메뉴 건너뛰기




Volumn 19, Issue 6, 2014, Pages 1131-1140

Evapotranspiration modeling using second-order neural networks

Author keywords

Evapotranspiration; Feed forward; Higher order; Neural networks

Indexed keywords

BACKPROPAGATION; EVAPOTRANSPIRATION; FEEDFORWARD NEURAL NETWORKS; MEAN SQUARE ERROR; NEURAL NETWORKS; WIND;

EID: 84910611249     PISSN: 10840699     EISSN: 19435584     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000887     Document Type: Article
Times cited : (38)

References (41)
  • 1
    • 77952250264 scopus 로고    scopus 로고
    • Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse
    • Abedi-Koupai, J., Amiri, M. J., and Eslamian, S. S. (2009). "Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse." Aust. J. Basic Appl. Sci., 3(3), 2528-2535.
    • (2009) Aust. J. Basic Appl. Sci. , vol.3 , Issue.3 , pp. 2528-2535
    • Abedi-Koupai, J.1    Amiri, M.J.2    Eslamian, S.S.3
  • 2
    • 77954166634 scopus 로고    scopus 로고
    • Infilling missing daily evapotranspiration data using neural networks
    • Abudu, S., Bawazir, A. S., and King, J. P. (2010). "Infilling missing daily evapotranspiration data using neural networks." J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000197, 317-325.
    • (2010) J. Irrig. Drain. Eng. , pp. 317-325
    • Abudu, S.1    Bawazir, A.S.2    King, J.P.3
  • 3
    • 79955799657 scopus 로고    scopus 로고
    • Performance evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration
    • Abyaneh, H. Z., Nia, A. M., Varkeshi, M. B., Marofi, S., and Kisi, O. (2011). "Performance evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration." J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000298, 280-286.
    • (2011) J. Irrig. Drain. Eng. , pp. 280-286
    • Abyaneh, H.Z.1    Nia, A.M.2    Varkeshi, M.B.3    Marofi, S.4    Kisi, O.5
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000a). "Artificial neural networks in hydrology. I: Preliminary concepts." J. Hydrol. Eng., 5(2), 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 6
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. (2000b). "Artificial neural networks in hydrology. II: Hydrologic applications." J. Hydrol. Eng., 5(2), 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 7
    • 52649094242 scopus 로고    scopus 로고
    • An explicit neural network formulation for evapotranspiration
    • Aytek, A., Guven, A., Yuce, M. I., and Aksoy, H. (2008). "An explicit neural network formulation for evapotranspiration." Hydro. Sci. J., 53(4), 893-904.
    • (2008) Hydro. Sci. J. , vol.53 , Issue.4 , pp. 893-904
    • Aytek, A.1    Guven, A.2    Yuce, M.I.3    Aksoy, H.4
  • 8
    • 0003790534 scopus 로고
    • Evaporation into the atmosphere: Theory, history and applications
    • Dordrecht, Netherlands and Springer, Boston
    • Brutsaert, W. H. (1982). "Evaporation into the atmosphere: Theory, history and applications." Dordrecht, Netherlands and Springer, Boston.
    • (1982)
    • Brutsaert, W.H.1
  • 9
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan, S., and Shrivastava, R. K. (2009). "Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks." Water Resour. Manage., 23(5), 825-837.
    • (2009) Water Resour. Manage. , vol.23 , Issue.5 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 10
    • 61749090181 scopus 로고    scopus 로고
    • Artificial neural network models for estimating regional reference evapotranspiration based on climate factors
    • Dai, X., Shi, H., Li, Y., Ouyang, Z., and Huo, Z. (2009). "Artificial neural network models for estimating regional reference evapotranspiration based on climate factors." Hydrol. Process., 23(3), 442-450.
    • (2009) Hydrol. Process. , vol.23 , Issue.3 , pp. 442-450
    • Dai, X.1    Shi, H.2    Li, Y.3    Ouyang, Z.4    Huo, Z.5
  • 11
    • 54049108802 scopus 로고    scopus 로고
    • On the relevance of using artificial neural networks for estimating soil moisture content
