메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1-722

Static and dynamic neural networks: From fundamentals to advanced theory

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COGNITIVE SYSTEMS;

EID: 52249122452     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/0471427950     Document Type: Book
Times cited : (281)

References (323)
  • 1
    • 0036541667 scopus 로고    scopus 로고
    • Sliding Mode Neural Network Inference Fuzzy Logic Control for Active Suspension Systems
    • Al-Holou, N., Lahdhiri, T., Sung, J. D., Weaver, J., and Al-Abbas, F. (2002). “Sliding Mode Neural Network Inference Fuzzy Logic Control for Active Suspension Systems,” IEEE Trans. Fuzzy Syst., Vol. 10, No. 2, pp. 234-246.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 234-246
    • Al-Holou, N.1    Lahdhiri, T.2    Sung, J.D.3    Weaver, J.4    Al-Abbas, F.5
  • 2
    • 0004690872 scopus 로고
    • Information Capacity of the Hopfield Model
    • Abu-Mostafa, Y. and Jacques, J. St. (1985). “Information Capacity of the Hopfield Model,” IEEE Trans. Inf. Theory, Vol. 7, pp. 1-11.
    • (1985) IEEE Trans. Inf. Theory , vol.7 , pp. 1-11
    • Abu-Mostafa, Y.1    Jacques, J.S.2
  • 3
    • 0034186912 scopus 로고    scopus 로고
    • Dynamic Self Organizing Maps with Controlled Growth for Knowledge Discovery
    • Alahakoon, L. D., Halgamuge, S. K. and Srinivasan, B. (2000). “Dynamic Self Organizing Maps with Controlled Growth for Knowledge Discovery,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 601-614.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 601-614
    • Alahakoon, L.D.1    Halgamuge, S.K.2    Srinivasan, B.3
  • 4
    • 84971187274 scopus 로고
    • Competition and Cooperation in Neural Nets
    • Springer-Verlag, New York
    • Amari, S. and Arbib, M. A. (eds.) (1982). “Competition and Cooperation in Neural Nets,” Lecture Notes in Biomathematics, Springer-Verlag, New York, Vol. 45.
    • (1982) Lecture Notes in Biomathematics , vol.45
    • Amari, S.1    Arbib, M.A.2
  • 8
    • 0034187787 scopus 로고    scopus 로고
    • Extension of Dynamic Link Matching by Introducing Local Linear Maps
    • Aonishi, T. and Kurata, K. (2000). “Extension of Dynamic Link Matching by Introducing Local Linear Maps,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 817-822.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 817-822
    • Aonishi, T.1    Kurata, K.2
  • 10
    • 0035505589 scopus 로고    scopus 로고
    • Training of a Feedforward Multiple-Valued Neural Network by Error Backpropagation with a Multilevel Threshold Function
    • Asari, V. K. (2001). “Training of a Feedforward Multiple-Valued Neural Network by Error Backpropagation with a Multilevel Threshold Function,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1519-1520.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1519-1520
    • Asari, V.K.1
  • 11
    • 0034186923 scopus 로고    scopus 로고
    • New Results on Recurrent Network Training: Unifying the Algorithms and Accelerating Convergence
    • Atiya, A. and Parlos, A. (2000). “New Results on Recurrent Network Training: Unifying the Algorithms and Accelerating Convergence,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 697-709.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 697-709
    • Atiya, A.1    Parlos, A.2
  • 12
    • 0026107672 scopus 로고
    • On a Class of Nonsymmetrical Neural Networks with Application to ADC
    • Feb
    • Avitabile, G., Forti, M., Manetti, S., and Marini, M. (1992). “On a Class of Nonsymmetrical Neural Networks with Application to ADC,” IEEE Trans. Circuits Syst., Vol. 38, No. 2, (Feb.), pp. 202-209.
    • (1992) IEEE Trans. Circuits Syst. , vol.38 , Issue.2 , pp. 202-209
    • Avitabile, G.1    Forti, M.2    Manetti, S.3    Marini, M.4
  • 13
    • 0034187786 scopus 로고    scopus 로고
    • Underwater Target Classification Using Wavelet Packets and Neural Networks
    • Azimi-Sadjadi, M. R., Yao, D., Huang, Q., and Dobeck, G. J. (2000). “Underwater Target Classification Using Wavelet Packets and Neural Networks,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 784-794.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 784-794
    • Azimi-Sadjadi, M.R.1    Yao, D.2    Huang, Q.3    Dobeck, G.J.4
  • 14
    • 33749980446 scopus 로고    scopus 로고
    • Operational Decision Support through Confidence Limits Analysis and Pattern Classification
    • Mexico, Feb
    • Bargiela, A. (2000). “Operational Decision Support through Confidence Limits Analysis and Pattern Classification,” Plenary Lecture, 5th Int. Conf. Computer Simulation and AI, Mexico, Feb.
    • (2000) Plenary Lecture, 5th Int. Conf. Computer Simulation and AI
    • Bargiela, A.1
  • 15
    • 0026460513 scopus 로고
    • On a Class of Efficient Learning Algorithms for Neural Networks
    • Barmann, F. and Biegler-Konig, F. (1992). “On a Class of Efficient Learning Algorithms for Neural Networks,” Neural Networks, Vol. 5, pp. 139-144.
    • (1992) Neural Networks , vol.5 , pp. 139-144
    • Barmann, F.1    Biegler-Konig, F.2
  • 16
    • 0001024110 scopus 로고
    • First and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Method
    • Battiti, R. (1992). “First and Second-Order Methods for Learning: Between Steepest Descent and Newton’s Method,” Neural Comput., Vol. 4, pp. 141-166.
