메뉴 건너뛰기




Volumn 28, Issue 5, 2010, Pages 399-406

Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression

Author keywords

[No Author keywords available]

Indexed keywords

AIR TEMPERATURE; ARTIFICIAL NEURAL NETWORK; BEST ESTIMATES; DAILY PAN EVAPORATION; DELTA-BAR-DELTA; HYDROLOGICAL CYCLES; INPUT PARAMETER; KEY ELEMENTS; METEOROLOGICAL VARIABLES; MODEL PERFORMANCE; MULTIVARIATE NON-LINEAR REGRESSION; NATURAL SURFACE; PAN EVAPORATION; RELATIVE HUMIDITIES; SEMI-ARID REGION; SIGMOID ACTIVATION FUNCTION; WIND SPEED;

EID: 77953692036     PISSN: 03427188     EISSN: 14321319     Source Type: Journal    
DOI: 10.1007/s00271-009-0201-0     Document Type: Article
Times cited : (135)

References (29)
  • 1
    • 0034163592 scopus 로고    scopus 로고
    • Estimating daily pan evaporation with artificial neural networks
    • Bruton JM, Mcclendon RW, Hoogenboom G (2000) Estimating daily pan evaporation with artificial neural networks. Trans ASAE 43(2): 491-496.
    • (2000) Trans ASAE , vol.43 , Issue.2 , pp. 491-496
    • Bruton, J.M.1    Mcclendon, R.W.2    Hoogenboom, G.3
  • 2
    • 0036891551 scopus 로고    scopus 로고
    • A new feature extraction technique for on-line recognition of handwritten alphanumeric characters
    • Chakraborty B, Chakraborty G (2002) A new feature extraction technique for on-line recognition of handwritten alphanumeric characters. Inform Sci 148: 55-70.
    • (2002) Inform Sci , vol.148 , pp. 55-70
    • Chakraborty, B.1    Chakraborty, G.2
  • 3
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL (2006) Flood estimation at ungauged sites using artificial neural networks. J Hydrol 319: 391-409.
    • (2006) J Hydrol , vol.319 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 4
    • 79952998882 scopus 로고    scopus 로고
    • Artificial neural network based modeling of evaporation losses in reservoirs
    • Deswal S, Pal M (2008) Artificial neural network based modeling of evaporation losses in reservoirs. Proc World Acad Sci Eng Technol 29: 279-283.
    • (2008) Proc World Acad Sci Eng Technol , vol.29 , pp. 279-283
    • Deswal, S.1    Pal, M.2
  • 5
    • 77953703843 scopus 로고    scopus 로고
    • Doorenbos J, Pruitt WO (1977) Guidelines for prediction of crop water requirements. FAO Irrig Drain. Paper no. 24, Rome.
  • 6
    • 67649515826 scopus 로고    scopus 로고
    • Estimation of monthly pan evaporation using artificial neural networks and support vector machines
    • Eslamian SS, Gohari SA, Biabanaki M, Malekian R (2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. J Appl Sci 8(19): 3497-3502.
    • (2008) J Appl Sci , vol.8 , Issue.19 , pp. 3497-3502
    • Eslamian, S.S.1    Gohari, S.A.2    Biabanaki, M.3    Malekian, R.4
  • 7
    • 37249018073 scopus 로고    scopus 로고
    • Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region
    • Gundekar HG, Khodke UM, Sarkar S (2008) Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region. Irrig Sci 26: 169-175.
    • (2008) Irrig Sci , vol.26 , pp. 169-175
    • Gundekar, H.G.1    Khodke, U.M.2    Sarkar, S.3
  • 8
    • 56349165252 scopus 로고    scopus 로고
    • Prediction of dynamic hysteresis loops of nano-crystalline cores
    • Haciismailoglu MC, Kucuk I, Derebasi N (2009) Prediction of dynamic hysteresis loops of nano-crystalline cores. Expert Syst Appl 36: 2225-2227.
    • (2009) Expert Syst Appl , vol.36 , pp. 2225-2227
    • Haciismailoglu, M.C.1    Kucuk, I.2    Derebasi, N.3
  • 9
    • 71449123703 scopus 로고    scopus 로고
    • IRIMO, Tehran, Iran: Data Processing Center
    • IRIMO (2007) Iranian meteorological office. Data Processing Center, Tehran, Iran.
    • (2007) Iranian Meteorological Office
  • 10
    • 40149105117 scopus 로고    scopus 로고
    • QSAR study of heparanase inhibitors activity using artificial networks and LevenbergeMarquardt algorithm
    • Jalali-Heravi M, Asadollahi-Baboli M, Shahbazikhah P (2008) QSAR study of heparanase inhibitors activity using artificial networks and LevenbergeMarquardt algorithm. Eur J Med Chem 43: 548-556.
    • (2008) Eur J Med Chem , vol.43 , pp. 548-556
    • Jalali-Heravi, M.1    Asadollahi-Baboli, M.2    Shahbazikhah, P.3
  • 11
    • 77953692101 scopus 로고    scopus 로고
    • Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practice no. 70, New York, 332 pp.
  • 12
    • 61849143861 scopus 로고    scopus 로고
    • Artificial neural networks to predict daylight illuminance in office buildings
    • Kazanasmaz T, Gunaydin M, Binol S (2009) Artificial neural networks to predict daylight illuminance in office buildings. Build Environ 44: 1751-1757.
