메뉴 건너뛰기




Volumn 32, Issue 1, 2015, Pages 20-41

A self-learning framework for statistical ground classification using radar and monocular vision

Author keywords

[No Author keywords available]

Indexed keywords

LANDFORMS; NAVIGATION SYSTEMS; ROBOTS; SOCIAL NETWORKING (ONLINE); VISION;

EID: 84916639252     PISSN: 15564959     EISSN: 15564967     Source Type: Journal    
DOI: 10.1002/rob.21512     Document Type: Article
Times cited : (53)

References (50)
  • 3
    • 84904785779 scopus 로고    scopus 로고
    • Finding colored objects in a scene
    • Balkenius, C., &, Johansson, M., (2007). Finding colored objects in a scene. In LUCS Minor, 12.
    • (2007) LUCS Minor , vol.12
    • Balkenius, C.1    Johansson, M.2
  • 4
    • 0029273845 scopus 로고
    • An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters
    • Baraldi, A., &, Parmiggiani, F., (1995). An investigation of the textural characteristics associated with gray level co-occurrence matrix statistical parameters. IEEE Transactions on Geoscience and Remote Sensing, 33 (2), 293-304.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , Issue.2 , pp. 293-304
    • Baraldi, A.1    Parmiggiani, F.2
  • 5
    • 33751227868 scopus 로고    scopus 로고
    • High-resolution millimeter-wave radar systems for visualization of unstructured outdoor environments
    • Brooker, G., Hennessey, R., Bishop, M., Lobsey, C., Durrant-Whyte, H., &, Birch, D., (2006). High-resolution millimeter-wave radar systems for visualization of unstructured outdoor environments. Journal of Field Robotics, 23 (10), 891-912.
    • (2006) Journal of Field Robotics , vol.23 , Issue.10 , pp. 891-912
    • Brooker, G.1    Hennessey, R.2    Bishop, M.3    Lobsey, C.4    Durrant-Whyte, H.5    Birch, D.6
  • 7
    • 84859711759 scopus 로고    scopus 로고
    • Self-supervised terrain classification for planetary surface exploration rovers. Journal of Field Robotics
    • Brooks, C., &, Iagnemma, K., (2012). Self-supervised terrain classification for planetary surface exploration rovers. Journal of Field Robotics. Special Issue: Special Issue on Space Robotics, Part I, 29 (3), 445-468.
    • (2012) Special Issue: Special Issue on Space Robotics, Part i , vol.29 , Issue.3 , pp. 445-468
    • Brooks, C.1    Iagnemma, K.2
  • 8
    • 0343021371 scopus 로고
    • Segmentation by means of textural analysis
    • Cossu, R., (1988). Segmentation by means of textural analysis. Pixel, 1 (2), 21-24.
    • (1988) Pixel , vol.1 , Issue.2 , pp. 21-24
    • Cossu, R.1
  • 21
    • 9144265616 scopus 로고    scopus 로고
    • Obstacle detection and terrain classification for autonomous off-road navigation
    • Manduchi, R., Castano, A., Talukder, A., &, Matthies, L., (2003). Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robot, 18, 81-102.
    • (2003) Autonomous Robot , vol.18 , pp. 81-102
    • Manduchi, R.1    Castano, A.2    Talukder, A.3    Matthies, L.4
  • 27
    • 32044457458 scopus 로고    scopus 로고
    • A study of Gaussian mixture models of color and texture features for image classification and segmentation
    • Permuter, H., Francos, J., &, Jermyn, I., (2006). A study of Gaussian mixture models of color and texture features for image classification and segmentation. Pattern Recognition, 39, 695-706.
    • (2006) Pattern Recognition , vol.39 , pp. 695-706
    • Permuter, H.1    Francos, J.2    Jermyn, I.3
  • 28
    • 78650407233 scopus 로고    scopus 로고
    • The Marulan data sets: Multi-sensor perception in natural environment with challenging conditions
    • Peynot, T., Scheding, S., &, Terho, S., (2010). The Marulan data sets: Multi-sensor perception in natural environment with challenging conditions. International Journal of Robotics Research, 29 (13), 1602-1607.
    • (2010) International Journal of Robotics Research , vol.29 , Issue.13 , pp. 1602-1607
    • Peynot, T.1    Scheding, S.2    Terho, S.3
  • 31
    • 0001201909 scopus 로고
    • Bayesian model selection for social research (with discussion)
    • Raftery, A. E., (1995). Bayesian model selection for social research (with discussion). Sociological Methodology, 25, 111-196.
    • (1995) Sociological Methodology , vol.25 , pp. 111-196
    • Raftery, A.E.1
  • 34
    • 76649088675 scopus 로고    scopus 로고
    • Odometry correction using visual slip-angle estimation for planetary exploration rovers
    • Reina, G., Ishigami, G., Nagatani, K., &, Yoshida, K., (2010). Odometry correction using visual slip-angle estimation for planetary exploration rovers. Advanced Robotics, 24 (3), 359-385.
    • (2010) Advanced Robotics , vol.24 , Issue.3 , pp. 359-385
    • Reina, G.1    Ishigami, G.2    Nagatani, K.3    Yoshida, K.4
  • 35
    • 84866990032 scopus 로고    scopus 로고
    • Towards autonomous agriculture: Automatic ground detection using trinocular stereovision
    • Reina, G., &, Milella, A., (2012). Towards autonomous agriculture: Automatic ground detection using trinocular stereovision. Sensors, 12 (9), 12405-12423.
    • (2012) Sensors , vol.12 , Issue.9 , pp. 12405-12423
    • Reina, G.1    Milella, A.2
  • 38
    • 84867863058 scopus 로고    scopus 로고
    • Self-learning classification of radar features for scene understanding
    • Reina, G., Milella, A., &, Underwood, J., (2012b). Self-learning classification of radar features for scene understanding. Robotics and Autonomous Systems, 60 (11), 1377-1388.
    • (2012) Robotics and Autonomous Systems , vol.60 , Issue.11 , pp. 1377-1388
    • Reina, G.1    Milella, A.2    Underwood, J.3
  • 49
    • 84857251326 scopus 로고    scopus 로고
    • Self-supervised learning to visually detect terrain surfaces for autonomous robots operating in forested terrain
    • Zhou, S., Xi, J., McDaniel, M., Nishihata, T., Salesses, P., &, Iagnemma, K., (2012). Self-supervised learning to visually detect terrain surfaces for autonomous robots operating in forested terrain. Journal of Field Robotics, 29 (2), 277-297.
    • (2012) Journal of Field Robotics , vol.29 , Issue.2 , pp. 277-297
    • Zhou, S.1    Xi, J.2    McDaniel, M.3    Nishihata, T.4    Salesses, P.5    Iagnemma, K.6
  • 50
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • University of Wisconsin-Madison
    • Zhu, X., (2005). Semi-supervised learning literature survey. Technical Report 1530, Computer Sciences, University of Wisconsin-Madison.
    • (2005) Technical Report 1530, Computer Sciences
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.