-
1
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
Wijnen H., Young M.W. Interplay of circadian clocks and metabolic rhythms. Annual Review of Genetics 2006, 40:409-448.
-
(2006)
Annual Review of Genetics
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
2
-
-
65649087813
-
Ecological implications of plants ability to tell the time
-
Resco V., Hartwell J., Hall A. Ecological implications of plants ability to tell the time. Ecology Letters 2009, 12:583-592.
-
(2009)
Ecology Letters
, vol.12
, pp. 583-592
-
-
Resco, V.1
Hartwell, J.2
Hall, A.3
-
3
-
-
68849098242
-
Evidence for the adaptive significance of circadian rhythms
-
Yerushalmi S., Green R.M. Evidence for the adaptive significance of circadian rhythms. Ecology Letters 2009, 12:970-981.
-
(2009)
Ecology Letters
, vol.12
, pp. 970-981
-
-
Yerushalmi, S.1
Green, R.M.2
-
4
-
-
0035782867
-
Introduction: taking stock of circadian clock complexity
-
Costa R. Introduction: taking stock of circadian clock complexity. Seminars in Cell and Developmental Biology 2001, 12:267-269.
-
(2001)
Seminars in Cell and Developmental Biology
, vol.12
, pp. 267-269
-
-
Costa, R.1
-
5
-
-
21344470923
-
Circadian rhythms from multiple oscillators: lessons from diverse organisms
-
Bell-Pedersen D., Cassone V.M., Earnest D.J., Golden S.S., Hardin P.E., Thomas T.L., et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Reviews Genetics 2005, 6:544-556.
-
(2005)
Nature Reviews Genetics
, vol.6
, pp. 544-556
-
-
Bell-Pedersen, D.1
Cassone, V.M.2
Earnest, D.J.3
Golden, S.S.4
Hardin, P.E.5
Thomas, T.L.6
-
7
-
-
77955983063
-
Circadian control of global gene expression patterns
-
Doherty C.J., Kay S.A. Circadian control of global gene expression patterns. Annual Review of Genetics 2010, 44:419-444.
-
(2010)
Annual Review of Genetics
, vol.44
, pp. 419-444
-
-
Doherty, C.J.1
Kay, S.A.2
-
8
-
-
44649104433
-
Circadian clock function in Arabidopsis thaliana: time beyond transcription
-
Más P. Circadian clock function in Arabidopsis thaliana: time beyond transcription. Trends in Cell Biology 2008, 18:273-281.
-
(2008)
Trends in Cell Biology
, vol.18
, pp. 273-281
-
-
Más, P.1
-
9
-
-
78650995766
-
Spotlight on post-transcriptional control in the circadian system
-
Staiger D., Köster T. Spotlight on post-transcriptional control in the circadian system. Cellular and Molecular Life Sciences 2011, 68:71-83.
-
(2011)
Cellular and Molecular Life Sciences
, vol.68
, pp. 71-83
-
-
Staiger, D.1
Köster, T.2
-
10
-
-
84879187225
-
Global approaches for telling time: omics the Arabidopsis circadian clock
-
Chow B.Y., Kay S.A. Global approaches for telling time: omics the Arabidopsis circadian clock. Seminars in Cell Developmental Biology 2013, 24:383-392.
-
(2013)
Seminars in Cell Developmental Biology
, vol.24
, pp. 383-392
-
-
Chow, B.Y.1
Kay, S.A.2
-
13
-
-
84856371780
-
Downstream of the plant circadian clock: output pathways for the control of physiology and development
-
Adams S., Carré I. Downstream of the plant circadian clock: output pathways for the control of physiology and development. Essays in Biochemistry 2011, 49:53-69.
-
(2011)
Essays in Biochemistry
, vol.49
, pp. 53-69
-
-
Adams, S.1
Carré, I.2
-
15
-
-
80052903129
-
The genetics of plant clocks
-
McClung C. The genetics of plant clocks. Advances in Genetics 2011, 74:105-139.
-
(2011)
Advances in Genetics
, vol.74
, pp. 105-139
-
-
McClung, C.1
-
16
-
-
0006180620
-
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering
-
Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I.A., et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 1998, 93:1219-1229.
-
(1998)
Cell
, vol.93
, pp. 1219-1229
-
-
Schaffer, R.1
Ramsay, N.2
Samach, A.3
Corden, S.4
Putterill, J.5
Carré, I.A.6
-
17
-
-
0032568796
-
Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression
-
Wang Z.Y., Tobin E.M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 1998, 93:1207-1217.
-
(1998)
Cell
, vol.93
, pp. 1207-1217
-
-
Wang, Z.Y.1
Tobin, E.M.2
-
18
-
-
0033771646
-
Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock
-
Matsushika A., Makino S., Kojima M., Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant and Cell Physiology 2000, 41:1002-1012.
