메뉴 건너뛰기




Volumn 362, Issue 1-2, 2008, Pages 1-18

On the relevance of using artificial neural networks for estimating soil moisture content

Author keywords

Conceptual models; Higher order neural networks; Modeling; Reconstructed watersheds; Soil moisture content

Indexed keywords

BACKPROPAGATION; CORRELATION METHODS; DYNAMICS; ELECTRIC FAULT LOCATION; GEOLOGIC MODELS; GROUNDWATER; MATHEMATICAL MODELS; MOISTURE; MOISTURE DETERMINATION; NETWORK PROTOCOLS; PEAT; PERMITTIVITY; SENSOR NETWORKS; SILICA; SILICATE MINERALS; SOIL MOISTURE; SOILS; SURFACE CHEMISTRY; SURFACE TENSION; THERMODYNAMIC PROPERTIES;

EID: 54049108802     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2008.08.012     Document Type: Article
Times cited : (110)

References (39)
  • 1
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • 10.1139/S03-07
    • Anctil F., and Tape D.G. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. (2004) S121-S128 10.1139/S03-07
    • (2004) J. Environ. Eng. Sci.
    • Anctil, F.1    Tape, D.G.2
  • 2
    • 0034174280 scopus 로고    scopus 로고
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5 (2), 115-123.
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5 (2), 115-123.
  • 3
    • 54049137722 scopus 로고    scopus 로고
    • Barbour, S.L., Boese, C., Stolte, B., 2001. Water balance for reclamation covers on oilsands mining overburden piles. In: Proceedings of the 54th Canadian Geotechnical Conference, Calgary, Alta., pp. 16-19 September 2001. Canadian Geotechnical Society, Alliston, Ont. pp. 313-319.
    • Barbour, S.L., Boese, C., Stolte, B., 2001. Water balance for reclamation covers on oilsands mining overburden piles. In: Proceedings of the 54th Canadian Geotechnical Conference, Calgary, Alta., pp. 16-19 September 2001. Canadian Geotechnical Society, Alliston, Ont. pp. 313-319.
  • 4
    • 54049146007 scopus 로고    scopus 로고
    • Boese, K., 2003. The Design and Installation of a Field Instrumentation Program for the Evaluation of Soil-atmosphere Water Fluxes in a Vegetated Cover Over Saline/Sodic Shale Overburden, M.Sc. Thesis, University of Saskatchewan, Saskatoon, Sask.
    • Boese, K., 2003. The Design and Installation of a Field Instrumentation Program for the Evaluation of Soil-atmosphere Water Fluxes in a Vegetated Cover Over Saline/Sodic Shale Overburden, M.Sc. Thesis, University of Saskatchewan, Saskatoon, Sask.
  • 5
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - background and methodology
    • Bowden G.J., Dandy G.C., and Maier H.R. Input determination for neural network models in water resources applications. Part 1 - background and methodology. J. Hydrol. 301 (2005) 75-92
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 6
    • 54049092911 scopus 로고    scopus 로고
    • An evaluation of methods for the selection of inputs for an artificial network based river model
    • Recknagel F. (Ed), Springer, Berlin, Heidelberg
    • Bowden G.J., Dandy G.C., and Maier H.R. An evaluation of methods for the selection of inputs for an artificial network based river model. In: Recknagel F. (Ed). Ecological Informatics (2006), Springer, Berlin, Heidelberg 275-292
    • (2006) Ecological Informatics , pp. 275-292
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson C.W., and Wilby R. An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J. 43 (1998) 47-66
    • (1998) Hydrol. Sci. J. , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 9
    • 33750374147 scopus 로고    scopus 로고
    • Multicriterion decision analysis approach to assess the utility of watershed modeling for management decisions
    • 10.1029/2005WR00426
    • Elshorbagy A. Multicriterion decision analysis approach to assess the utility of watershed modeling for management decisions. Water Resour. Res. 42 (2006) W09407 10.1029/2005WR00426
    • (2006) Water Resour. Res. , vol.42
    • Elshorbagy, A.1
  • 10
    • 34548161904 scopus 로고    scopus 로고
    • Probabilistic approach for design and hydrologic performance assessment of reconstructed watersheds
    • Elshorbagy A., and Barbour L. Probabilistic approach for design and hydrologic performance assessment of reconstructed watersheds. J. Geotech. Geoenv. Eng. ASCE 133 9 (2007) 1110-1118
    • (2007) J. Geotech. Geoenv. Eng. ASCE , vol.133 , Issue.9 , pp. 1110-1118
    • Elshorbagy, A.1    Barbour, L.2
  • 11
    • 34249812391 scopus 로고    scopus 로고
    • Simulation of the hydrological processes on reconstructed watersheds using system dynamics
    • Elshorbagy A., Jutla A., and Kells J. Simulation of the hydrological processes on reconstructed watersheds using system dynamics. Hydrol. Sci. J. 52 (2007) 538-562
    • (2007) Hydrol. Sci. J. , vol.52 , pp. 538-562
    • Elshorbagy, A.1    Jutla, A.2    Kells, J.3