    • (1992) Neural Comput. , vol.4 , pp. 141-166
    • Battiti, R.1
  • 17
    • 0000052978 scopus 로고
    • BFGS Optimization for Faster and Automated Supervised Learning
    • Kluwer, Dordrecht, Germany
    • Battiti, R. and Masulli F. (1990). “BFGS Optimization for Faster and Automated Supervised Learning,” Pioc.INCC 90 Paris, Int. Neural Network Conf., pp. 757-760, Kluwer, Dordrecht, Germany.
    • (1990) Pioc.INCC 90 Paris, Int. Neural Network Conf. , pp. 757-760
    • Battiti, R.1    Masulli, F.2
  • 18
    • 0000652465 scopus 로고
    • Local and Fuzzy Logics
    • Dunn, J. M. and Epstein, G. (eds.), Reidel, Dordrecht, Netherlands
    • Bellman, R. E. and Zadeh, L. A. (1977). “Local and Fuzzy Logics,” in Modern Uses of Multiple-Valued Logic, Dunn, J. M. and Epstein, G. (eds.), Reidel, Dordrecht, Netherlands, pp. 103-165.
    • (1977) Modern Uses of Multiple-Valued Logic , pp. 103-165
    • Bellman, R.E.1    Zadeh, L.A.2
  • 19
    • 0034187310 scopus 로고    scopus 로고
    • Taking on the Curse of Dimensionality in Joint Distribution Using Neural Networks
    • Bengio, S. and Bengio, Y. (2000). “Taking on the Curse of Dimensionality in Joint Distribution Using Neural Networks,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 550-557.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 550-557
    • Bengio, S.1    Bengio, Y.2
  • 20
    • 0035440305 scopus 로고    scopus 로고
    • Theoretical Properties of Recursive Networks with Linear Neurons
    • Bianchini, M., Gori, M., and Scarselli, F. (2001a). “Theoretical Properties of Recursive Networks with Linear Neurons,” IEEE Trans. Neural Networks, Vol. 12, No. 5, pp. 953-967.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.5 , pp. 953-967
    • Bianchini, M.1    Gori, M.2    Scarselli, F.3
  • 21
    • 0035506029 scopus 로고    scopus 로고
    • Processing Directed Acyclic Graphs with Recursive Neural Networks
    • Bianchini, M., Gori, M., and Scarselli, F. (2001b). “Processing Directed Acyclic Graphs with Recursive Neural Networks,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1464-1470.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1464-1470
    • Bianchini, M.1    Gori, M.2    Scarselli, F.3
  • 22
    • 0025747581 scopus 로고
    • Approximation Theory and Feedforward Networks
    • Blum, E. K. and Li, L. K. (1991). “Approximation Theory and Feedforward Networks,” Neural Networks, Vol. 4, No. 4, pp. 511-515.
    • (1991) Neural Networks , vol.4 , Issue.4 , pp. 511-515
    • Blum, E.K.1    Li, L.K.2
  • 23
    • 0001239627 scopus 로고    scopus 로고
    • Stochastic Neural Computation I and II
    • Sept
    • Brown, B. D. and Card, H. C. (2001). “Stochastic Neural Computation I and II,” IEEE Trans. Comput., Vol. 59 (Sept.).
    • (2001) IEEE Trans. Comput. , vol.59
    • Brown, B.D.1    Card, H.C.2
  • 24
    • 0025503486 scopus 로고
    • On the Convergence Properties of the Hopfield Model
    • Brack, J. (1990b). “On the Convergence Properties of the Hopfield Model,” Proc. IEEE, Vol. 78, No. 10, pp. 1579-1585.
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1579-1585
    • Brack, J.1
  • 26
    • 0027696324 scopus 로고
    • Numerical Relationships between Neural Networks, Continuous Functions and Fuzzy Systems
    • Buckley, J. J. and Hayashi, Y. (1993a). “Numerical Relationships between Neural Networks, Continuous Functions and Fuzzy Systems,” Fuzzy Sets Syst., Vol. 60, pp. 1-8.
    • (1993) Fuzzy Sets Syst. , vol.60 , pp. 1-8
    • Buckley, J.J.1    Hayashi, Y.2
  • 27
    • 0027875503 scopus 로고
    • Hybrid Neural Nets can be Fuzzy Controllers and Fuzzy Expert Systems
    • Buckley, J. J. and Hayashi, Y. (1993b). “Hybrid Neural Nets can be Fuzzy Controllers and Fuzzy Expert Systems,” Fuzzy Sets Syst, Vol. 60, pp. 135-142.
    • (1993) Fuzzy Sets Syst , vol.60 , pp. 135-142
    • Buckley, J.J.1    Hayashi, Y.2
  • 28
    • 0012076955 scopus 로고
    • Can Fuzzy Neural Nets Approximate Continuous Fuzzy Functions
    • Buckley, J. J. and Hayashi, Y. (1993c). “Can Fuzzy Neural Nets Approximate Continuous Fuzzy Functions,” Fuzzy Sets Syst., Vol. 61, pp. 43-52.
    • (1993) Fuzzy Sets Syst. , vol.61 , pp. 43-52
    • Buckley, J.J.1    Hayashi, Y.2
  • 29
    • 38149147738 scopus 로고
    • Fuzzy Genetic Algorithm and Applications
    • Buckley, J. J. and Hayashi, Y. (1994a). “Fuzzy Genetic Algorithm and Applications” Fuzzy Sets Syst., Vol. 61, pp. 129-136.
    • (1994) Fuzzy Sets Syst. , vol.61 , pp. 129-136
    • Buckley, J.J.1    Hayashi, Y.2
  • 30
    • 0012045480 scopus 로고
    • Fuzzy Neural Networks: A Survey
    • Buckley, J. J. and Hayashi, Y. (1994b). “Fuzzy Neural Networks: A Survey,” Fuzzy Sets Syst., Vol. 66, No. 1, pp. 1-13.