-
(2000)
Plant and Cell Physiology
, vol.41
, pp. 1002-1012
-
-
Matsushika, A.1
Makino, S.2
Kojima, M.3
Mizuno, T.4
-
19
-
-
29544448913
-
Extension of a genetic network model by iterative experimentation and mathematical analysis
-
Locke J.C.W., Southern M.M., Kozma-Bognar L., Hibberd V., Brown P.E., Turner M.S., et al. Extension of a genetic network model by iterative experimentation and mathematical analysis. Molecular Systems Biology 2005, 1. 0013:1-9.
-
(2005)
Molecular Systems Biology
, vol.1
, Issue.13
, pp. 1-9
-
-
Locke, J.C.W.1
Southern, M.M.2
Kozma-Bognar, L.3
Hibberd, V.4
Brown, P.E.5
Turner, M.S.6
-
20
-
-
33846085492
-
A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9
-
Zeilinger M.N., Farre E.M., Taylor S.R., Kay S.A., Doyle F.J. A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Molecular Systems Biology 2006, 2:1-13.
-
(2006)
Molecular Systems Biology
, vol.2
, pp. 1-13
-
-
Zeilinger, M.N.1
Farre, E.M.2
Taylor, S.R.3
Kay, S.A.4
Doyle, F.J.5
-
21
-
-
0034604423
-
Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog
-
Strayer C.A., Oyama T., Schultz T.F., Raman R., Somers D.E., Más P., et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 2000, 289:768-771.
-
(2000)
Science
, vol.289
, pp. 768-771
-
-
Strayer, C.A.1
Oyama, T.2
Schultz, T.F.3
Raman, R.4
Somers, D.E.5
Más, P.6
-
22
-
-
0033198884
-
GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains
-
Fowler S., Lee K., Onouchi H., Samach A., Richardson K., Morris B., et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO Journal 1999, 18:4679-4688.
-
(1999)
EMBO Journal
, vol.18
, pp. 4679-4688
-
-
Fowler, S.1
Lee, K.2
Onouchi, H.3
Samach, A.4
Richardson, K.5
Morris, B.6
-
23
-
-
0001357490
-
Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene
-
Park D.H., Somers D.E., Kim Y.S., Choy Y.H., Lim H.K., Soh M.S., et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 1999, 285:1579-1582.
-
(1999)
Science
, vol.285
, pp. 1579-1582
-
-
Park, D.H.1
Somers, D.E.2
Kim, Y.S.3
Choy, Y.H.4
Lim, H.K.5
Soh, M.S.6
-
24
-
-
77957260103
-
Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model
-
Pokhilko A., Hodge S., Stratford K., Knox K., Edwards K., Thomson A., et al. Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Molecular Systems Biology 2010, 6:1-10.
-
(2010)
Molecular Systems Biology
, vol.6
, pp. 1-10
-
-
Pokhilko, A.1
Hodge, S.2
Stratford, K.3
Knox, K.4
Edwards, K.5
Thomson, A.6
-
25
-
-
79960621365
-
The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth
-
Nusinow D.A., Helfer A., Hamilton E.E., King J.J., Imaizumi T., Schultz T.F., et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 2011, 475:398-402.
-
(2011)
Nature
, vol.475
, pp. 398-402
-
-
Nusinow, D.A.1
Helfer, A.2
Hamilton, E.E.3
King, J.J.4
Imaizumi, T.5
Schultz, T.F.6
-
26
-
-
0035800467
-
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
-
Alabadí D., Oyama T., Yanovsky M.J., Harmon F.G., Más P., Kay S.A. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001, 293:880-883.
-
(2001)
Science
, vol.293
, pp. 880-883
-
-
Alabadí, D.1
Oyama, T.2
Yanovsky, M.J.3
Harmon, F.G.4
Más, P.5
Kay, S.A.6
-
27
-
-
84857383458
-
Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor
-
Gendron J.M., Pruneda-Paz J.L., Doherty C.J., Gross A.M., Kang S.E., Kay S.A. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences 2012, 109:3167-3172.
-
(2012)
Proceedings of the National Academy of Sciences
, vol.109
, pp. 3167-3172
-
-
Gendron, J.M.1
Pruneda-Paz, J.L.2
Doherty, C.J.3
Gross, A.M.4
Kang, S.E.5
Kay, S.A.6
-
28
-
-
84859508042
-
Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator
-
Huang W., Perez-Garcia P., Pokhilko A., Millar A.J., Antoshechkin I., Riechmann J.L., et al. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 2012, 336:75-79.
-
(2012)
Science
, vol.336
, pp. 75-79
-
-
Huang, W.1
Perez-Garcia, P.2
Pokhilko, A.3
Millar, A.J.4
Antoshechkin, I.5
Riechmann, J.L.6
-
29
-
-
84857952188
-
The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops
-
Pokhilko A., Fernandez A.P., Edwards K.D., Southern M.M., Halliday K.J., Millar A.J. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Molecular Systems Biology 2012, 8:574.