    • Elshorbagy, A., and Parasuraman, K. (2008). "On the relevance of using artificial neural networks for estimating soil moisture content." J. Hydrol., 362(1-2), 1-18.
    • (2008) J. Hydrol. , vol.362 , Issue.1-2 , pp. 1-18
    • Elshorbagy, A.1    Parasuraman, K.2
  • 12
    • 0023513717 scopus 로고
    • Learning, invariance and generalization in high-order neural networks
    • Giles, L., and Maxwell, T. (1987). "Learning, invariance and generalization in high-order neural networks." Appl. Opt., 26(23), 4972-4978.
    • (1987) Appl. Opt. , vol.26 , Issue.23 , pp. 4972-4978
    • Giles, L.1    Maxwell, T.2
  • 13
    • 52249122452 scopus 로고    scopus 로고
    • Static and dynamic neural networks: From fundamentals to advanced theory
    • Wiley/IEEE Press, New York
    • Gupta, M. M., Jin, L., and Homma, N. (2003). "Static and dynamic neural networks: From fundamentals to advanced theory." Wiley/IEEE Press, New York.
    • (2003)
    • Gupta, M.M.1    Jin, L.2    Homma, N.3
  • 14
    • 8844251703 scopus 로고    scopus 로고
    • Superimposing learning for backpropagation neural networks
    • Homma, N., and Gupta, M. M. (2002). "Superimposing learning for backpropagation neural networks." Jpn. Med. Coll. Bull., 11(2), 253-259.
    • (2002) Jpn. Med. Coll. Bull. , vol.11 , Issue.2 , pp. 253-259
    • Homma, N.1    Gupta, M.M.2
  • 15
    • 84858714150 scopus 로고    scopus 로고
    • Artificial neural network models for reference evapotranspiration in an arid area of northwest China
    • Huo, Z., Feng, S., Kang, S., and Dai, X. (2012). "Artificial neural network models for reference evapotranspiration in an arid area of northwest China." J. Arid. Environ., 82, 81-90.
    • (2012) J. Arid. Environ. , vol.82 , pp. 81-90
    • Huo, Z.1    Feng, S.2    Kang, S.3    Dai, X.4
  • 16
    • 0142213745 scopus 로고    scopus 로고
    • Daily grass and alfalfa reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida
    • Irmak, S., Allen, R. G., and Whitty, E. B. (2003). "Daily grass and alfalfa reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida." J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(2003)129:5(360), 360-370.
    • (2003) J. Irrig. Drain. Eng. , pp. 360-370
    • Irmak, S.1    Allen, R.G.2    Whitty, E.B.3
  • 17
    • 0022073385 scopus 로고
    • Evaluating evapotranspiration at local and regional scales
    • Jackson, R. D. (1985). "Evaluating evapotranspiration at local and regional scales." Proc. IEEE, 73(6), 1086-1096.
    • (1985) Proc. IEEE , vol.73 , Issue.6 , pp. 1086-1096
    • Jackson, R.D.1
  • 18
    • 79955729635 scopus 로고    scopus 로고
    • Application of artificial neural network in estimating monthly time series reference evapotranspiration with minimum and maximum temperatures
    • Jahanbani, H., and El-Shafie, A. H. (2011). "Application of artificial neural network in estimating monthly time series reference evapotranspiration with minimum and maximum temperatures." Paddy Water Environ., 9(2), 207-220.
    • (2011) Paddy Water Environ. , vol.9 , Issue.2 , pp. 207-220
    • Jahanbani, H.1    El-Shafie, A.H.2
  • 19
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • Jain, S. K., Nayak, P. C., and Sudheer, K. P. (2008). "Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation." Hydrol. Process., 22(13), 2225-2234.
    • (2008) Hydrol. Process. , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 20
    • 0029115242 scopus 로고
    • On the training and performance of high-order neural networks
    • Karayiannis, N. B., and Venetsanopoulos, A. N. (1995). "On the training and performance of high-order neural networks." Math. Biosci., 129(2), 143-168.
    • (1995) Math. Biosci. , vol.129 , Issue.2 , pp. 143-168
    • Karayiannis, N.B.1    Venetsanopoulos, A.N.2
  • 21
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modeling from climatic data using a neural computing technique