    • (1994) Fuzzy Sets Syst. , vol.66 , Issue.1 , pp. 1-13
    • Buckley, J.J.1    Hayashi, Y.2
  • 31
    • 0028424954 scopus 로고
    • Computing Second Derivatives in Feed-forward Networks: A Review
    • Buntine, W. and Weigend, A. S. (1994). “Computing Second Derivatives in Feed-forward Networks: A Review,” IEEE Trans. Neural Networks, Vol. 5, No. 3, pp. 480-88.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.3 , pp. 480-488
    • Buntine, W.1    Weigend, A.S.2
  • 32
    • 0025754995 scopus 로고
    • A Norm Selection Criterion for the Generalized Delta Rule
    • Burrascano, P. (1991). “A Norm Selection Criterion for the Generalized Delta Rule,” IEEE Trans. Neural Networks, Vol. 2, No. 1, pp. 125-130.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.1 , pp. 125-130
    • Burrascano, P.1
  • 33
    • 0034186968 scopus 로고    scopus 로고
    • A Constructive Algorithm to Solve ‘Convex Recursive Deletion’ (CoRD) Classification Problems via Two-Layer Perceptron Networks
    • Cabrelli, C, Molter, U., and Shonkwiler, R. (2000). “A Constructive Algorithm to Solve ‘Convex Recursive Deletion’ (CoRD) Classification Problems via Two-Layer Perceptron Networks,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 811-816.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 811-816
    • Cabrelli, C.1    Molter, U.2    Shonkwiler, R.3
  • 34
    • 0035507111 scopus 로고    scopus 로고
    • Compound Binomial Processes in Neural Integration
    • Card, H. C. (2001). “Compound Binomial Processes in Neural Integration,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1505-1512.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1505-1512
    • Card, H.C.1
  • 36
    • 0034187390 scopus 로고    scopus 로고
    • SEPARATE: A Machine Learning Method Based on Semi-Global Partitions
    • Castro, J. L., Delgado, M., and Mantas, C. J. (2000). “SEPARATE: A Machine Learning Method Based on Semi-Global Partitions,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 710-720.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 710-720
    • Castro, J.L.1    Delgado, M.2    Mantas, C.J.3
  • 37
    • 0000473247 scopus 로고
    • A Back-propagation Algorithm with Optimal Use of Hidden Units
    • Touretzky, D. S. (ed.), Morgan Kaufmann, San Jose, CA
    • Chauvin, Y. (1989). “A Back-propagation Algorithm with Optimal Use of Hidden Units,” in Advances in Neural Information Processing Systems, Touretzky, D. S. (ed.), Vol. 1, Morgan Kaufmann, San Jose, CA.
    • (1989) Advances in Neural Information Processing Systems , vol.1
    • Chauvin, Y.1
  • 38
    • 0035441288 scopus 로고    scopus 로고
    • Perceiving Geometric Patterns: From Spirals to Inside-Outside Relations by a Neural Oscillator Network
    • Chen, K. and Wang, D. L. (2001). “Perceiving Geometric Patterns: From Spirals to Inside-Outside Relations by a Neural Oscillator Network,” IEEE Trans. Neural Networks, Vol. 12. pp. 1084-1102.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 1084-1102
    • Chen, K.1    Wang, D.L.2
  • 39
    • 0026116468 scopus 로고
    • Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
    • Feb
    • Chen, S., Cowan, C. F. N., and Grant, P. M. (1991). “Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks,” IEEE Trans. Neural Networks, Vol. 2 (Feb.), pp. 302-309.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 41
    • 0035506174 scopus 로고    scopus 로고
    • The Relevance Vector Machine Technique for Channel Equalization Application
    • Chen, S., Gunn, S. R., and Harris, C. J. (2001a). “The Relevance Vector Machine Technique for Channel Equalization Application,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1529-1531.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1529-1531
    • Chen, S.1    Gunn, S.R.2    Harris, C.J.3
  • 42
    • 0035329687 scopus 로고    scopus 로고
    • Support Vector Machine Multiuser Receiver for DS-CDMA Signals in Multipafh Channels
    • Chen, S., Samingan, A. K., and Hanzo, L. (2001b). “Support Vector Machine Multiuser Receiver for DS-CDMA Signals in Multipafh Channels,” IEEE Trans. Neural Networks, Vol. 12, pp. 604-611.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 604-611
    • Chen, S.1    Samingan, A.K.2    Hanzo, L.3
  • 43
    • 0035505398 scopus 로고    scopus 로고
    • Global Convergence of Delayed Dynamical Systems
    • Chen, T. (2001). “Global Convergence of Delayed Dynamical Systems,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1532-1535.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1532-1535
    • Chen, T.1
  • 44
    • 0035292684 scopus 로고    scopus 로고
    • Exponential Convergence of Delayed Dynamical Systems?
    • Chen, T. P. and Amari, S. (2001a). “Exponential Convergence of Delayed Dynamical Systems?” Neural Comput., Vol. 13, No. 3, pp. 621-636.
    • (2001) Neural Comput. , vol.13 , Issue.3 , pp. 621-636
    • Chen, T.P.1    Amari, S.2
  • 45
    • 0035312613 scopus 로고    scopus 로고
    • New Theorems on Global Convergence of Some Dynamical Systems
    • Chen, T. P. and Amari, S. (2001b). “New Theorems on Global Convergence of Some Dynamical Systems,” Neural Networks, Vol. 14, No. 3. pp. 251-255.
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 251-255
    • Chen, T.P.1    Amari, S.2
  • 46
    • 0035117091 scopus 로고    scopus 로고
    • Stability of Asymmetric Hopfield Networks
    • Chen, T. P. and Amari, S. (2001c). “Stability of Asymmetric Hopfield Networks,” IEEE Trans. Neural Networks, Vol. 12, pp. 159-163.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 159-163
    • Chen, T.P.1    Amari, S.2
  • 48
    • 0023697030 scopus 로고
    • Perspectives on Cognitive Neuroscience
    • Churchland, P. S. and Sejnowski, T. J. (1988). “Perspectives on Cognitive Neuroscience,” Science, Vol. 242, pp. 741-745.