    • (2009) Build Environ , vol.44 , pp. 1751-1757
    • Kazanasmaz, T.1    Gunaydin, M.2    Binol, S.3
  • 13
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • Keskin ME, Terzi O (2006) Artificial neural network models of daily pan evaporation. J Hydrol Eng 11(1): 65-70.
    • (2006) J Hydrol Eng , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, O.2
  • 14
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351: 299-317.
    • (2008) J Hydrol , vol.351 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 15
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using a neuro-fuzzy computing technique
    • Kisi O (2006) Daily pan evaporation modeling using a neuro-fuzzy computing technique. J Hydrol 329: 636-646.
    • (2006) J Hydrol , vol.329 , pp. 636-646
    • Kisi, O.1
  • 17
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P, Kiely G, Corcoran G (2008) Structural optimisation and input selection of an artificial neural network for river level prediction. J Hydrol 355: 192-201.
    • (2008) J Hydrol , vol.355 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Corcoran, G.3
  • 20
    • 69049087742 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using artificial neural network in a semi-arid environment
    • Rahimi Khoob A (2009) Estimating daily pan evaporation using artificial neural network in a semi-arid environment. Theor Appl Climatol 98: 101-105.
    • (2009) Theor Appl Climatol , vol.98 , pp. 101-105
    • Rahimi Khoob, A.1
  • 21
    • 16244386248 scopus 로고    scopus 로고
    • A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models
    • Razi MA, Athappilly K (2005) A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models. Expert Syst Appl 29: 65-74.
    • (2005) Expert Syst Appl , vol.29 , pp. 65-74
    • Razi, M.A.1    Athappilly, K.2
  • 22
    • 77952241900 scopus 로고    scopus 로고
    • Sabziparvar AA, Tabari H, Aeini A, Ghafouri M (2009) Evaluation of class A pan coefficient models for estimation of reference crop evapotranspiration in cold-semi arid and warm arid climates, Water Resour Manage. doi: 10. 1007/s11269-009-9478-2.
  • 23
    • 28544450051 scopus 로고    scopus 로고
    • Predicting box-office success of motion pictures with neural networks
    • Sharda R, Delen D (2006) Predicting box-office success of motion pictures with neural networks. Expert Syst Appl 30: 243-254.
    • (2006) Expert Syst Appl , vol.30 , pp. 243-254
    • Sharda, R.1    Delen, D.2
  • 24
    • 0036843660 scopus 로고    scopus 로고
    • Modeling evaporation using an artificial neural network algorithm
    • Sudheer KP, Gosain AK, Rangan D, Saheb SM (2002) Modeling evaporation using an artificial neural network algorithm. Hydrol Process 16: 3189-3202.
    • (2002) Hydrol Process , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.3    Saheb, S.M.4
  • 25
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climate data using neural computing technique
    • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climate data using neural computing technique. J Irrg Drain Eng 129(3): 214-218.
    • (2003) J Irrg Drain Eng , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 26
    • 77953707033 scopus 로고    scopus 로고
    • Tabari H, Aieni A, Sabziparvar AA, Marofi S (2008) Comparison of non-linear regression and artificial neural network for estimation of daily Class A pan evaporation in a semi-arid region. 3rd Iran water resources management conference, Tabriz University, October 14-16, Tabriz, Iran (in Persian).
  • 27
    • 77953696550 scopus 로고    scopus 로고
    • Tabari H, Shadmani M, Sabziparvar AA, Marofi S (2009) Comparison of non-linear regression and artificial neural network and empirical methods in estimating daily Class A pan evaporation in a semi-arid region. 1st International conference of water crisis, Zabol University, 10-12 March, Zabol, Iran (in Persian with English abstract).
  • 28
    • 34249276350 scopus 로고    scopus 로고
    • Modelling of daily pan evaporation
    • Terzi O, Keskin ME (2005) Modelling of daily pan evaporation. J Appl Sci 5(2): 368-372.
    • (2005) J Appl Sci , vol.5 , Issue.2 , pp. 368-372
    • Terzi, O.1    Keskin, M.E.2
  • 29
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting of reference evapotranspiration by Artificial Neural Network
    • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by Artificial Neural Network. J Irrg Drain Eng 129(6): 454-457.
    • (2003) J Irrg Drain Eng , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.