메뉴 건너뛰기




Volumn 588, Issue 23, 2014, Pages 4431-4437

Expanding the SRI domain family: A common scaffold for binding the phosphorylated C-terminal domain of RNA polymerase II

Author keywords

FRIGIDA ESSENTIAL 1; LSD1 like homolog 3; PHRF1; SCAF1; SCAF11; Sequence analysis

Indexed keywords

HELICASE; HELICASE RECQL5; HISTONE METHYLTRANSFERASE; HISTONE METHYLTRANSFERASE SETD2; RNA POLYMERASE II; UNCLASSIFIED DRUG; PROTEIN BINDING;

EID: 84910646549     PISSN: 00145793     EISSN: 18733468     Source Type: Journal    
DOI: 10.1016/j.febslet.2014.10.014     Document Type: Article
Times cited : (17)

References (48)
  • 1
    • 44149124228 scopus 로고    scopus 로고
    • Cracking the RNA polymerase II CTD code
    • S. Egloff, and S. Murphy Cracking the RNA polymerase II CTD code Trends Genet. 24 2008 280 288
    • (2008) Trends Genet. , vol.24 , pp. 280-288
    • Egloff, S.1    Murphy, S.2
  • 3
    • 16244384503 scopus 로고    scopus 로고
    • A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation
    • K. Kizer, H. Phatnani, Y. Shibata, H. Hall, A. Greenleaf, and B. Strahl A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation Mol. Cell. Biol. 25 2005 3305 3316
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 3305-3316
    • Kizer, K.1    Phatnani, H.2    Shibata, Y.3    Hall, H.4    Greenleaf, A.5    Strahl, B.6
  • 4
    • 10844238946 scopus 로고    scopus 로고
    • Expanding the functional repertoire of CTD kinase i and RNA polymerase II: Novel phosphoCTD-associating proteins in the yeast proteome
    • H. Phatnani, J. Jones, and A. Greenleaf Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome Biochemistry 43 2004 15702 15719
    • (2004) Biochemistry , vol.43 , pp. 15702-15719
    • Phatnani, H.1    Jones, J.2    Greenleaf, A.3
  • 5
    • 27444436367 scopus 로고    scopus 로고
    • Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase
    • X. Sun, J. Wei, X. Wu, M. Hu, L. Wang, H. Wang, Q. Zhang, S. Chen, Q. Huang, and Z. Chen Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase J. Biol. Chem. 280 2005 35261 35271
    • (2005) J. Biol. Chem. , vol.280 , pp. 35261-35271
    • Sun, X.1    Wei, J.2    Wu, X.3    Hu, M.4    Wang, L.5    Wang, H.6    Zhang, Q.7    Chen, S.8    Huang, Q.9    Chen, Z.10
  • 6
    • 38549139593 scopus 로고    scopus 로고
    • Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation
    • J. Edmunds, L. Mahadevan, and A. Clayton Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation EMBO J. 27 2008 406 420
    • (2008) EMBO J. , vol.27 , pp. 406-420
    • Edmunds, J.1    Mahadevan, L.2    Clayton, A.3
  • 7
    • 84907646535 scopus 로고    scopus 로고
    • Role of somatic cancer mutations in human protein lysine methyltransferases
    • S. Kudithipudi, and A. Jeltsch Role of somatic cancer mutations in human protein lysine methyltransferases Biochim. Biophys. Acta 1846 2014 366 379
    • (2014) Biochim. Biophys. Acta , vol.1846 , pp. 366-379
    • Kudithipudi, S.1    Jeltsch, A.2
  • 10
    • 84876943255 scopus 로고    scopus 로고
    • The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα
    • F. Li, G. Mao, D. Tong, J. Huang, L. Gu, W. Yang, and G. Li The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα Cell 153 2013 590 600
    • (2013) Cell , vol.153 , pp. 590-600
    • Li, F.1    Mao, G.2    Tong, D.3    Huang, J.4    Gu, L.5    Yang, W.6    Li, G.7
  • 14
    • 29144448731 scopus 로고    scopus 로고
    • Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1
    • M. Li, H.P. Phatnani, Z. Guan, H. Sage, A.L. Greenleaf, and P. Zhou Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1 Proc. Natl. Acad. Sci. U.S.A. 102 2005 17636 17641
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 17636-17641
    • Li, M.1    Phatnani, H.P.2    Guan, Z.3    Sage, H.4    Greenleaf, A.L.5    Zhou, P.6
  • 15
    • 33644869317 scopus 로고    scopus 로고
    • Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription
    • E. Vojnic, B. Simon, B.D. Strahl, M. Sattler, and P. Cramer Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription J. Biol. Chem. 281 2006 13 15
    • (2006) J. Biol. Chem. , vol.281 , pp. 13-15
    • Vojnic, E.1    Simon, B.2    Strahl, B.D.3    Sattler, M.4    Cramer, P.5
  • 16
    • 77951979962 scopus 로고    scopus 로고
    • RecQL5 promotes genome stabilization through two parallel mechanisms-interacting with RNA polymerase II and acting as a helicase
    • M. Islam, D.r. Fox, R. Guo, T. Enomoto, and W. Wang RecQL5 promotes genome stabilization through two parallel mechanisms-interacting with RNA polymerase II and acting as a helicase Mol. Cell. Biol. 30 2010 2460 2472