    • (1988) Science , vol.242 , pp. 741-745
    • Churchland, P.S.1    Sejnowski, T.J.2
  • 50
    • 0020970741 scopus 로고
    • Absolute Stability of Global Pattern Information and Parallel Memory Storage by Competitive Neural Networks
    • Cohen, M. A. and Grossberg, S. (1983). “Absolute Stability of Global Pattern Information and Parallel Memory Storage by Competitive Neural Networks,” IEEE Trans. Syst. Man Cybernet., Vol. 13, pp. 815-826
    • (1983) IEEE Trans. Syst. Man Cybernet. , vol.13 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 51
    • 0025636775 scopus 로고
    • The Stone-Weierstrass Theorem and Its Application to Neural Networks
    • Cotter, N. (1990). ‘The Stone-Weierstrass Theorem and Its Application to Neural Networks,” IEEE Trans. Neural Networks, Vol. 1, No. 4, pp. 290-295.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.4 , pp. 290-295
    • Cotter, N.1
  • 53
    • 0024861871 scopus 로고
    • Approximation by Superpositions of a Sigmoidal Function
    • Cybenko, G. (1989). “Approximation by Superpositions of a Sigmoidal Function,” Math. Control Signal System, Vol. 2, No. 3, pp. 303-314.
    • (1989) Math. Control Signal System , vol.2 , Issue.3 , pp. 303-314
    • Cybenko, G.1
  • 55
    • 0000595242 scopus 로고
    • Note on Learning Rate Schedules for Stochastic Optimization
    • Lippmann, R. P., Moody, J.E., and Touretzky, D. S. (eds.), Morgan Kaufmann, San Mateo, CA
    • Darken, C. and Moody, J. E. (1991). “Note on Learning Rate Schedules for Stochastic Optimization,” in Advances in Neural Information Processing Systems, Lippmann, R. P., Moody, J.E., and Touretzky, D. S. (eds.), Vol. 3, Morgan Kaufmann, San Mateo, CA, pp. 832-838.
    • (1991) Advances in Neural Information Processing Systems , vol.3 , pp. 832-838
    • Darken, C.1    Moody, J.E.2
  • 56
    • 0003160484 scopus 로고
    • Towards Faster Stochastic Gradient Search
    • Morgan Kaufmann, San Mateo, CA
    • Darken, C. and Moody, J. E. (1992). “Towards Faster Stochastic Gradient Search,” in Adcances in Neural Information Processing Systems, Morgan Kaufmann, San Mateo, CA, Vol. 4, pp. 1009-1016.
    • (1992) Adcances in Neural Information Processing Systems , vol.4 , pp. 1009-1016
    • Darken, C.1    Moody, J.E.2
  • 58
    • 0034063509 scopus 로고    scopus 로고
    • A Connectionist Model for Convex-Hull of a Planar Set
    • Datta, A., Pal, S., and Pal, N. R. (2000). “A Connectionist Model for Convex-Hull of a Planar Set,” Neural Networks, Vol. 13, pp. 377-384.
    • (2000) Neural Networks , vol.13 , pp. 377-384
    • Datta, A.1    Pal, S.2    Pal, N.R.3
  • 59
    • 0006978332 scopus 로고    scopus 로고
    • Dynamic Modelling Chaotic Time Series
    • of series, Making Learning Systems Practical, MIT Press, Cambridge, MA, Chapter 9
    • Deco, G. and Schiirmann, B. (1997). “Dynamic Modelling Chaotic Time Series,” Computational Learning Theory and Neural Learning Systems, Vol. 4 of series, Making Learning Systems Practical, MIT Press, Cambridge, MA, Chapter 9, pp. 137-153.
    • (1997) Computational Learning Theory and Neural Learning Systems , vol.4 , pp. 137-153
    • Deco, G.1    Schiirmann, B.2
  • 60
    • 0012725920 scopus 로고
    • Neural Network Models of Learning and Adaptation
    • Denker, J. S. (1986). “Neural Network Models of Learning and Adaptation,” Physica D, Vol. 22, pp. 216-232.
    • (1986) Physica D , vol.22 , pp. 216-232
    • Denker, J.S.1
  • 61
    • 85036578861 scopus 로고    scopus 로고
    • Competitive and Cooperative Adaptive Reasoning with Fuzzy Causal Knowledge
    • Ding, H. and Gupta, M. M. (2000). “Competitive and Cooperative Adaptive Reasoning with Fuzzy Causal Knowledge,” J. Intell. Fuzzy Syst., Vol. 3, No. 6, pp. 245-254.
    • (2000) J. Intell. Fuzzy Syst. , vol.3 , Issue.6 , pp. 245-254
    • Ding, H.1    Gupta, M.M.2
  • 62
    • 0026371798 scopus 로고
    • Linearized Least-Squares Training of Multilayer Feedforward Neural Networks
    • Seattle, WA, June
    • Douglas, S. C. andMeng, T. H. Y. (1991). “Linearized Least-Squares Training of Multilayer Feedforward Neural Networks,” Proc. IEEE IJCNN, Vol. I, pp. 307-312, Seattle, WA, June.
    • (1991) Proc. IEEE IJCNN , vol.1 , pp. 307-312
    • Douglas, S.C.1    Meng, T.H.Y.2
  • 64
    • 0030283602 scopus 로고    scopus 로고
    • A 12b General-Purpose Fuzzy Logic Controller Chip
    • Eichfeld, H., Kunemund, T., and Menke, M. (1996). “A 12b General-Purpose Fuzzy Logic Controller Chip,” IEEE Trans. Fuzzy Syst, Vol. 4, No. 4, pp. 460-475.