-
(2012)
Molecular Systems Biology
, vol.8
, pp. 574
-
-
Pokhilko, A.1
Fernandez, A.P.2
Edwards, K.D.3
Southern, M.M.4
Halliday, K.J.5
Millar, A.J.6
-
30
-
-
77952919484
-
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock
-
Nakamichi N., Kiba T., Henriques R., Mizuno T., Chua N., Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. The Plant Cell 2010, 22:594-605.
-
(2010)
The Plant Cell
, vol.22
, pp. 594-605
-
-
Nakamichi, N.1
Kiba, T.2
Henriques, R.3
Mizuno, T.4
Chua, N.5
Sakakibara, H.6
-
31
-
-
33847076849
-
Chromatin modifications and their function
-
Kouzarides T. Chromatin modifications and their function. Cell 2007, 128:693-705.
-
(2007)
Cell
, vol.128
, pp. 693-705
-
-
Kouzarides, T.1
-
32
-
-
33847070442
-
The role of chromatin during transcription
-
Li B., Carey M., Workman J.L. The role of chromatin during transcription. Cell 2007, 128:707-719.
-
(2007)
Cell
, vol.128
, pp. 707-719
-
-
Li, B.1
Carey, M.2
Workman, J.L.3
-
33
-
-
79959484677
-
Signals and combinatorial functions of histone modifications
-
Suganuma T., Workman J.L. Signals and combinatorial functions of histone modifications. Annual Review of Biochemistry 2011, 80:473-499.
-
(2011)
Annual Review of Biochemistry
, vol.80
, pp. 473-499
-
-
Suganuma, T.1
Workman, J.L.2
-
34
-
-
0035839136
-
Translating the histone code
-
Jenuwein T., Allis C.D. Translating the histone code. Science 2001, 293:1074-1080.
-
(2001)
Science
, vol.293
, pp. 1074-1080
-
-
Jenuwein, T.1
Allis, C.D.2
-
35
-
-
59349100985
-
Dynamic protein methylation in chromatin biology
-
Ng S.S., Yue W.W., Oppermann U., Klose R.J. Dynamic protein methylation in chromatin biology. Cellular and Molecular Life Sciences: CMLS 2009, 66:407-422.
-
(2009)
Cellular and Molecular Life Sciences: CMLS
, vol.66
, pp. 407-422
-
-
Ng, S.S.1
Yue, W.W.2
Oppermann, U.3
Klose, R.J.4
-
36
-
-
80053435772
-
Histone modifications in transcriptional activation during plant development
-
Berr A., Shafiq S., Shen W.H. Histone modifications in transcriptional activation during plant development. Biochimica et Biophysica Acta 2011, 1809:567-576.
-
(2011)
Biochimica et Biophysica Acta
, vol.1809
, pp. 567-576
-
-
Berr, A.1
Shafiq, S.2
Shen, W.H.3
-
37
-
-
42549085238
-
The epigenetic landscape of plants
-
Zhang X. The epigenetic landscape of plants. Science 2008, 320:489-492.
-
(2008)
Science
, vol.320
, pp. 489-492
-
-
Zhang, X.1
-
38
-
-
0345189367
-
Regulation of flowering time by histone acetylation in Arabidopsis
-
He Y., Michaels S.D., Amasino R.M. Regulation of flowering time by histone acetylation in Arabidopsis. Science 2003, 302:1751-1754.
-
(2003)
Science
, vol.302
, pp. 1751-1754
-
-
He, Y.1
Michaels, S.D.2
Amasino, R.M.3
-
39
-
-
54149108452
-
Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana
-
Kim J-M., To T.K., Ishida J., Morosawa T., Kawashima M., Matsui A., et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant and Cell Physiology 2008, 49:1580-1588.
-
(2008)
Plant and Cell Physiology
, vol.49
, pp. 1580-1588
-
-
Kim, J.-M.1
To, T.K.2
Ishida, J.3
Morosawa, T.4
Kawashima, M.5
Matsui, A.6
-
40
-
-
79955591951
-
Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1
-
To T.K., Kim J-M., Matsui A., Kurihara Y., Morosawa T., Ishida J., et al. Arabidopsis HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1. PLoS Genetics 2011, 7:e1002055.
-
(2011)
PLoS Genetics
, vol.7
-
-
To, T.K.1
Kim, J.-M.2
Matsui, A.3
Kurihara, Y.4
Morosawa, T.5
Ishida, J.6
-
41
-
-
75649129700
-
Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis
-
Charron J-B.F., He H., Elling A.A., Deng X.W. Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. The Plant Cell 2009, 21:3732-3748.
-
(2009)
The Plant Cell
, vol.21
, pp. 3732-3748
-
-
Charron, J.-B.F.1
He, H.2
Elling, A.A.3
Deng, X.W.4
-
42
-
-
34248570556
-
A chromatin link that couples cell division to root epidermis patterning in Arabidopsis
-
Caro E., Castellano M.M., Gutierrez C. A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature 2007, 447:213-217.
