-
1
-
-
33846076037
-
Nanobiomaterial applications in orthopedics
-
Christenson E.M., et al. Nanobiomaterial applications in orthopedics. J. Orthop. Res. 2007, 25:11-22.
-
(2007)
J. Orthop. Res.
, vol.25
, pp. 11-22
-
-
Christenson, E.M.1
-
2
-
-
79958051496
-
Nanotopographical control of stem cell differentiation
-
McNamara L.E., et al. Nanotopographical control of stem cell differentiation. J. Tissue Eng. 2010, 2010:120623.
-
(2010)
J. Tissue Eng.
, vol.2010
, pp. 120623
-
-
McNamara, L.E.1
-
3
-
-
0037097175
-
Electrospun nanofibrous structure: a novel scaffold for tissue engineering
-
Li W.J., et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 2002, 60:613-621.
-
(2002)
J. Biomed. Mater. Res.
, vol.60
, pp. 613-621
-
-
Li, W.J.1
-
4
-
-
33645776769
-
Aseptic loosening, not only a question of wear: a review of different theories
-
Sundfeldt M., et al. Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop. 2006, 77:177-197.
-
(2006)
Acta Orthop.
, vol.77
, pp. 177-197
-
-
Sundfeldt, M.1
-
5
-
-
70349146591
-
Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface
-
Brammer K.S., et al. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. Acta Biomater. 2009, 5:3215-3223.
-
(2009)
Acta Biomater.
, vol.5
, pp. 3215-3223
-
-
Brammer, K.S.1
-
7
-
-
33646188804
-
Nanostructured surfaces for bone biotemplating applications
-
Popat K.C., et al. Nanostructured surfaces for bone biotemplating applications. J. Orthop. Res. 2006, 24:619-627.
-
(2006)
J. Orthop. Res.
, vol.24
, pp. 619-627
-
-
Popat, K.C.1
-
8
-
-
34247490766
-
Influence of engineered titania nanotubular surfaces on bone cells
-
Popat K.C., et al. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007, 28:3188-3197.
-
(2007)
Biomaterials
, vol.28
, pp. 3188-3197
-
-
Popat, K.C.1
-
9
-
-
13944282875
-
Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture
-
Swan E.E.L., et al. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J. Biomed. Mat. Res. Part A 2005, 72A:288-295.
-
(2005)
J. Biomed. Mat. Res. Part A
, vol.72 A
, pp. 288-295
-
-
Swan, E.E.L.1
-
10
-
-
73849099801
-
Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays
-
Bauer S., et al. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. Integr. Biol. 2009, 1:525-532.
-
(2009)
Integr. Biol.
, vol.1
, pp. 525-532
-
-
Bauer, S.1
-
11
-
-
63149176535
-
2 nanotube surfaces: 15nm - an optimal length scale of surface topography for cell adhesion and differentiation
-
2 nanotube surfaces: 15nm - an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009, 5:666-671.
-
(2009)
Small
, vol.5
, pp. 666-671
-
-
Park, J.1
-
12
-
-
34547370396
-
2 nanotube diameter directs cell fate
-
2 nanotube diameter directs cell fate. Nano Lett. 2007, 7:1686-1691.
-
(2007)
Nano Lett.
, vol.7
, pp. 1686-1691
-
-
Park, J.1
-
13
-
-
60549098069
-
Stem cell fate dictated solely by altered nanotube dimension
-
Oh S., et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2130-2135.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 2130-2135
-
-
Oh, S.1
-
14
-
-
84655161951
-
Advances in bone repair with nanobiomaterials: mini-review
-
Zhang Z.G., et al. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology 2011, 63:437-443.
-
(2011)
Cytotechnology
, vol.63
, pp. 437-443
-
-
Zhang, Z.G.1
-
15
-
-
33644795037
-
Cell-extracellular matrix interactions relevant to vascular tissue engineering
-
In Tissue Engineering Prosthetic Vascular Grafts (Zilla, P. and Greisler, H., eds), Landes
-
Massia, S.P. (1999) Cell-extracellular matrix interactions relevant to vascular tissue engineering. In Tissue Engineering Prosthetic Vascular Grafts (Zilla, P. and Greisler, H., eds), pp. 583-593, Landes.
-
(1999)
, pp. 583-593
-
-
Massia, S.P.1
-
16
-
-
33749599209
-
Nanomedicine for implants: a review of studies and necessary experimental tools
-
Liu H., Webster T.J. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 2006, 28:354-369.