    • (1996) IEEE Trans. Fuzzy Syst , vol.4 , Issue.4 , pp. 460-475
    • Eichfeld, H.1    Kunemund, T.2    Menke, M.3
  • 65
    • 0035505658 scopus 로고    scopus 로고
    • A New Pruning Heuristic Based on Variance Analysis of Sensitivity Information
    • Engelbrecht, A. P. (2001). “A New Pruning Heuristic Based on Variance Analysis of Sensitivity Information,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1386-1399.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1386-1399
    • Engelbrecht, A.P.1
  • 66
    • 0035506245 scopus 로고    scopus 로고
    • An Input-Output Based Robust Stabilization Criterion for Neural-Network Control of Nonlinear Systems
    • Fernandez de Canete, J., Barreiro, A., Garcia-Cerezo, A., and Garcia-Moral, I. (2001). “An Input-Output Based Robust Stabilization Criterion for Neural-Network Control of Nonlinear Systems,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1491-1497.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1491-1497
    • Fernandez de Canete, J.1    Barreiro, A.2    Garcia-Cerezo, A.3    Garcia-Moral, I.4
  • 67
    • 0026219835 scopus 로고
    • Worst-Case Convergence Times for Hopfield Memories
    • Floréen, P. (1991). “Worst-Case Convergence Times for Hopfield Memories,” IEEE Trans. Neural Networks, Vol. 2, No. 5, pp. 533-535.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.5 , pp. 533-535
    • Floréen, P.1
  • 69
    • 0035505551 scopus 로고    scopus 로고
    • Generalization Properties of Modular Networks: Implementing the Parity Function
    • Franco, L. and Cannas, S. A. (2001). “Generalization Properties of Modular Networks: Implementing the Parity Function,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1306-1313.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1306-1313
    • Franco, L.1    Cannas, S.A.2
  • 70
    • 0035272716 scopus 로고    scopus 로고
    • Divide-and-Conquer Learning and Modular Perceptron Networks
    • Fu, H. C, Lee, Y P., Chiang, C. C, and Pao, H. T. (2001). “Divide-and-Conquer Learning and Modular Perceptron Networks,” IEEE Trans. Neural Networks, Vol. 12, pp. 250-263.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 250-263
    • Fu, H.C.1    Lee, Y.P.2    Chiang, C.C.3    Pao, H.T.4
  • 71
    • 0034187457 scopus 로고    scopus 로고
    • The Application of Certainty Factors to Neural Computing for Rule Discovery
    • Fu, L. M. and Shortliffe, E. H. (2000). “The Application of Certainty Factors to Neural Computing for Rule Discovery,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 647-657.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 647-657
    • Fu, L.M.1    Shortliffe, E.H.2
  • 72
    • 0035043141 scopus 로고    scopus 로고
    • A Flight Control Design of a Re-Entry Vehicle Using a Double-Loop Control System with Fuzzy Gain Scheduling
    • Fujimori, A., Nikiforuk, P. N., and Gupta, M. M. (2001a). “A Flight Control Design of a Re-Entry Vehicle Using a Double-Loop Control System with Fuzzy Gain Scheduling,” Proc. Inst. Mech. Engineers, Vol. 215, Part G, pp. 1-12.
    • (2001) Proc. Inst. Mech. Engineers , vol.215 , pp. 1-12
    • Fujimori, A.1    Nikiforuk, P.N.2    Gupta, M.M.3
  • 73
    • 0033704845 scopus 로고    scopus 로고
    • Cooperative Collision Avoidance between Multiple Mobile Robots
    • Fujimori, A., Teramoto, M., Nikiforuk, P. N., and Gupta, M. M. (2001b). “Cooperative Collision Avoidance between Multiple Mobile Robots,” J. Robotic Syst., Vol. 17, No. 7, pp. 347-363.
    • (2001) J. Robotic Syst. , vol.17 , Issue.7 , pp. 347-363
    • Fujimori, A.1    Teramoto, M.2    Nikiforuk, P.N.3    Gupta, M.M.4
  • 75
    • 0034187078 scopus 로고    scopus 로고
    • General Fuzzy Min-Max Neural Network for Clustering and Classification
    • Gabrys, B. and Bargiela, A. (2000). “General Fuzzy Min-Max Neural Network for Clustering and Classification,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 769-783.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 769-783
    • Gabrys, B.1    Bargiela, A.2
  • 76
    • 0024124325 scopus 로고
    • There Exists a Neural Network that Do Not Make Avoidable Mistakes
    • San Diego
    • Gallant, A. R. and White, H. (1988). “There Exists a Neural Network that Do Not Make Avoidable Mistakes,” Proc. IEEE Conf Neural Networks, San Diego, Vol. 1, pp. 657-664.
    • (1988) Proc. IEEE Conf Neural Networks , vol.1 , pp. 657-664
    • Gallant, A.R.1    White, H.2
  • 78
    • 0035505385 scopus 로고    scopus 로고
    • LSTM Recurrent Networks Learn Simple Context-Free and Context-Sensitive Languages
    • Gers, F. A. and Schmidhuber, J. (2001). “LSTM Recurrent Networks Learn Simple Context-Free and Context-Sensitive Languages,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1333-1380.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1333-1380
    • Gers, F.A.1    Schmidhuber, J.2
  • 79
    • 0034293152 scopus 로고    scopus 로고
    • Learning to Forget: Continual Prediction with LSTM
    • Gers, F. A., Schmidhuber, J. and Cummins, F. (2000). “Learning to Forget: Continual Prediction with LSTM,” Neural Comput., Vol. 12, No. 10, pp. 2451-2471.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 80
    • 0001197443 scopus 로고
    • Uber die Abgrenzung der Eigenwerte Einer Matrix
    • Ser. fiz.-mat
    • Gerschgorin, S. (1931). “Uber die Abgrenzung der Eigenwerte Einer Matrix,” Izv. Akad. NaukSSSR, Ser. fiz.-mat., Vol. 6, pp. 749-754.