-
(2007)
Nature
, vol.447
, pp. 213-217
-
-
Caro, E.1
Castellano, M.M.2
Gutierrez, C.3
-
43
-
-
79956066320
-
Integrative epigenomic mapping defines four main chromatin states in Arabidopsis
-
Roudier F., Ahmed I., Berard C., Sarazin A., Mary-Huard T., Cortijo S., et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO Journal 2011, 30:1928-1938.
-
(2011)
EMBO Journal
, vol.30
, pp. 1928-1938
-
-
Roudier, F.1
Ahmed, I.2
Berard, C.3
Sarazin, A.4
Mary-Huard, T.5
Cortijo, S.6
-
44
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray J-P., Lee C., Wade P.A., Reppert S.M. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.-P.1
Lee, C.2
Wade, P.A.3
Reppert, S.M.4
-
46
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi M., Hirayama J., Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125:497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
47
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
Reinke, H.4
Dibner, C.5
Kreppel, F.6
-
48
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D., et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
Sahar, S.4
Hirayama, J.5
Chen, D.6
-
49
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y., Sahar S., Astarita G., Kaluzova M., Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
50
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey K.M., Yoshino J., Brace C.S., Abrassart D., Kobayashi Y., Marcheva B., et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009, 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
Abrassart, D.4
Kobayashi, Y.5
Marcheva, B.6
-
51
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong H.A., Robles M.S., Knutti D., Weitz C.J. A molecular mechanism for circadian clock negative feedback. Science 2011, 332:1436-1439.
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
Robles, M.S.2
Knutti, D.3
Weitz, C.J.4
-
52
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D., Liu T., Sun Z., Bugge A., Mullican S.E., Alenghat T., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331:1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
Bugge, A.4
Mullican, S.E.5
Alenghat, T.6
-
53
-
-
3042709817
-
Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation
-
Naruse Y., Oh-hashi K., Iijima N., Naruse M., Yoshioka H., Tanaka M. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Molecular and Cellular Biology 2004, 24:6278-6287.
-
(2004)
Molecular and Cellular Biology
, vol.24
, pp. 6278-6287
-
-
Naruse, Y.1
Oh-hashi, K.2
Iijima, N.3
Naruse, M.4
Yoshioka, H.5
Tanaka, M.6
-
54
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio L., Le H.D., Vollmers C., Hatori M., Witcher M., Secombe J., et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 2011, 333:1881-1885.
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
DiTacchio, L.1
Le, H.D.2
Vollmers, C.3
Hatori, M.4
Witcher, M.5
Secombe, J.6
-
55
-
-
18244365850
-
PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator
-
Brown S.A., Ripperger J., Kadener S., Fleury-Olela F., Vilbois F., Rosbash M., et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 2005, 308:693-696.
-
(2005)
Science
, vol.308
, pp. 693-696
-
-
Brown, S.A.1
Ripperger, J.2
Kadener, S.3
Fleury-Olela, F.4
Vilbois, F.5
Rosbash, M.6
-
56
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray J-P., Yang X., DeBruyne J.P., Peters A.H.F.M., Weaver D.R., Jenuwein T., et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. Journal of Biological Chemistry 2006, 281:21209-21215.
-
(2006)
Journal of Biological Chemistry
, vol.281
, pp. 21209-21215
-
-
Etchegaray, J.-P.1
Yang, X.2
DeBruyne, J.P.3
Peters, A.H.F.M.4
Weaver, D.R.5
Jenuwein, T.6
-
57
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada S., Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nature Structural and Molecular Biology 2010, 17:1414-1421.
-
(2010)
Nature Structural and Molecular Biology
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
58
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger J.A., Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nature Genetics 2006, 38:369-374.
-
(2006)
Nature Genetics
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
59
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N., Yoo S-H., Huang H-C., Kumar V., Lee C., Kim T-K., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012, 338:349-354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
Yoo, S.-H.2
Huang, H.-C.3
Kumar, V.4
Lee, C.5
Kim, T.-K.6
-
60
-
-
54549090881
-
Chromatin, photoperiod and the Arabidopsis circadian clock: a question of time
-
Stratmann T., Más P. Chromatin, photoperiod and the Arabidopsis circadian clock: a question of time. Seminars in Cell and Developmental Biology 2008, 19:554-559.
-
(2008)
Seminars in Cell and Developmental Biology
, vol.19
, pp. 554-559
-
-
Stratmann, T.1
Más, P.2
-
61
-
-
34548355182
-
A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock
-
Perales M., Más P. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. The Plant Cell 2007, 19:2111-2123.