    • Kisi, O. (2007a). "Evapotranspiration modeling from climatic data using a neural computing technique." Hydrol. Process., 21(14), 1925-1934.
    • (2007) Hydrol. Process. , vol.21 , Issue.14 , pp. 1925-1934
    • Kisi, O.1
  • 22
    • 48649099727 scopus 로고    scopus 로고
    • The potential of different ANN techniques in evapotranspiration modeling
    • Kisi, O. (2007b). "The potential of different ANN techniques in evapotranspiration modeling." Hydrol. Process., 22(14), 2449-2460.
    • (2007) Hydrol. Process. , vol.22 , Issue.14 , pp. 2449-2460
    • Kisi, O.1
  • 23
    • 80555135962 scopus 로고    scopus 로고
    • Modeling reference evapotranspiration using evolutionary neural networks
    • Kisi, O. (2011). "Modeling reference evapotranspiration using evolutionary neural networks." J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000333, 636-643.
    • (2011) J. Irrig. Drain. Eng. , pp. 636-643
    • Kisi, O.1
  • 24
    • 50249103269 scopus 로고    scopus 로고
    • Comparative study of conventional and artificial neural network-based ET0 estimation models
    • Kumar, M., Bandyopadhyay, A., Raghuwanshi, N. S., and Singh, R. (2008). "Comparative study of conventional and artificial neural network-based ET0 estimation models." Irrig. Sci., 26(6), 531-545.
    • (2008) Irrig. Sci. , vol.26 , Issue.6 , pp. 531-545
    • Kumar, M.1    Bandyopadhyay, A.2    Raghuwanshi, N.S.3    Singh, R.4
  • 25
    • 58549086361 scopus 로고    scopus 로고
    • Development and validation of GANN model for evapotranspiration estimation
    • Kumar, M., Raghuwanshi, N. S., and Singh, R. (2009). "Development and validation of GANN model for evapotranspiration estimation." J. Hydrol. Eng., 10.1061/(ASCE)1084-0699(2009)14:2(131), 131-140.
    • (2009) J. Hydrol. Eng. , pp. 131-140
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3
  • 26
    • 78650734426 scopus 로고    scopus 로고
    • Artificial neural networks approach in evapotranspiration modeling: A review
    • Kumar, M., Raghuwanshi, N. S., and Singh, R. (2011). "Artificial neural networks approach in evapotranspiration modeling: A review." Irrig. Sci., 29(1), 11-25.
    • (2011) Irrig. Sci. , vol.29 , Issue.1 , pp. 11-25
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3
  • 27
    • 0036635791 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network
    • Kumar, M., Raghuwanshi, N. S., Singh, R., Wallender, W. W., and Pruitt, W. O. (2002). "Estimating evapotranspiration using artificial neural network." J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(2002)128: 4(224), 224-233.
    • (2002) J. Irrig. Drain. Eng. , vol.4 , Issue.224 , pp. 224-233
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3    Wallender, W.W.4    Pruitt, W.O.5
  • 28
    • 84865618995 scopus 로고    scopus 로고
    • Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions
    • Laaboudi, A., Mouhouche, B., and Draoui, B. (2012). "Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions." Int. J. Biometeorol., 56(5), 831-841.
    • (2012) Int. J. Biometeorol. , vol.56 , Issue.5 , pp. 831-841
    • Laaboudi, A.1    Mouhouche, B.2    Draoui, B.3
  • 29
    • 77950520829 scopus 로고    scopus 로고
    • Ancillary data supply strategies for improvement of temperature-based ANN models
    • Marti, P., and Gasque, M. (2010). "Ancillary data supply strategies for improvement of temperature-based ANN models." Agric. Water Manage., 97(7), 939-955.
    • (2010) Agric. Water Manage. , vol.97 , Issue.7 , pp. 939-955
    • Marti, P.1    Gasque, M.2
  • 30
    • 77949290501 scopus 로고    scopus 로고
    • Generalization of ET0 ANN models through data supplanting
    • Marti, P., Royuela, A., Manzano, J., and Palau-Salvador, G. (2010). "Generalization of ET0 ANN models through data supplanting." J. Irrig. Drain. Eng., 10.1061/(ASCE)IR.1943-4774.0000152, 161-174.