-
(2006)
Biomaterials
, vol.28
, pp. 354-369
-
-
Liu, H.1
Webster, T.J.2
-
17
-
-
77951153747
-
Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications
-
Liu H., Webster T.J. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications. Int. J. Nanomed. 2010, 5:299-313.
-
(2010)
Int. J. Nanomed.
, vol.5
, pp. 299-313
-
-
Liu, H.1
Webster, T.J.2
-
18
-
-
29244438146
-
Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium
-
Sato M., et al. Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials 2006, 27:2358-2369.
-
(2006)
Biomaterials
, vol.27
, pp. 2358-2369
-
-
Sato, M.1
-
19
-
-
5044234358
-
Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings
-
Sato M., et al. Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. Biomaterials 2005, 26:1349-1357.
-
(2005)
Biomaterials
, vol.26
, pp. 1349-1357
-
-
Sato, M.1
-
20
-
-
2542628135
-
Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide)
-
Jin H.J., et al. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 2004, 5:711-717.
-
(2004)
Biomacromolecules
, vol.5
, pp. 711-717
-
-
Jin, H.J.1
-
21
-
-
0242442506
-
Human bone marrow stromal cell responses on electrospun silk fibroin mats
-
Jin H.J., et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 2004, 25:1039-1047.
-
(2004)
Biomaterials
, vol.25
, pp. 1039-1047
-
-
Jin, H.J.1
-
22
-
-
40449087422
-
Enhanced osteoblast functions on anodized titanium with nanotube-like structures
-
Yao C., et al. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J. Biomed. Mater. Res. A 2008, 85:157-166.
-
(2008)
J. Biomed. Mater. Res. A
, vol.85
, pp. 157-166
-
-
Yao, C.1
-
24
-
-
33750075431
-
Anodization: a promising nano-modification technique of titanium implants for orthopedic applications
-
Yao C., Webster T.J. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. J. Nanosci. Nanotechnol. 2006, 6:2682-2692.
-
(2006)
J. Nanosci. Nanotechnol.
, vol.6
, pp. 2682-2692
-
-
Yao, C.1
Webster, T.J.2
-
25
-
-
37549004764
-
The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium
-
Khang D., et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 2008, 29:970-983.
-
(2008)
Biomaterials
, vol.29
, pp. 970-983
-
-
Khang, D.1
-
26
-
-
49649116140
-
In vitro differentiation potential of mesenchymal stem cells
-
Gimble J.M., et al. In vitro differentiation potential of mesenchymal stem cells. Transfusion Med. Hemotherapy 2008, 35:228-238.
-
(2008)
Transfusion Med. Hemotherapy
, vol.35
, pp. 228-238
-
-
Gimble, J.M.1
-
27
-
-
72149130003
-
Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells
-
Yim E.K., et al. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010, 31:1299-1306.
-
(2010)
Biomaterials
, vol.31
, pp. 1299-1306
-
-
Yim, E.K.1
-
28
-
-
0033168855
-
Osteoblast adhesion on nanophase ceramics
-
Webster T.J., et al. Osteoblast adhesion on nanophase ceramics. Biomaterials 1999, 20:1221-1227.
-
(1999)
Biomaterials
, vol.20
, pp. 1221-1227
-
-
Webster, T.J.1
-
29
-
-
36749093527
-
The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder
-
Dalby M.J., et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007, 6:997-1003.
-
(2007)
Nat. Mater.
, vol.6
, pp. 997-1003
-
-
Dalby, M.J.1
-
30
-
-
33847219981
-
Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces
-
Popat K.C., et al. Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. J. Biomed. Mater. Res. A 2007, 80:955-964.
-
(2007)
J. Biomed. Mater. Res. A
, vol.80
, pp. 955-964
-
-
Popat, K.C.1
-
31
-
-
60549098069
-
Stem cell fate dictated solely by altered nanotube dimension
-
Oh S., et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2130-2135.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 2130-2135
-
-
Oh, S.1
-
32
-
-
67349170022
-
Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells
-
Sjostrom T., et al. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 2009, 5:1433-1441.
-
(2009)
Acta Biomater.
, vol.5
, pp. 1433-1441
-
-
Sjostrom, T.1
-
33
-
-
33646020417
-
Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers
-
Hosseinkhani H., et al. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials 2006, 27:4079-4086.
-
(2006)
Biomaterials
, vol.27
, pp. 4079-4086
-
-
Hosseinkhani, H.1
-
34
-
-
74449088993
-
The regulation of tendon stem cell differentiation by the alignment of nanofibers
-
Yin Z., et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 2010, 31:2163-2175.