  • 12
    • 0031947959 scopus 로고    scopus 로고
    • A soil moisture-rainfall feedback mechanism, 1: Theory and observations
    • Eltahir E.A.B. A soil moisture-rainfall feedback mechanism, 1: Theory and observations. Water Resour. Res. 34 4 (1998) 765-776
    • (1998) Water Resour. Res. , vol.34 , Issue.4 , pp. 765-776
    • Eltahir, E.A.B.1
  • 13
    • 0028403705 scopus 로고
    • Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations
    • Entekhabi D., Nakamura H., and Njoku E.G. Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Trans. Geosci. Remote Sensing 32 2 (1994) 438-448
    • (1994) IEEE Trans. Geosci. Remote Sensing , vol.32 , Issue.2 , pp. 438-448
    • Entekhabi, D.1    Nakamura, H.2    Njoku, E.G.3
  • 14
    • 0030251407 scopus 로고    scopus 로고
    • Mutual interaction of soil moisture state and atmospheric processes
    • Entekhabi D., Rodriguez-Iturbe I., and Castelli F. Mutual interaction of soil moisture state and atmospheric processes. J. Hydrol. 184 (1996) 3-17
    • (1996) J. Hydrol. , vol.184 , pp. 3-17
    • Entekhabi, D.1    Rodriguez-Iturbe, I.2    Castelli, F.3
  • 15
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French M.N., Krajewski W.F., and Cuykendall R.R. Rainfall forecasting in space and time using a neural network. J. Hydrol. 137 (1992) 1-31
    • (1992) J. Hydrol. , vol.137 , pp. 1-31
    • French, M.N.1    Krajewski, W.F.2    Cuykendall, R.R.3
  • 16
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam M.R., Watanabe K., and Saegusa H. Runoff analysis in humid forest catchment with artificial neural network. J. Hydrol. 235 (2000) 117-136
    • (2000) J. Hydrol. , vol.235 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 17
    • 0028669316 scopus 로고
    • Climatic variability of soil water in the American midwest: 1, Spatio-temporal analysis
    • Georgakakos K.P., and Bae D.H. Climatic variability of soil water in the American midwest: 1, Spatio-temporal analysis. J. Hydrol. 162 (1994) 379-390
    • (1994) J. Hydrol. , vol.162 , pp. 379-390
    • Georgakakos, K.P.1    Bae, D.H.2
  • 18
    • 0025572086 scopus 로고
    • On improved operational hydrologic forecasting: results from a WMO real-time forecasting experiment
    • Georgakakos K.P., and Smith G.F. On improved operational hydrologic forecasting: results from a WMO real-time forecasting experiment. J. Hydrol. 114 (1990) 17-45
    • (1990) J. Hydrol. , vol.114 , pp. 17-45
    • Georgakakos, K.P.1    Smith, G.F.2
  • 19
    • 0029413418 scopus 로고
    • Hydroclimatology of continental watersheds, temporal analyses
    • Georgakakos K.P., Bae D.H., and Cayan D.R. Hydroclimatology of continental watersheds, temporal analyses. Water Resour. Res. 31 3 (1995) 655-675
    • (1995) Water Resour. Res. , vol.31 , Issue.3 , pp. 655-675
    • Georgakakos, K.P.1    Bae, D.H.2    Cayan, D.R.3
  • 20
    • 0001939331 scopus 로고
    • Distributed parameter hydrologic modelling using vector elevation data: Thales and TAPES-C
    • Singh V.P. (Ed), Highlands Ranch, Colorado
    • Grayson R.B., Bloschl G., and Moore I.D. Distributed parameter hydrologic modelling using vector elevation data: Thales and TAPES-C. In: Singh V.P. (Ed). Computer Models of Watershed Hydrology. Water Resources Pub (1995), Highlands Ranch, Colorado 669-695
    • (1995) Computer Models of Watershed Hydrology. Water Resources Pub , pp. 669-695
    • Grayson, R.B.1    Bloschl, G.2    Moore, I.D.3
  • 22
    • 54049111102 scopus 로고    scopus 로고
    • Haigh, M.J., 2000. The Aims of Land Reclamation, Land Reconstruction and Management, vol. 1. A.A. Balkema Publishers, Rotterdam, The Netherlands, pp. 1-20.
    • Haigh, M.J., 2000. The Aims of Land Reclamation, Land Reconstruction and Management, vol. 1. A.A. Balkema Publishers, Rotterdam, The Netherlands, pp. 1-20.
  • 24
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.L., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31 10 (1995) 2517-2530
    • (1995) Water Resour. Res. , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 26
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T.W., and Valdés J.B. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J. Hydrol. Eng. 8 6 (2003) 319-328
    • (2003) J. Hydrol. Eng. , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdés, J.B.2
  • 27
    • 0019227948 scopus 로고
    • Real time forecasting with a conceptual hydrologic model, 2. Applications and results
    • Kitanidis P.K., and Bras R.L. Real time forecasting with a conceptual hydrologic model, 2. Applications and results. Water Resour. Res. 16 6 (1980) 1034-1044
    • (1980) Water Resour. Res. , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 28
    • 0020969496 scopus 로고