    • (2010) J. Irrig. Drain. Eng. , pp. 161-174
    • Marti, P.1    Royuela, A.2    Manzano, J.3    Palau-Salvador, G.4
  • 31
    • 39649125438 scopus 로고    scopus 로고
    • Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment
    • Rahimikhoob, Ali. (2008). "Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment." Irrig. Sci., 26(3), 253-259.
    • (2008) Irrig. Sci. , vol.26 , Issue.3 , pp. 253-259
    • Rahimikhoob, A.1
  • 32
    • 77953810978 scopus 로고    scopus 로고
    • Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran
    • Rahimikhoob, Ali. (2010). "Estimation of evapotranspiration based on only air temperature data using artificial neural networks for a subtropical climate in Iran." Theor. Appl. Climatol., 101(1-2), 83-91.
    • (2010) Theor. Appl. Climatol. , vol.101 , Issue.1-2 , pp. 83-91
    • Rahimikhoob, A.1
  • 33
    • 33750282772 scopus 로고    scopus 로고
    • Development of neural units with higher-order synaptic operations and their applications to logic circuits and control problems
    • M.S. thesis, Dept. of Mechanical Engineering, Univ. of Saskatchewan, Saskatoon, Canada
    • Redlapalli, S. K. (2004). "Development of neural units with higher-order synaptic operations and their applications to logic circuits and control problems." M.S. thesis, Dept. of Mechanical Engineering, Univ. of Saskatchewan, Saskatoon, Canada.
    • (2004)
    • Redlapalli, S.K.1
  • 36
    • 77953692036 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using artificial neural network and multivariate nonlinear regression
    • Tabari, H., Marofi, S., and Sabziparvar, A. A. (2010). "Estimation of daily pan evaporation using artificial neural network and multivariate nonlinear regression." Irrig. Sci., 28(5), 399-406.
    • (2010) Irrig. Sci. , vol.28 , Issue.5 , pp. 399-406
    • Tabari, H.1    Marofi, S.2    Sabziparvar, A.A.3
  • 37
    • 0027245247 scopus 로고
    • Learning higher order correlations
    • Taylor, J. G., and Commbes, S. (1993). "Learning higher order correlations." Neural Networks, 6(3), 423-428.
    • (1993) Neural Networks , vol.6 , Issue.3 , pp. 423-428
    • Taylor, J.G.1    Commbes, S.2
  • 38
    • 0002048389 scopus 로고
    • An approach toward a rational classification of climate
    • Thornthwaite, C. W. (1948). "An approach toward a rational classification of climate." Geogr. Rev., 38(1), 55-94.
    • (1948) Geogr. Rev. , vol.38 , Issue.1 , pp. 55-94
    • Thornthwaite, C.W.1
  • 39
    • 84860871281 scopus 로고    scopus 로고
    • River flow forecasting using higher-order neural networks
    • Tiwari, M. K., Song, K. Y., Chatterjee, C., and Gupta, M. M. (2012). "River flow forecasting using higher-order neural networks." J. Hydrol. Eng., 10.1061/(ASCE)HE.1943-5584.0000486, 655-666.
    • (2012) J. Hydrol. Eng. , pp. 655-666
    • Tiwari, M.K.1    Song, K.Y.2    Chatterjee, C.3    Gupta, M.M.4
  • 40
    • 33947362356 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network and minimum climatological data
    • Zanetti, S. S., Sousa, E. F., Oliveira, V. P. S., Almeida, F. T., and Bernardo, S. (2007). "Estimating evapotranspiration using artificial neural network and minimum climatological data." J. Irrig. Drain. Eng., 10.1061/(ASCE)0733-9437(2007)133:2(83), 83-89.
    • (2007) J. Irrig. Drain. Eng. , pp. 83-89
    • Zanetti, S.S.1    Sousa, E.F.2    Oliveira, V.P.S.3    Almeida, F.T.4    Bernardo, S.5
  • 41
    • 0036129962 scopus 로고    scopus 로고
    • Neuron-adaptive higher order neural-network models for automated financial data modeling
    • Zhang, M., Xu, S., and Fulcher, J. (2002). "Neuron-adaptive higher order neural-network models for automated financial data modeling." IEEE Trans. Neural Networks, 13(1), 188-204.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 188-204
    • Zhang, M.1    Xu, S.2    Fulcher, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.