-
(2007)
The Plant Cell
, vol.19
, pp. 2111-2123
-
-
Perales, M.1
Más, P.2
-
62
-
-
79955007772
-
Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation
-
Farinas B., Mas P. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. The Plant Journal 2011, 66:318-329.
-
(2011)
The Plant Journal
, vol.66
, pp. 318-329
-
-
Farinas, B.1
Mas, P.2
-
63
-
-
84870317601
-
Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci
-
Song H-R., Noh Y-S. Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci. Molecules and Cells 2012, 34:279-287.
-
(2012)
Molecules and Cells
, vol.34
, pp. 279-287
-
-
Song, H.-R.1
Noh, Y.-S.2
-
64
-
-
84870815048
-
Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms
-
Hemmes H., Henriques R., Jang I-C., Kim S-H., Chua N-H. Circadian clock regulates dynamic chromatin modifications associated with Arabidopsis CCA1/LHY and TOC1 transcriptional rhythms. Plant and Cell Physiology 2013, 53:2016-2029.
-
(2013)
Plant and Cell Physiology
, vol.53
, pp. 2016-2029
-
-
Hemmes, H.1
Henriques, R.2
Jang, I.-C.3
Kim, S.-H.4
Chua, N.-H.5
-
66
-
-
78649509747
-
Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development
-
Berr A., McCallum E.J., Menard R., Meyer D., Fuchs J., Dong A., et al. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. The Plant Cell 2010, 22:3232-3248.
-
(2010)
The Plant Cell
, vol.22
, pp. 3232-3248
-
-
Berr, A.1
McCallum, E.J.2
Menard, R.3
Meyer, D.4
Fuchs, J.5
Dong, A.6
-
67
-
-
78649811780
-
SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis
-
Guo L., Yu Y., Law J.A., Zhang X. SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:18557-18562.
-
(2010)
Proceedings of the National Academy of Sciences of the United States of America
, vol.107
, pp. 18557-18562
-
-
Guo, L.1
Yu, Y.2
Law, J.A.3
Zhang, X.4
-
68
-
-
84867571063
-
Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis
-
Himanen K., Woloszynska M., Boccardi T.M., De Groeve S., Nelissen H., Bruno L., et al. Histone H2B monoubiquitination is required to reach maximal transcript levels of circadian clock genes in Arabidopsis. The Plant Journal 2012, 72:249-260.
-
(2012)
The Plant Journal
, vol.72
, pp. 249-260
-
-
Himanen, K.1
Woloszynska, M.2
Boccardi, T.M.3
De Groeve, S.4
Nelissen, H.5
Bruno, L.6
-
69
-
-
78650717705
-
Jumonji domain protein JMJD5 functions in both the plant and human circadian systems
-
Jones M.A., Covington M.F., DiTacchio L., Vollmers C., Panda S., Harmer S.L. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proceedings of the National Academy of Sciences 2010, 107:21623-21628.
-
(2010)
Proceedings of the National Academy of Sciences
, vol.107
, pp. 21623-21628
-
-
Jones, M.A.1
Covington, M.F.2
DiTacchio, L.3
Vollmers, C.4
Panda, S.5
Harmer, S.L.6
-
70
-
-
79551704893
-
The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock
-
Lu S.X., Knowles S.M., Webb C.J., Celaya R.B., Cha C., Siu J.P., et al. The Jumonji C domain-containing protein JMJ30 regulates period length in the Arabidopsis circadian clock. Plant Physiology 2011, 155:906-915.
-
(2011)
Plant Physiology
, vol.155
, pp. 906-915
-
-
Lu, S.X.1
Knowles, S.M.2
Webb, C.J.3
Celaya, R.B.4
Cha, C.5
Siu, J.P.6
-
71
-
-
58249105076
-
Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids
-
Ni Z., Kim E-D., Ha M., Lackey E., Liu J., Zhang Y., et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2009, 457:327-331.
-
(2009)
Nature
, vol.457
, pp. 327-331
-
-
Ni, Z.1
Kim, E.-D.2
Ha, M.3
Lackey, E.4
Liu, J.5
Zhang, Y.6
-
72
-
-
84861472551
-
Alternative splicing adds a new loop to the circadian clock
-
Petrillo E., Sanchez S.E., Kornblihtt A.R., Yanovsky M.J. Alternative splicing adds a new loop to the circadian clock. Communicative and Integrative Biology 2011, 4:284-286.
-
(2011)
Communicative and Integrative Biology
, vol.4
, pp. 284-286
-
-
Petrillo, E.1
Sanchez, S.E.2
Kornblihtt, A.R.3
Yanovsky, M.J.4
-
73
-
-
84867026807
-
SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis
-
Wang X., Wu F., Xie Q., Wang H., Wang Y., Yue Y., et al. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. The Plant Cell 2012, 24:3278-3295.