    • (1931) Izv. Akad. NaukSSSR , vol.6 , pp. 749-754
    • Gerschgorin, S.1
  • 81
    • 0023513717 scopus 로고
    • Learning Invariance, and Generalization in Higher-Order Networks
    • Giles, C. L. and Maxwell, T. (1987). “Learning Invariance, and Generalization in Higher-Order Networks,” Appl. Optics, Vol. 26, pp. 4972-4978.
    • (1987) Appl. Optics , vol.26 , pp. 4972-4978
    • Giles, C.L.1    Maxwell, T.2
  • 82
    • 0035505614 scopus 로고    scopus 로고
    • The Topographic Organization and Visualization of Binary Data Using Multivariate-Bernoulli Latent Variable Models
    • Girolami, M. (2001). “The Topographic Organization and Visualization of Binary Data Using Multivariate-Bernoulli Latent Variable Models,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1367-1374.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1367-1374
    • Girolami, M.1
  • 83
    • 0022466554 scopus 로고
    • Antisymmetric Neural Networks
    • Goles, E. (1986). “Antisymmetric Neural Networks,” Discrete Appl. Math., Vol. 13, pp. 97-100.
    • (1986) Discrete Appl. Math. , vol.13 , pp. 97-100
    • Goles, E.1
  • 84
    • 0022160683 scopus 로고
    • Decreasing Energy Functions as a Tool for Studying Threshold Networks
    • Goles, E” Fogelman, F., and Pellegrin, D. (1985). “Decreasing Energy Functions as a Tool for Studying Threshold Networks,” Discrete Appl. Math., Vol. 12, pp. 261-277.
    • (1985) Discrete Appl. Math. , vol.12 , pp. 261-277
    • Goles, E.1    Fogelman, F.2    Pellegrin, D.3
  • 86
    • 45749114765 scopus 로고
    • Content-addressable Memory Storage by Neural Networks: A General Model and Global Lyapunov Method
    • Schwartz, E. L. (ed.), MIT Press, Cambridge, MA
    • Grossberg, S. (1990). “Content-addressable Memory Storage by Neural Networks: A General Model and Global Lyapunov Method,” in Computational Neuroscience, Schwartz, E. L. (ed.), MIT Press, Cambridge, MA, pp. 56-68.
    • (1990) Computational Neuroscience , pp. 56-68
    • Grossberg, S.1
  • 87
    • 0023847221 scopus 로고
    • On the Stability, Storage Capacity, and Design of Continuous Nonlinear Neural Networks
    • Guez, A., Protopopsecu, V, and Bahren, J. (1988). “On the Stability, Storage Capacity, and Design of Continuous Nonlinear Neural Networks,” IEEE Trans. Syst. Man Cybernet., Vol. 18, No. 1, pp. 80-87.
    • (1988) IEEE Trans. Syst. Man Cybernet. , vol.18 , Issue.1 , pp. 80-87
    • Guez, A.1    Protopopsecu, V.2    Bahren, J.3
  • 88
    • 85036591070 scopus 로고
    • Fuzzy Logic and Neural Networks
    • Gupta, M. M. and Rao, D. H. (eds.), IEEE Press, New York
    • Gupta, M. M. (1994). “Fuzzy Logic and Neural Networks,” in Neuro Control, Gupta, M. M. and Rao, D. H. (eds.), IEEE Press, New York, pp. 403-116.
    • (1994) Neuro Control , pp. 116-403
    • Gupta, M.M.1
  • 89
    • 85036508760 scopus 로고    scopus 로고
    • Fuzzy Sets, Fuzzy Logic and Fuzzy Systems
    • Meyer, R. A. (ed.), Academic Press, San Diego
    • Gupta, M. M. (2001). “Fuzzy Sets, Fuzzy Logic and Fuzzy Systems,” in Encyclopedia of Physical Science and Technology, Meyer, R. A. (ed.), Academic Press, San Diego.
    • (2001) Encyclopedia of Physical Science and Technology
    • Gupta, M.M.1
  • 90
    • 44049119809 scopus 로고
    • A Multitask Visual Information Processor with a Biologically Motivated Design
    • Sept
    • Gupta, M. M. and Knopf, G. K. (1992). “A Multitask Visual Information Processor with a Biologically Motivated Design,” J. Visual Commun. Image Represent., Vol. 3. No. 3 (Sept.), pp. 230-246.
    • (1992) J. Visual Commun. Image Represent. , vol.3 , Issue.3 , pp. 230-246
    • Gupta, M.M.1    Knopf, G.K.2
  • 92
    • 0026631974 scopus 로고
    • On Fuzzy Neuron Models
    • July
    • Gupta, M.M. and Qi, J. (1991). “On Fuzzy Neuron Models,” Proc. 1991 IJCNN, Vol. 1, July, pp. 431-56.
    • (1991) Proc. 1991 IJCNN , vol.1 , pp. 431-456
    • Gupta, M.M.1    Qi, J.2
  • 93
    • 0011245702 scopus 로고
    • On Fuzzy Neuron Models
    • Zadeh, L. and Kacprzyk, J. (eds.), Wiley, New York
    • Gupta, M. M. and Qi, J. (1992a). “On Fuzzy Neuron Models,” in Fuzzy Logic for the Management of Uncertainty, Zadeh, L. and Kacprzyk, J. (eds.), Wiley, New York, pp. 479-491.
    • (1992) Fuzzy Logic for the Management of Uncertainty , pp. 479-491
    • Gupta, M.M.1    Qi, J.2
  • 94
    • 0000652239 scopus 로고
    • Theory of T Nouns and Fuzzy Inference Method
    • Gupta, M. M. and Qi, J. (1992b). “Theory of T Nouns and Fuzzy Inference Method,” Fuzzy Sets Syst., Vol. 40, pp. 431-50.