-
(2010)
Biomaterials
, vol.31
, pp. 2163-2175
-
-
Yin, Z.1
-
35
-
-
77952910297
-
Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces
-
Dolatshahi-Pirouz A., et al. Fibronectin adsorption, cell adhesion, and proliferation on nanostructured tantalum surfaces. ACS Nano 2010, 4:2874-2882.
-
(2010)
ACS Nano
, vol.4
, pp. 2874-2882
-
-
Dolatshahi-Pirouz, A.1
-
36
-
-
77955148590
-
Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media
-
You M.H., et al. Synergistically enhanced osteogenic differentiation of human mesenchymal stem cells by culture on nanostructured surfaces with induction media. Biomacromolecules 2010, 11:1856-1862.
-
(2010)
Biomacromolecules
, vol.11
, pp. 1856-1862
-
-
You, M.H.1
-
37
-
-
79955009111
-
In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering
-
Wang G., et al. In vitro assessment of the differentiation potential of bone marrow-derived mesenchymal stem cells on genipin-chitosan conjugation scaffold with surface hydroxyapatite nanostructure for bone tissue engineering. Tissue Eng. Part A 2011, 17:1341-1349.
-
(2011)
Tissue Eng. Part A
, vol.17
, pp. 1341-1349
-
-
Wang, G.1
-
38
-
-
77952730422
-
The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs
-
Mendonca G., et al. The combination of micron and nanotopography by H(2)SO(4)/H(2)O(2) treatment and its effects on osteoblast-specific gene expression of hMSCs. J. Biomed. Mater. Res. A 2010, 94:169-179.
-
(2010)
J. Biomed. Mater. Res. A
, vol.94
, pp. 169-179
-
-
Mendonca, G.1
-
39
-
-
33745004453
-
Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds
-
Moroni L., et al. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds. Biomaterials 2006, 27:4911-4922.
-
(2006)
Biomaterials
, vol.27
, pp. 4911-4922
-
-
Moroni, L.1
-
40
-
-
77956469278
-
2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation
-
2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J. Biomed. Mater. Res. A 2010, 94:1012-1022.
-
(2010)
J. Biomed. Mater. Res. A
, vol.94
, pp. 1012-1022
-
-
Yu, W.Q.1
-
41
-
-
70349934306
-
Engineering substrate topography at the micro- and nanoscale to control cell function
-
Bettinger C.J., et al. Engineering substrate topography at the micro- and nanoscale to control cell function. Angew Chem. Int. Ed. Engl. 2009, 48:5406-5415.
-
(2009)
Angew Chem. Int. Ed. Engl.
, vol.48
, pp. 5406-5415
-
-
Bettinger, C.J.1
-
42
-
-
33744793740
-
Loosening and osteolysis associated with metal-on-metal bearings: A local effect of metal hypersensitivity?
-
Jacobs J.J., Hallab N.J. Loosening and osteolysis associated with metal-on-metal bearings: A local effect of metal hypersensitivity?. J. Bone Joint Surg. Am. 2006, 88:1171-1172.
-
(2006)
J. Bone Joint Surg. Am.
, vol.88
, pp. 1171-1172
-
-
Jacobs, J.J.1
Hallab, N.J.2
-
43
-
-
80052676864
-
Titanium-based biomaterials for preventing stress shielding between implant devices and bone
-
Niinomi M., Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 2011:836587.
-
(2011)
Int. J. Biomater.
, vol.2011
, pp. 836587
-
-
Niinomi, M.1
Nakai, M.2
-
44
-
-
79955599520
-
2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells
-
2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells. Acta Biomater. 2011, 7:2697-2703.
-
(2011)
Acta Biomater.
, vol.7
, pp. 2697-2703
-
-
Brammer, K.S.1
-
45
-
-
34250349643
-
2 nanotube array growth by anodization
-
2 nanotube array growth by anodization. J. Phys. Chem. C 2007, 111:7235-7241.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 7235-7241
-
-
Prakasam, H.E.1
-
46
-
-
51649125404
-
The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation
-
He J., et al. The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation. J. Mater. Sci. Mater. Med. 2008, 19:3465-3472.
-
(2008)
J. Mater. Sci. Mater. Med.
, vol.19
, pp. 3465-3472
-
-
He, J.1
-
47
-
-
0345528053
-
Probing the tissue to subcellular level structure underlying bone's molecular sieving function
-
Tami A.E., et al. Probing the tissue to subcellular level structure underlying bone's molecular sieving function. Biorheology 2003, 40:577-590.
-
(2003)
Biorheology
, vol.40
, pp. 577-590
-
-
Tami, A.E.1
-
48
-
-
33644932947
-
Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly
-
Cavalcanti-Adam E.A., et al. Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur. J. Cell Biol. 2006, 85:219-224.