    • Improved parameter inference in catchment models; 2. Combining different kinds of hydrologic data and testing their compatibility
    • Kuczera G. Improved parameter inference in catchment models; 2. Combining different kinds of hydrologic data and testing their compatibility. Water Resour. Res. 19 5 (1983) 1163-1172
    • (1983) Water Resour. Res. , vol.19 , Issue.5 , pp. 1163-1172
    • Kuczera, G.1
  • 29
    • 33750299461 scopus 로고    scopus 로고
    • Soil moisture estimation in a semiarid watershed using RADARSAT-1 satellite imagery and genetic programming
    • 10.1029/2005WR00403
    • Makkeasorn A., Chang N.B., Beaman M., Wyatt C., and Slater C. Soil moisture estimation in a semiarid watershed using RADARSAT-1 satellite imagery and genetic programming. Water Resour. Res. 42 (2006) W09401 10.1029/2005WR00403
    • (2006) Water Resour. Res. , vol.42
    • Makkeasorn, A.1    Chang, N.B.2    Beaman, M.3    Wyatt, C.4    Slater, C.5
  • 30
    • 33845600932 scopus 로고    scopus 로고
    • Cluster-based hydrologic prediction using genetic algorithm-trained neural networks
    • Parasuraman K., and Elshorbagy A. Cluster-based hydrologic prediction using genetic algorithm-trained neural networks. J. Hydrol. Eng., ASCE 12 1 (2007) 52-62
    • (2007) J. Hydrol. Eng., ASCE , vol.12 , Issue.1 , pp. 52-62
    • Parasuraman, K.1    Elshorbagy, A.2
  • 31
    • 33745435792 scopus 로고    scopus 로고
    • Spiking-modular neural networks: A neural network modeling approach for hydrological processes
    • 10.1029/2005WR00431
    • Parasuraman K., Elshorbagy A., and Carey S. Spiking-modular neural networks: A neural network modeling approach for hydrological processes. Water Resour. Res. 42 (2006) W05412 10.1029/2005WR00431
    • (2006) Water Resour. Res. , vol.42
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.3
  • 32
    • 54049087857 scopus 로고    scopus 로고
    • Redlapalli, S.K., 2004. Development of Neural Units with Higher-order Synaptic Weights Operations and Their Applications to Logic Circuits and Control Problems, M.Sc. Thesis, University of Saskatchewan, Saskatoon, SK, Canada.
    • Redlapalli, S.K., 2004. Development of Neural Units with Higher-order Synaptic Weights Operations and Their Applications to Logic Circuits and Control Problems, M.Sc. Thesis, University of Saskatchewan, Saskatoon, SK, Canada.
  • 33
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • Shamseldin A.Y. Application of a neural network technique to rainfall-runoff modeling. J. Hydrol. 199 (1997) 272-294
    • (1997) J. Hydrol. , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 34
    • 0027245247 scopus 로고
    • Learning higher order correlations
    • Taylor J.G., and Commbes S. Learning higher order correlations. Neural Networks 6 3 (1993) 423-428
    • (1993) Neural Networks , vol.6 , Issue.3 , pp. 423-428
    • Taylor, J.G.1    Commbes, S.2
  • 35
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah K., and Deo M.C. River stage forecasting using artificial neural networks. J. Hydrol. Eng. 3 1 (1998) 26-32
    • (1998) J. Hydrol. Eng. , vol.3 , Issue.1 , pp. 26-32
    • Thirumalaiah, K.1    Deo, M.C.2
  • 36
    • 0026493570 scopus 로고
    • A land-surface hydrology parameterization with subgrid variability for general circulation models
    • Wood E.F., Lettenmaier D.P., and Zartarian V.G. A land-surface hydrology parameterization with subgrid variability for general circulation models. J. Geophys. Res. 97 (1992) 2717-2728
    • (1992) J. Geophys. Res. , vol.97 , pp. 2717-2728
    • Wood, E.F.1    Lettenmaier, D.P.2    Zartarian, V.G.3
  • 37
    • 0037232815 scopus 로고    scopus 로고
    • Importance of soil moisture measurements for inferring parameters in hydrologic models of low-yielding ephemeral catchments
    • Wooldridge S.A., Kalma J.D., and Walker J.P. Importance of soil moisture measurements for inferring parameters in hydrologic models of low-yielding ephemeral catchments. Environ. Model. Software 18 1 (2003) 35-48
    • (2003) Environ. Model. Software , vol.18 , Issue.1 , pp. 35-48
    • Wooldridge, S.A.1    Kalma, J.D.2    Walker, J.P.3
  • 38
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B., and Govindaraju S. Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour. Res. 36 3 (2000) 753-762
    • (2000) Water Resour. Res. , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, S.2
  • 39
    • 0343052623 scopus 로고    scopus 로고
    • Zhang, M., Fulcher, J., Scofield, R.A., 1997. Rainfall Estimation Using Artificial Neural Network Group Neurocomputing, vol. 16. pp. 97-115.
    • Zhang, M., Fulcher, J., Scofield, R.A., 1997. Rainfall Estimation Using Artificial Neural Network Group Neurocomputing, vol. 16. pp. 97-115.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.