    • (1992) Fuzzy Sets Syst. , vol.40 , pp. 431-450
    • Gupta, M.M.1    Qi, J.2
  • 96
    • 0003516953 scopus 로고
    • a volume of selected reprints, IEEE Neural Networks Council, IEEE Press, New York
    • Gupta, M. M. and Rao, D. H. (eds.) (1994a). Neuro-Control Systems: Theory and Applications, a volume of selected reprints, IEEE Neural Networks Council, IEEE Press, New York.
    • (1994) Neuro-Control Systems: Theory and Applications
    • Gupta, M.M.1    Rao, D.H.2
  • 97
    • 0028268852 scopus 로고
    • On the Principles of Fuzzy Neural Networks
    • Gupta, M. M. and Rao, D. H. (1994b). “On the Principles of Fuzzy Neural Networks,” Fuzzy Sets Syst., Vol. 61, No. 1, pp. 1-18.
    • (1994) Fuzzy Sets Syst. , vol.61 , Issue.1 , pp. 1-18
    • Gupta, M.M.1    Rao, D.H.2
  • 98
    • 0003890679 scopus 로고
    • a volume of 29 invited chapters, Sponsor: IEEE Neural Networks Council and Co-sponsor: IEEE Control Systems Society, IEEE Press, New York (Revised 2nd ed., 1997
    • Gupta, M. M. and Sinha, N. K. (eds.) (1995). Intelligent Control Systems: Theory and Applications, a volume of 29 invited chapters, Sponsor: IEEE Neural Networks Council and Co-sponsor: IEEE Control Systems Society, IEEE Press, New York (Revised 2nd ed., 1997).
    • (1995) Intelligent Control Systems: Theory and Applications
    • Gupta, M.M.1    Sinha, N.K.2
  • 101
    • 0003049765 scopus 로고
    • The Neurological Basis for Neural Computation
    • Maren, A. J., Harston, C. T., and Pap, R. M. (eds.), Academic Press, New York
    • Harston, C. T. (1990). “The Neurological Basis for Neural Computation,” in Handbook of Neural Computing Applications, Maren, A. J., Harston, C. T., and Pap, R. M. (eds.), Academic Press, New York, pp. 29-14.
    • (1990) Handbook of Neural Computing Applications , pp. 14-29
    • Harston, C.T.1
  • 102
    • 0001234705 scopus 로고
    • Second-Order Derivatives for Network Pruning: Optimal Brain Surgeon
    • Hanson, S. J., Cowan, J. D., and Giles, C. L. (eds.), Morgan Kaufmann, San Jose, CA
    • Hassibi, B. and Stork, D. G. (1993). “Second-Order Derivatives for Network Pruning: Optimal Brain Surgeon,” in Advances in Neural Information Processing Systems, Hanson, S. J., Cowan, J. D., and Giles, C. L. (eds.), Vol. 5, Morgan Kaufmann, San Jose, CA, pp. 164-172.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 164-172
    • Hassibi, B.1    Stork, D.G.2
  • 103
    • 0003807773 scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • Haykin, S. (1991). Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ.
    • (1991) Adaptive Filter Theory
    • Haykin, S.1
  • 104
    • 0032071951 scopus 로고    scopus 로고
    • Making Sence of Complex World: Using Neural Networks to Dynamically Model Chaotic Events Such as Sea Clutter
    • Haykin, S. and Principe, J. (1998). “Making Sence of Complex World: Using Neural Networks to Dynamically Model Chaotic Events Such as Sea Clutter,” IEEE Signal Processing Magazine, Vol. 15, No. 3, pp.66-81.
    • (1998) IEEE Signal Processing Magazine , vol.15 , Issue.3 , pp. 66-81
    • Haykin, S.1    Principe, J.2
  • 106
    • 0023566098 scopus 로고
    • Kolmogorov’s Mapping Neural Network Existence Theorem
    • Hecht-Nielsen, R. (1987). “Kolmogorov’s Mapping Neural Network Existence Theorem,” Proc. 1987 ICNN, Vol. III, pp. 11-14.
    • (1987) Proc. 1987 ICNN , vol.3 , pp. 11-14
    • Hecht-Nielsen, R.1
  • 107
    • 0024878952 scopus 로고
    • Theory of the Back-Propagation Neural Network
    • Hecht-Nielsen, R. (1989). “Theory of the Back-Propagation Neural Network,” Proc. Int. Joint Conf Neural Networks, Vol. I, pp. 593-605.
    • (1989) Proc. Int. Joint Conf Neural Networks , vol.1 , pp. 593-605
    • Hecht-Nielsen, R.1
  • 109
    • 0035506768 scopus 로고    scopus 로고
    • Self-Organizing Maps, Vector Quantization, and Mixture Modeling
    • Heskes, T. (2001). “Self-Organizing Maps, Vector Quantization, and Mixture Modeling,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1299-1305.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1299-1305
    • Heskes, T.1
  • 110
    • 0034710686 scopus 로고    scopus 로고
    • The Drosophila Netrin Receptor Frazzled Guides Axons by Controlling Netrin Distribution
    • Hiramoto, M., Hiromi, Y, Giniger, E., and Hotta, Y. (2000). “The Drosophila Netrin Receptor Frazzled Guides Axons by Controlling Netrin Distribution,” Nature, Vol. 406, No. 6798, pp. 886-888.
    • (2000) Nature , vol.406 , Issue.6798 , pp. 886-888
    • Hiramoto, M.1    Hiromi, Y.2    Giniger, E.3    Hotta, Y.4
  • 111
    • 0025964567 scopus 로고
    • Back-Propagation Algorithm which Varies the Number of Hidden Units
    • Hirose, Y, Yamashita, K., andHijiya, S. (1991). “Back-Propagation Algorithm which Varies the Number of Hidden Units,” Neural Networks, Vol. 4, pp. 61-66.