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2460-2472
    • Islam, M.1    Fox, D.R.2    Guo, R.3    Enomoto, T.4    Wang, W.5
  • 18
    • 79956140211 scopus 로고    scopus 로고
    • The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability
    • M. Li, X. Xu, and Y. Liu The SET2-RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability Mol. Cell. Biol. 31 2011 2090 2099
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2090-2099
    • Li, M.1    Xu, X.2    Liu, Y.3
  • 19
    • 84880164713 scopus 로고    scopus 로고
    • Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5
    • S.A. Kassube, M. Jinek, J. Fang, S. Tsutakawa, and E. Nogales Structural mimicry in transcription regulation of human RNA polymerase II by the DNA helicase RECQL5 Nat. Struct. Mol. Biol. 20 2013 892 899
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 892-899
    • Kassube, S.A.1    Jinek, M.2    Fang, J.3    Tsutakawa, S.4    Nogales, E.5
  • 20
    • 84863614596 scopus 로고    scopus 로고
    • A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization
    • M. Islam, N. Paquet, D.r. Fox, E. Dray, X. Zheng, H. Klein, P. Sung, and W. Wang A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization J. Biol. Chem. 287 2012 23808 23818
    • (2012) J. Biol. Chem. , vol.287 , pp. 23808-23818
    • Islam, M.1    Paquet, N.2    Fox, D.R.3    Dray, E.4    Zheng, X.5    Klein, H.6    Sung, P.7    Wang, W.8
  • 22
    • 76749143650 scopus 로고    scopus 로고
    • RECQL5 helicase: Connections to DNA recombination and RNA polymerase II transcription
    • O. Aygün, and J. Svejstrup RECQL5 helicase: connections to DNA recombination and RNA polymerase II transcription DNA Repair (Amst) 9 2010 345 353
    • (2010) DNA Repair (Amst) , vol.9 , pp. 345-353
    • Aygün, O.1    Svejstrup, J.2
  • 23
    • 34249299791 scopus 로고    scopus 로고
    • The complex language of chromatin regulation during transcription
    • S. Berger The complex language of chromatin regulation during transcription Nature 447 2007 407 412
    • (2007) Nature , vol.447 , pp. 407-412
    • Berger, S.1
  • 24
    • 0038740693 scopus 로고    scopus 로고
    • Tails of intrigue: Phosphorylation of RNA polymerase II mediates histone methylation
    • M. Hampsey, and D. Reinberg Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation Cell 113 2003 429 432
    • (2003) Cell , vol.113 , pp. 429-432
    • Hampsey, M.1    Reinberg, D.2
  • 26
    • 84880250998 scopus 로고    scopus 로고
    • Identification of hidden relationships from the coupling of Hydrophobic Cluster Analysis and Domain Architecture information
    • G. Faure, and I. Callebaut Identification of hidden relationships from the coupling of Hydrophobic Cluster Analysis and Domain Architecture information Bioinformatics 29 2013 1726 1733
    • (2013) Bioinformatics , vol.29 , pp. 1726-1733
    • Faure, G.1    Callebaut, I.2
  • 28
    • 84887290206 scopus 로고    scopus 로고
    • A comprehensive repertoire of foldable segments within genomes
    • G. Faure, and I. Callebaut A comprehensive repertoire of foldable segments within genomes PLoS Comput. Biol. 9 2013 e1003280
    • (2013) PLoS Comput. Biol. , vol.9 , pp. 1003280
    • Faure, G.1    Callebaut, I.2
  • 30
    • 39449115394 scopus 로고    scopus 로고
    • I-TASSER server for protein 3D structure prediction
    • Y. Zhang I-TASSER server for protein 3D structure prediction BMC Bioinformatics 9 2008 40
    • (2008) BMC Bioinformatics , vol.9 , pp. 40
    • Zhang, Y.1
  • 31
    • 23144452044 scopus 로고    scopus 로고
    • The HHpred interactive server for protein homology detection and structure prediction
    • J. Söding, A. Biegert, and A.N. Lupas The HHpred interactive server for protein homology detection and structure prediction Nucleic Acids Res. 33 2005 W244 W248
    • (2005) Nucleic Acids Res. , vol.33 , pp. 244-W248
    • Söding, J.1    Biegert, A.2    Lupas, A.N.3
  • 32
    • 0043123208 scopus 로고    scopus 로고
    • ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins
    • P. Gouet, X. Robert, and E. Courcelle ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins Nucleic Acids Res. 31 2003 3320 3323
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3320-3323
    • Gouet, P.1    Robert, X.2    Courcelle, E.3
  • 34
    • 84902187810 scopus 로고    scopus 로고
    • Human RecQ helicases in DNA repair, recombination, and replication
