp. 241-294
    • Teo, B.K.1
  • 57
    • 67650485308 scopus 로고    scopus 로고
    • Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography
    • Dulgar-Tulloch A.J., et al. Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J. Biomed. Mater. Res. A 2009, 90:586-594.
    • (2009) J. Biomed. Mater. Res. A , vol.90 , pp. 586-594
    • Dulgar-Tulloch, A.J.1
  • 58
    • 79953857478 scopus 로고    scopus 로고
    • 2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells
    • 2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 2011, 12:1097-1105.
    • (2011) Biomacromolecules , vol.12 , pp. 1097-1105
    • Lai, M.1
  • 59
    • 80052381133 scopus 로고    scopus 로고
    • 2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells
    • 2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. Integr. Biol. 2011, 3:927-936.
    • (2011) Integr. Biol. , vol.3 , pp. 927-936
    • Bauer, S.1
  • 60
    • 67349141019 scopus 로고    scopus 로고
    • Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite
    • Kodama A., et al. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater. 2009, 5:2322-2330.
    • (2009) Acta Biomater. , vol.5 , pp. 2322-2330
    • Kodama, A.1
  • 61
    • 54949120069 scopus 로고    scopus 로고
    • Nanostructured metal coatings on polymers increase osteoblast attachment
    • Yao C., et al. Nanostructured metal coatings on polymers increase osteoblast attachment. Int. J. Nanomedicine 2007, 2:487-492.
    • (2007) Int. J. Nanomedicine , vol.2 , pp. 487-492
    • Yao, C.1
  • 62
    • 56249134963 scopus 로고    scopus 로고
    • 2 nanotubes in inorganic and organic electrolytes using two-step anodization
    • 2 nanotubes in inorganic and organic electrolytes using two-step anodization. Physica Status Solidi-Rapid Res. Lett. 2008, 2:102-104.
    • (2008) Physica Status Solidi-Rapid Res. Lett. , vol.2 , pp. 102-104
    • Berger, S.1
  • 63
    • 23844475120 scopus 로고    scopus 로고
    • Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media
    • Oliveira N.T., et al. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media. J. Biomed. Materials Res. A 2005, 74:397-407.
    • (2005) J. Biomed. Materials Res. A , vol.74 , pp. 397-407
    • Oliveira, N.T.1
  • 64
    • 79954589202 scopus 로고    scopus 로고
    • From alumina nanopores to nanotubes: dependence on the geometry of anodization system
    • Feil A.F., et al. From alumina nanopores to nanotubes: dependence on the geometry of anodization system. J. Nanosci. Nanotechnol. 2011, 11:2330-2335.
    • (2011) J. Nanosci. Nanotechnol. , vol.11 , pp. 2330-2335
    • Feil, A.F.1
  • 65
    • 77952345680 scopus 로고    scopus 로고
    • Controlled growth and monitoring of tantalum oxide nanostructures
    • El-Sayed H.A., Birss V.I. Controlled growth and monitoring of tantalum oxide nanostructures. Nanoscale 2010, 2:793-798.
    • (2010) Nanoscale , vol.2 , pp. 793-798
    • El-Sayed, H.A.1    Birss, V.I.2
  • 66
    • 71249116409 scopus 로고    scopus 로고
    • Self-ordered nanopore and nanotube platforms for drug delivery applications
    • Losic D., Simovic S. Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin. Drug Deliv. 2009, 6:1363-1381.
    • (2009) Expert Opin. Drug Deliv. , vol.6 , pp. 1363-1381
    • Losic, D.1    Simovic, S.2
  • 67
    • 64549101921 scopus 로고    scopus 로고
    • 2 nanotube arrays: an actively controllable drug delivery system
    • 2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 2009, 131:4230-4232.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 4230-4232
    • Song, Y.Y.1
  • 68
    • 66449104617 scopus 로고    scopus 로고
    • 2 nanotubes
    • 2 nanotubes. Nano Lett. 2009, 9:1932-1936.
    • (2009) Nano Lett. , vol.9 , pp. 1932-1936
    • Peng, L.1
  • 69
    • 36048996366 scopus 로고    scopus 로고
    • Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?
    • Popat K.C., et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?. Small 2007, 3:1878-1881.
    • (2007) Small , vol.3 , pp. 1878-1881
    • Popat, K.C.1
  • 70
    • 34548041132 scopus 로고    scopus 로고
    • Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes
    • Popat K.C., et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 2007, 28:4880-4888.
    • (2007) Biomaterials , vol.28 , pp. 4880-4888
    • Popat, K.C.1
  • 71
    • 71649105816 scopus 로고    scopus 로고
    • Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method
    • Yao C., Webster T.J. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91:587-595.
    • (2009) J. Biomed. Mater. Res. B Appl. Biomater. , vol.91 , pp. 587-595
    • Yao, C.1    Webster, T.J.2
  • 72
    • 84855919800 scopus 로고    scopus 로고
    • 2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells
    • 2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater 2012, 8:439-448.
    • (2012) Acta Biomater , vol.8 , pp. 439-448
    • Hu, Y.1
  • 74
    • 75749148812 scopus 로고    scopus 로고
    • Titanium dioxide nanotubes enhance bone bonding in vivo
    • Bjursten L.M., et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res. 2010, 92:1218-1224.
    • (2010) J. Biomed. Mater. Res. , vol.92 , pp. 1218-1224
    • Bjursten, L.M.1
  • 75
    • 79960840505 scopus 로고    scopus 로고
    • 2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs
    • 2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 2011, 32:6900-6911.
    • (2011) Biomaterials , vol.32 , pp. 6900-6911
    • Wang, N.1
  • 76
    • 37549041382 scopus 로고    scopus 로고
    • Human osteoblast-like cells response to nanofunctionalized surfaces for tissue engineering
    • Soumetz F.C., et al. Human osteoblast-like cells response to nanofunctionalized surfaces for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84:249-255.
    • (2008) J. Biomed. Mater. Res. B Appl. Biomater. , vol.84 , pp. 249-255
    • Soumetz, F.C.1
  • 77
    • 67649433434 scopus 로고    scopus 로고
    • Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine
    • Sundelacruz S., Kaplan D.L. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin. Cell Dev. Biol. 2009, 20:646-655.
    • (2009) Semin. Cell Dev. Biol. , vol.20 , pp. 646-655
    • Sundelacruz, S.1    Kaplan, D.L.2
  • 78
    • 40949099617 scopus 로고    scopus 로고
    • Ceramic/polymer nanocomposite tissue engineering scaffolds for more effective orthopedic applications: from 2D surfaces to novel 3D architectures
    • MRS Proc. 950, 0950-D10-03, doi:10.1557/PROC-0950-D10-03
    • Liu, H. and Webster, T.J. (2006) Ceramic/polymer nanocomposite tissue engineering scaffolds for more effective orthopedic applications: from 2D surfaces to novel 3D architectures. MRS Proc. 950, 0950-D10-03, doi:10.1557/PROC-0950-D10-03.
    • (2006)
    • Liu, H.1    Webster, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.