-
(2012)
The Plant Cell
, vol.24
, pp. 3278-3295
-
-
Wang, X.1
Wu, F.2
Xie, Q.3
Wang, H.4
Wang, Y.5
Yue, Y.6
-
74
-
-
0037068447
-
Comprehensive proteomic analysis of the human spliceosome
-
Zhou Z., Licklider L.J., Gygi S.P., Reed R. Comprehensive proteomic analysis of the human spliceosome. Nature 2002, 419:182-185.
-
(2002)
Nature
, vol.419
, pp. 182-185
-
-
Zhou, Z.1
Licklider, L.J.2
Gygi, S.P.3
Reed, R.4
-
75
-
-
60349104299
-
The spliceosome: design principles of a dynamic RNP machine
-
Wahl M.C., Will C.L., Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
-
(2009)
Cell
, vol.136
, pp. 701-718
-
-
Wahl, M.C.1
Will, C.L.2
Luhrmann, R.3
-
76
-
-
84860376054
-
The intricate relationship between RNA structure, editing, and splicing
-
Rieder L.E., Reenan R.A. The intricate relationship between RNA structure, editing, and splicing. Seminars in Cell and Developmental Biology 2012, 23:281-288.
-
(2012)
Seminars in Cell and Developmental Biology
, vol.23
, pp. 281-288
-
-
Rieder, L.E.1
Reenan, R.A.2
-
77
-
-
75849145292
-
Expansion of the eukaryotic proteome by alternative splicing
-
Nilsen T.W., Graveley B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature 2010, 463:457-463.
-
(2010)
Nature
, vol.463
, pp. 457-463
-
-
Nilsen, T.W.1
Graveley, B.R.2
-
78
-
-
56549101959
-
Alternative isoform regulation in human tissue transcriptomes
-
Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470-476.
-
(2008)
Nature
, vol.456
, pp. 470-476
-
-
Wang, E.T.1
Sandberg, R.2
Luo, S.3
Khrebtukova, I.4
Zhang, L.5
Mayr, C.6
-
79
-
-
78650961149
-
Epigenetics in alternative pre-mRNA splicing
-
Luco R.F., Allo M., Schor I.E., Kornblihtt A.R., Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell 2011, 144:16-26.
-
(2011)
Cell
, vol.144
, pp. 16-26
-
-
Luco, R.F.1
Allo, M.2
Schor, I.E.3
Kornblihtt, A.R.4
Misteli, T.5
-
80
-
-
50649109231
-
Genome-wide analyses of alternative splicing in plants: opportunities and challenges
-
Barbazuk W.B., Fu Y., McGinnis K.M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Research 2008, 18:1381-1392.
-
(2008)
Genome Research
, vol.18
, pp. 1381-1392
-
-
Barbazuk, W.B.1
Fu, Y.2
McGinnis, K.M.3
-
81
-
-
74949084336
-
Genome-wide mapping of alternative splicing in Arabidopsis thaliana
-
Filichkin S.A., Priest H.D., Givan S.A., Shen R., Bryant D.W., Fox S.E., et al. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Research 2010, 20:45-58.
-
(2010)
Genome Research
, vol.20
, pp. 45-58
-
-
Filichkin, S.A.1
Priest, H.D.2
Givan, S.A.3
Shen, R.4
Bryant, D.W.5
Fox, S.E.6
-
82
-
-
84861890038
-
Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis
-
Marquez Y., Brown J.W.S., Simpson C., Barta A., Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Research 2012, 22:1184-1195.
-
(2012)
Genome Research
, vol.22
, pp. 1184-1195
-
-
Marquez, Y.1
Brown, J.W.S.2
Simpson, C.3
Barta, A.4
Kalyna, M.5
-
84
-
-
34247330971
-
Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements
-
Lareau L.F., Inada M., Green R.E., Wengrod J.C., Brenner S.E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 2007, 446:926-929.
-
(2007)
Nature
, vol.446
, pp. 926-929
-
-
Lareau, L.F.1
Inada, M.2
Green, R.E.3
Wengrod, J.C.4
Brenner, S.E.5
-
85
-
-
34547881914
-
Mutations in the Type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis
-
Pei Y., Niu L., Lu F., Liu C., Zhai J., Kong X., et al. Mutations in the Type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis. Plant Physiology 2007, 144:1913-1923.
-
(2007)
Plant Physiology
, vol.144
, pp. 1913-1923
-
-
Pei, Y.1
Niu, L.2
Lu, F.3
Liu, C.4
Zhai, J.5
Kong, X.6
-
86
-
-
38649111293
-
Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana
-
Schmitz R.J., Sung S., Amasino R.M. Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proceedings of the National Academy of Sciences 2008, 105:411-416.
-
(2008)
Proceedings of the National Academy of Sciences
, vol.105
, pp. 411-416
-
-
Schmitz, R.J.1
Sung, S.2
Amasino, R.M.3
-
87
-
-
79952288503
-
Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering Histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation
-
Zhang Z., Zhang S., Zhang Y., Wang X., Li D., Li Q., et al. Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and pre-mRNA splicing through altering Histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation. The Plant Cell 2011, 23:396-411.