    • D. Croteau, V. Popuri, P. Opresko, and V. Bohr Human RecQ helicases in DNA repair, recombination, and replication Annu. Rev. Biochem. 83 2014 519 552
    • (2014) Annu. Rev. Biochem. , vol.83 , pp. 519-552
    • Croteau, D.1    Popuri, V.2    Opresko, P.3    Bohr, V.4
  • 35
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • R. Edgar MUSCLE: multiple sequence alignment with high accuracy and high throughput Nucleic Acids Res. 32 2004 1792 1797
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1792-1797
    • Edgar, R.1
  • 36
    • 58249093940 scopus 로고    scopus 로고
    • The SR protein family of splicing factors: Master regulators of gene expression
    • J. Long, and J. Caceres The SR protein family of splicing factors: master regulators of gene expression Biochem. J. 417 2009 15 27
    • (2009) Biochem. J. , vol.417 , pp. 15-27
    • Long, J.1    Caceres, J.2
  • 37
    • 84894318075 scopus 로고    scopus 로고
    • Coupling mRNA processing with transcription in time and space
    • D. Bentley Coupling mRNA processing with transcription in time and space Nat. Rev. Genet. 15 2014 163 175
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 163-175
    • Bentley, D.1
  • 38
    • 22144444964 scopus 로고    scopus 로고
    • Expression of the C-terminal domain of novel human SR-A1 protein: Interaction with the CTD domain of RNA polymerase II
    • M. Katsarou, A. Papakyriakou, N. Katsaros, and A. Scorilas Expression of the C-terminal domain of novel human SR-A1 protein: interaction with the CTD domain of RNA polymerase II Biochem. Biophys. Res. Commun. 334 2005 61 68
    • (2005) Biochem. Biophys. Res. Commun. , vol.334 , pp. 61-68
    • Katsarou, M.1    Papakyriakou, A.2    Katsaros, N.3    Scorilas, A.4
  • 39
    • 0029959435 scopus 로고    scopus 로고
    • The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins
    • A. Yuryev, M. Patturajan, Y. Litingtung, R. Joshi, C. Gentile, M. Gebara, and J. Corden The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins Proc. Natl. Acad. Sci. U.S.A. 93 1996 6975 6980
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 6975-6980
    • Yuryev, A.1    Patturajan, M.2    Litingtung, Y.3    Joshi, R.4    Gentile, C.5    Gebara, M.6    Corden, J.7
  • 41
    • 49449094610 scopus 로고    scopus 로고
    • A splicing regulator promotes transcriptional elongation
    • J. Fededa, and A. Kornblihtt A splicing regulator promotes transcriptional elongation Nat. Struct. Mol. Biol. 15 2008 779 781
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 779-781
    • Fededa, J.1    Kornblihtt, A.2
  • 44
    • 0345189367 scopus 로고    scopus 로고
    • Regulation of flowering time by histone acetylation in Arabidopsis
    • Y. He, S. Michaels, and R. Amasino Regulation of flowering time by histone acetylation in Arabidopsis Science 302 2003 1751 1754
    • (2003) Science , vol.302 , pp. 1751-1754
    • He, Y.1    Michaels, S.2    Amasino, R.3
  • 45
    • 80053435772 scopus 로고    scopus 로고
    • Histone modifications in transcriptional activation during plant development
    • A. Berr, S. Shafiq, and W.-H. Shen Histone modifications in transcriptional activation during plant development Biochim. Biophys. Acta 1809 2011 567 576
    • (2011) Biochim. Biophys. Acta , vol.1809 , pp. 567-576
    • Berr, A.1    Shafiq, S.2    Shen, W.-H.3
  • 46
    • 84879185229 scopus 로고    scopus 로고
    • Chromatin remodeling and alternative splicing: Pre- and post-transcriptional regulation of the Arabidopsis circadian clock
    • R. Henriques, and P. Mas Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock Semin. Cell Dev. Biol. 24 2013 399 406
    • (2013) Semin. Cell Dev. Biol. , vol.24 , pp. 399-406
    • Henriques, R.1    Mas, P.2
  • 47
    • 79952309663 scopus 로고    scopus 로고
    • The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors
    • K. Choi, J. Kim, H. Hwang, S. Kim, C. Park, S. Kim, and I. Lee The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors Plant Cell. 23 2011 289 303
    • (2011) Plant Cell. , vol.23 , pp. 289-303
    • Choi, K.1    Kim, J.2    Hwang, H.3    Kim, S.4    Park, C.5    Kim, S.6    Lee, I.7
  • 48
    • 31144461693 scopus 로고    scopus 로고
    • FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana
    • R. Schmitz, L. Hong, S. Michaels, and R. Amasino FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana Development 132 2005 5471 5478
    • (2005) Development , vol.132 , pp. 5471-5478
    • Schmitz, R.1    Hong, L.2    Michaels, S.3    Amasino, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.