-
(2006)
Eur. J. Cell Biol.
, vol.85
, pp. 219-224
-
-
Cavalcanti-Adam, E.A.1
-
49
-
-
84555164231
-
Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores
-
Lavenus S., et al. Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur. Cell Mater. 2011, 22:84-96.
-
(2011)
Eur. Cell Mater.
, vol.22
, pp. 84-96
-
-
Lavenus, S.1
-
50
-
-
77956094057
-
Cell interaction with nanopatterned surface of implants
-
Lavenus S., et al. Cell interaction with nanopatterned surface of implants. Nanomedicine (Lond.) 2010, 5:937-947.
-
(2010)
Nanomedicine (Lond.)
, vol.5
, pp. 937-947
-
-
Lavenus, S.1
-
51
-
-
48649083386
-
Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes
-
Bauer S., et al. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomater. 2008, 4:1576-1582.
-
(2008)
Acta Biomater.
, vol.4
, pp. 1576-1582
-
-
Bauer, S.1
-
52
-
-
77949401164
-
Synthesis and applications of electrochemically self-assembled titania nanotube arrays
-
Rani S., et al. Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 2010, 12:2780-2800.
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, pp. 2780-2800
-
-
Rani, S.1
-
53
-
-
56349169536
-
Mechanotransduction - a field pulling together?
-
Chen C.S. Mechanotransduction - a field pulling together?. J. Cell Sci. 2008, 121:3285-3292.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 3285-3292
-
-
Chen, C.S.1
-
54
-
-
24944476564
-
Topographically induced direct cell mechanotransduction
-
Dalby M.J. Topographically induced direct cell mechanotransduction. Med. Eng. Phys. 2005, 27:730-742.
-
(2005)
Med. Eng. Phys.
, vol.27
, pp. 730-742
-
-
Dalby, M.J.1
-
55
-
-
29744458411
-
Mechanisms of mechanotransduction
-
Orr A.W., et al. Mechanisms of mechanotransduction. Dev. Cell 2006, 10:11-20.
-
(2006)
Dev. Cell
, vol.10
, pp. 11-20
-
-
Orr, A.W.1
-
56
-
-
77956209117
-
Nanotopography/mechanical induction of stem-cell differentiation
-
Teo B.K., et al. Nanotopography/mechanical induction of stem-cell differentiation. Methods Cell Biol. 2010, 98:241-294.
-
(2010)
Methods Cell Biol.
, vol.98
, pp. 241-294
-
-
Teo, B.K.1
-
57
-
-
67650485308
-
Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography
-
Dulgar-Tulloch A.J., et al. Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J. Biomed. Mater. Res. A 2009, 90:586-594.
-
(2009)
J. Biomed. Mater. Res. A
, vol.90
, pp. 586-594
-
-
Dulgar-Tulloch, A.J.1
-
58
-
-
79953857478
-
2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells
-
2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 2011, 12:1097-1105.
-
(2011)
Biomacromolecules
, vol.12
, pp. 1097-1105
-
-
Lai, M.1
-
59
-
-
80052381133
-
2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells
-
2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. Integr. Biol. 2011, 3:927-936.
-
(2011)
Integr. Biol.
, vol.3
, pp. 927-936
-
-
Bauer, S.1
-
60
-
-
67349141019
-
Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite
-
Kodama A., et al. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater. 2009, 5:2322-2330.
-
(2009)
Acta Biomater.
, vol.5
, pp. 2322-2330
-
-
Kodama, A.1
-
61
-
-
54949120069
-
Nanostructured metal coatings on polymers increase osteoblast attachment
-
Yao C., et al. Nanostructured metal coatings on polymers increase osteoblast attachment. Int. J. Nanomedicine 2007, 2:487-492.
-
(2007)
Int. J. Nanomedicine
, vol.2
, pp. 487-492
-
-
Yao, C.1
-
62
-
-
56249134963
-
2 nanotubes in inorganic and organic electrolytes using two-step anodization
-
2 nanotubes in inorganic and organic electrolytes using two-step anodization. Physica Status Solidi-Rapid Res. Lett. 2008, 2:102-104.
-
(2008)
Physica Status Solidi-Rapid Res. Lett.
, vol.2
, pp. 102-104
-
-
Berger, S.1
-
63
-
-
23844475120
-
Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media
-
Oliveira N.T., et al. Electrochemical studies on zirconium and its biocompatible alloys Ti-50Zr at.% and Zr-2.5Nb wt.% in simulated physiologic media. J. Biomed. Materials Res. A 2005, 74:397-407.