-
(2011)
The Plant Cell
, vol.23
, pp. 396-411
-
-
Zhang, Z.1
Zhang, S.2
Zhang, Y.3
Wang, X.4
Li, D.5
Li, Q.6
-
88
-
-
34247221117
-
SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis
-
Wang X., Zhang Y., Ma Q., Zhang Z., Xue Y., Bao S., et al. SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis. EMBO Journal 2007, 26:1934-1941.
-
(2007)
EMBO Journal
, vol.26
, pp. 1934-1941
-
-
Wang, X.1
Zhang, Y.2
Ma, Q.3
Zhang, Z.4
Xue, Y.5
Bao, S.6
-
89
-
-
78650488766
-
Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing
-
Deng X., Gu L., Liu C., Lu T., Lu F., Lu Z., et al. Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proceedings of the National Academy of Sciences 2010, 107:19114-19119.
-
(2010)
Proceedings of the National Academy of Sciences
, vol.107
, pp. 19114-19119
-
-
Deng, X.1
Gu, L.2
Liu, C.3
Lu, T.4
Lu, F.5
Lu, Z.6
-
90
-
-
78149282260
-
A methyl transferase links the circadian clock to the regulation of alternative splicing
-
Sanchez S.E., Petrillo E., Beckwith E.J., Zhang X., Rugnone M.L., Hernando C.E., et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 2010, 468:112-116.
-
(2010)
Nature
, vol.468
, pp. 112-116
-
-
Sanchez, S.E.1
Petrillo, E.2
Beckwith, E.J.3
Zhang, X.4
Rugnone, M.L.5
Hernando, C.E.6
-
91
-
-
78650446132
-
Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana
-
Hong S., Song H-R., Lutz K., Kerstetter R.A., Michael T.P., McClung C.R. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 2010, 107:21211-21216.
-
(2010)
Proceedings of the National Academy of Sciences
, vol.107
, pp. 21211-21216
-
-
Hong, S.1
Song, H.-R.2
Lutz, K.3
Kerstetter, R.A.4
Michael, T.P.5
McClung, C.R.6
-
92
-
-
84870675720
-
Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 causes circadian clock defects
-
Jones M., Williams B., McNicol J., Simpson C., Brown J., Harmer S. Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 causes circadian clock defects. The Plant Cell 2012, 24:4066-4082.
-
(2012)
The Plant Cell
, vol.24
, pp. 4066-4082
-
-
Jones, M.1
Williams, B.2
McNicol, J.3
Simpson, C.4
Brown, J.5
Harmer, S.6
-
93
-
-
84860128193
-
Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes
-
James A.B., Syed N.H., Bordage S., Marshall J., Nimmo G.A., Jenkins G.I., et al. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. The Plant Cell 2012, 24:961-981.
-
(2012)
The Plant Cell
, vol.24
, pp. 961-981
-
-
James, A.B.1
Syed, N.H.2
Bordage, S.3
Marshall, J.4
Nimmo, G.A.5
Jenkins, G.I.6
-
94
-
-
84864440018
-
A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis
-
Seo P.J., Park M-J., Lim M-H., Kim S-G., Lee M., Baldwin I.T., et al. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. The Plant Cell 2012, 24:2427-2442.
-
(2012)
The Plant Cell
, vol.24
, pp. 2427-2442
-
-
Seo, P.J.1
Park, M.-J.2
Lim, M.-H.3
Kim, S.-G.4
Lee, M.5
Baldwin, I.T.6
-
95
-
-
84863089087
-
Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes
-
Filichkin S.A., Mockler T.C. Unproductive alternative splicing and nonsense mRNAs: a widespread phenomenon among plant circadian clock genes. Biology Direct 2012, 7:20.
-
(2012)
Biology Direct
, vol.7
, pp. 20
-
-
Filichkin, S.A.1
Mockler, T.C.2
-
96
-
-
1242319314
-
Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C
-
Collins B.H., Rosato E., Kyriacou C.P. Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C. Proceedings of the National Academy of Sciences of the United States of America 2004, 101:1945-1950.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, pp. 1945-1950
-
-
Collins, B.H.1
Rosato, E.2
Kyriacou, C.P.3
-
97
-
-
1842505320
-
Splicing of the period gene 3'-terminal intron is regulated by light, circadian clock factors, and phospholipase C
-
Majercak J., Chen W-F., Edery I. Splicing of the period gene 3'-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Molecular and Cellular Biology 2004, 24:3359-3372.
-
(2004)
Molecular and Cellular Biology
, vol.24
, pp. 3359-3372
-
-
Majercak, J.1
Chen, W.-F.2
Edery, I.3
-
98
-
-
28644441707
-
Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency
-
Colot H.V., Loros J.J., Dunlap J.C. Temperature-modulated alternative splicing and promoter use in the circadian clock gene frequency. Molecular Biology of The Cell 2005, 16:5563-5571.
-
(2005)
Molecular Biology of The Cell
, vol.16
, pp. 5563-5571
-
-
Colot, H.V.1
Loros, J.J.2
Dunlap, J.C.3
-
99
-
-
81255210991
-
Alternative splicing at the right time
-
Sanchez S.E., Petrillo E., Kornblihtt A.R., Yanovsky M.J. Alternative splicing at the right time. RNA Biology 2011, 8:954-959.
-
(2011)
RNA Biology
, vol.8
, pp. 954-959
-
-
Sanchez, S.E.1
Petrillo, E.2
Kornblihtt, A.R.3
Yanovsky, M.J.4
-
100
-
-
0030873319
-
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana
-
Heintzen C., Nater M., Apel K., Staiger D. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 1997, 94:8515-8520.
-
(1997)
Proceedings of the National Academy of Sciences of the United States of America
, vol.94
, pp. 8515-8520
-
-
Heintzen, C.1
Nater, M.2
Apel, K.3
Staiger, D.4
-
101
-
-
0033040318
-
Circadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterisation of a minimal promoter element
-
Staiger D., Apel K. Circadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterisation of a minimal promoter element. Molecular and General Genetics 1999, 261:811-819.
-
(1999)
Molecular and General Genetics
, vol.261
, pp. 811-819
-
-
Staiger, D.1
Apel, K.2
-
102
-
-
58749102066
-
Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis
-
Schoning J.C., Streitner C., Meyer I.M., Gao Y., Staiger D. Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Research 2008, 36:6977-6987.
-
(2008)
Nucleic Acids Research
, vol.36
, pp. 6977-6987
-
-
Schoning, J.C.1
Streitner, C.2
Meyer, I.M.3
Gao, Y.4
Staiger, D.5
-
103
-
-
0037266853
-
The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA
-
Staiger D., Zecca L., Wieczorek Kirk D.A., Apel K., Eckstein L. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. The Plant Journal 2003, 33:361-371.
-
(2003)
The Plant Journal
, vol.33
, pp. 361-371
-
-
Staiger, D.1
Zecca, L.2
Wieczorek Kirk, D.A.3
Apel, K.4
Eckstein, L.5
-
104
-
-
84871195123
-
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana
-
Streitner C., Koster T., Simpson C.G., Shaw P., Danisman S., Brown J.W., et al. An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana. Nucleic Acids Research 2012, 40:11240-11255.
-
(2012)
Nucleic Acids Research
, vol.40
, pp. 11240-11255
-
-
Streitner, C.1
Koster, T.2
Simpson, C.G.3
Shaw, P.4
Danisman, S.5
Brown, J.W.6
-
105
-
-
36849007471
-
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation
-
Schoning J.C., Streitner C., Page D.R., Hennig S., Uchida K., Wolf E., et al. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. The Plant Journal 2007, 52:1119-1130.
-
(2007)
The Plant Journal
, vol.52
, pp. 1119-1130
-
-
Schoning, J.C.1
Streitner, C.2
Page, D.R.3
Hennig, S.4
Uchida, K.5
Wolf, E.6
-
106
-
-
34248164877
-
AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis
-
Cao S., Jiang L., Song S., Jing R., Xu G. AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis. Cellular and Molecular Biology Letters 2006, 11:526-535.
-
(2006)
Cellular and Molecular Biology Letters
, vol.11
, pp. 526-535
-
-
Cao, S.1
Jiang, L.2
Song, S.3
Jing, R.4
Xu, G.5
-
107
-
-
47749089005
-
Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana
-
Kim J.S., Jung H.J., Lee H.J., Kim K.A., Goh C-H., Woo Y., et al. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal 2008, 55:455-466.
-
(2008)
The Plant Journal
, vol.55
, pp. 455-466
-
-
Kim, J.S.1
Jung, H.J.2
Lee, H.J.3
Kim, K.A.4
Goh, C.-H.5
Woo, Y.6
-
108
-
-
84867670963
-
Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
-
Morf J., Rey G., Schneider K., Stratmann M., Fujita J., Naef F., et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 2012, 338:379-383.
-
(2012)
Science
, vol.338
, pp. 379-383
-
-
Morf, J.1
Rey, G.2
Schneider, K.3
Stratmann, M.4
Fujita, J.5
Naef, F.6
-
109
-
-
36049032156
-
The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor
-
De Leeuw F., Zhang T., Wauquier C., Huez G., Kruys Vr, Gueydan C. The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor. Experimental Cell Research 2007, 313:4130-4144.
-
(2007)
Experimental Cell Research
, vol.313
, pp. 4130-4144
-
-
De Leeuw, F.1
Zhang, T.2
Wauquier, C.3
Huez, G.4
Kruys Vr5
Gueydan, C.6
|