-
(2005)
J. Biomed. Materials Res. A
, vol.74
, pp. 397-407
-
-
Oliveira, N.T.1
-
64
-
-
79954589202
-
From alumina nanopores to nanotubes: dependence on the geometry of anodization system
-
Feil A.F., et al. From alumina nanopores to nanotubes: dependence on the geometry of anodization system. J. Nanosci. Nanotechnol. 2011, 11:2330-2335.
-
(2011)
J. Nanosci. Nanotechnol.
, vol.11
, pp. 2330-2335
-
-
Feil, A.F.1
-
65
-
-
77952345680
-
Controlled growth and monitoring of tantalum oxide nanostructures
-
El-Sayed H.A., Birss V.I. Controlled growth and monitoring of tantalum oxide nanostructures. Nanoscale 2010, 2:793-798.
-
(2010)
Nanoscale
, vol.2
, pp. 793-798
-
-
El-Sayed, H.A.1
Birss, V.I.2
-
66
-
-
71249116409
-
Self-ordered nanopore and nanotube platforms for drug delivery applications
-
Losic D., Simovic S. Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin. Drug Deliv. 2009, 6:1363-1381.
-
(2009)
Expert Opin. Drug Deliv.
, vol.6
, pp. 1363-1381
-
-
Losic, D.1
Simovic, S.2
-
67
-
-
64549101921
-
2 nanotube arrays: an actively controllable drug delivery system
-
2 nanotube arrays: an actively controllable drug delivery system. J. Am. Chem. Soc. 2009, 131:4230-4232.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 4230-4232
-
-
Song, Y.Y.1
-
68
-
-
66449104617
-
2 nanotubes
-
2 nanotubes. Nano Lett. 2009, 9:1932-1936.
-
(2009)
Nano Lett.
, vol.9
, pp. 1932-1936
-
-
Peng, L.1
-
69
-
-
36048996366
-
Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?
-
Popat K.C., et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?. Small 2007, 3:1878-1881.
-
(2007)
Small
, vol.3
, pp. 1878-1881
-
-
Popat, K.C.1
-
70
-
-
34548041132
-
Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes
-
Popat K.C., et al. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 2007, 28:4880-4888.
-
(2007)
Biomaterials
, vol.28
, pp. 4880-4888
-
-
Popat, K.C.1
-
71
-
-
71649105816
-
Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method
-
Yao C., Webster T.J. Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 91:587-595.
-
(2009)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.91
, pp. 587-595
-
-
Yao, C.1
Webster, T.J.2
-
72
-
-
84855919800
-
2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells
-
2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater 2012, 8:439-448.
-
(2012)
Acta Biomater
, vol.8
, pp. 439-448
-
-
Hu, Y.1
-
74
-
-
75749148812
-
Titanium dioxide nanotubes enhance bone bonding in vivo
-
Bjursten L.M., et al. Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res. 2010, 92:1218-1224.
-
(2010)
J. Biomed. Mater. Res.
, vol.92
, pp. 1218-1224
-
-
Bjursten, L.M.1
-
75
-
-
79960840505
-
2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs
-
2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 2011, 32:6900-6911.
-
(2011)
Biomaterials
, vol.32
, pp. 6900-6911
-
-
Wang, N.1
-
76
-
-
37549041382
-
Human osteoblast-like cells response to nanofunctionalized surfaces for tissue engineering
-
Soumetz F.C., et al. Human osteoblast-like cells response to nanofunctionalized surfaces for tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84:249-255.
-
(2008)
J. Biomed. Mater. Res. B Appl. Biomater.
, vol.84
, pp. 249-255
-
-
Soumetz, F.C.1
-
77
-
-
67649433434
-
Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine
-
Sundelacruz S., Kaplan D.L. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin. Cell Dev. Biol. 2009, 20:646-655.
-
(2009)
Semin. Cell Dev. Biol.
, vol.20
, pp. 646-655
-
-
Sundelacruz, S.1
Kaplan, D.L.2
-
78
-
-
40949099617
-
Ceramic/polymer nanocomposite tissue engineering scaffolds for more effective orthopedic applications: from 2D surfaces to novel 3D architectures
-
MRS Proc. 950, 0950-D10-03, doi:10.1557/PROC-0950-D10-03
-
Liu, H. and Webster, T.J. (2006) Ceramic/polymer nanocomposite tissue engineering scaffolds for more effective orthopedic applications: from 2D surfaces to novel 3D architectures. MRS Proc. 950, 0950-D10-03, doi:10.1557/PROC-0950-D10-03.
-
(2006)
-
-
Liu, H.1
Webster, T.J.2
|