    • (1991) Neural Networks , vol.4 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 112
    • 0024909476 scopus 로고
    • Convergent Activation Dynamics in Continuous Time Networks
    • May
    • Hirsch, M. W. (1989). “Convergent Activation Dynamics in Continuous Time Networks,” Neural Networks, Vol. 1 (May), pp. 331-349.
    • (1989) Neural Networks , vol.1 , pp. 331-349
    • Hirsch, M.W.1
  • 114
    • 85036538937 scopus 로고    scopus 로고
    • Superimposing Neural Learning by Dynamic and Spatial Changing Weights
    • Homma, N. and Gupta, M. M. (2002a). “Superimposing Neural Learning by Dynamic and Spatial Changing Weights,” Proc. 7th Int. Symp. Artificial Life and Robotics, Vol. 1, pp. 165-168.
    • (2002) Proc. 7th Int. Symp. Artificial Life and Robotics , vol.1 , pp. 165-168
    • Homma, N.1    Gupta, M.M.2
  • 115
    • 40849090892 scopus 로고    scopus 로고
    • A General Second-order Neural Unit
    • Homma, N. and Gupta, M. M. (2002b). “A General Second-order Neural Unit,” Bull. Coll. Med. Sci. Tohoku Univ., Vol. 11, No. 1, pp. 1-6.
    • (2002) Bull. Coll. Med. Sci. Tohoku Univ. , vol.11 , Issue.1 , pp. 1-6
    • Homma, N.1    Gupta, M.M.2
  • 118
    • 0013341538 scopus 로고    scopus 로고
    • Control Method of the Lyapunov Exponents for Recurrent Neural Networks
    • Beijing, Vol. K
    • Honma, N., Sakai, M., Abe, K., and Takeda, H. (1999b). “Control Method of the Lyapunov Exponents for Recurrent Neural Networks,” Proc. 14th IFAC World Congress, Beijing, Vol. K, pp. 51-56.
    • (1999) Proc. 14th IFAC World Congress , pp. 51-56
    • Honma, N.1    Sakai, M.2    Abe, K.3    Takeda, H.4
  • 119
    • 0020118274 scopus 로고
    • Neural Networks and Physical Systems with Emergent Collective Computational Abilities
    • Hopfield, J. (1982). “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Nat. Acad. Sci. USA, Vol. 79, pp. 2554-2558.
    • (1982) Proc. Nat. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.1
  • 120
    • 0004469897 scopus 로고
    • Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons
    • Hopfield, J. (1984). “Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons,” Proc. Nat. Acad. Sci. USA, Vol. 81, pp. 3088-3092.
    • (1984) Proc. Nat. Acad. Sci. USA , vol.81 , pp. 3088-3092
    • Hopfield, J.1
  • 121
    • 0022504321 scopus 로고
    • Computing with Neural Circuits: A Model
    • Hopfield, J. and Tank, D. W. (1986). “Computing with Neural Circuits: A Model,” Science, Vol. 233, pp. 625-633.
    • (1986) Science , vol.233 , pp. 625-633
    • Hopfield, J.1    Tank, D.W.2
  • 122
    • 0034186952 scopus 로고    scopus 로고
    • Pattern Recognition via Synchronization in Phase-Locked Loop Neural Networks
    • Hoppensteadt, F. C. and Izhikevich, (2000). “Pattern Recognition via Synchronization in Phase-Locked Loop Neural Networks”IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 734-738.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 734-738
    • Hoppensteadt, F.C.1    Izhikevich2
  • 124
    • 0027812765 scopus 로고
    • Some New Results on Neural Network Approximation
    • Hornik, K. (1991). “Some New Results on Neural Network Approximation,” Neural Networks, Vol. 6, No. 8, pp. 1069-1072.
    • (1991) Neural Networks , vol.6 , Issue.8 , pp. 1069-1072
    • Hornik, K.1
  • 125
    • 0024880831 scopus 로고
    • Multilayer Feedforward Networks Are Universal Approximators
    • Hornik, K., Stinchcombe, M., and White, H. (1989). “Multilayer Feedforward Networks Are Universal Approximators,” Neural Networks, Vol. 2, No. 5, pp. 359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 126
    • 0025627940 scopus 로고
    • Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks
    • Hornik, K., Stinchcombe, M., and White, H. (1990). “Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Networks,” Neural Networks, Vol. 3, No. 6, pp. 551-560.
    • (1990) Neural Networks , vol.3 , Issue.6 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 127
    • 0035119476 scopus 로고    scopus 로고
    • Heuristic Pattern Correction Scheme Using Adaptively Trained Generalized Regression Neural Networks
    • Hoya, T. and Chambers, J. A. (2001). “Heuristic Pattern Correction Scheme Using Adaptively Trained Generalized Regression Neural Networks,” IEEE Trans. Neural Networks, Vol. 12, pp. 91-100.
    • (2001) IEEE Trans. Neural Networks , vol.12 , pp. 91-100
    • Hoya, T.1    Chambers, J.A.2
  • 128
    • 0034187311 scopus 로고    scopus 로고
    • Classification Ability of Single Hidden Layer Feedforward Neural Networks
    • Huang, G. B., Chen, Y. Q., and Babri, H. A. (2000). “Classification Ability of Single Hidden Layer Feedforward Neural Networks,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 799-801.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 799-801
    • Huang, G.B.1    Chen, Y.Q.2    Babri, H.A.3
  • 129
    • 85032752004 scopus 로고
    • Progress in Supervised Neural Networks
    • Jan
    • Hush, D. R. and Home, B. G. (1993). “Progress in Supervised Neural Networks,” IEEE Signal Process. Mag., Vol. 10, No. 1 (Jan.), pp. 8-39.
    • (1993) IEEE Signal Process. Mag. , vol.10 , Issue.1 , pp. 8-39
    • Hush, D.R.1    Home, B.G.2
  • 130
    • 0035506142 scopus 로고    scopus 로고
    • Blind Source Separation by Nonstationarity of Variance: A Cumulant-Based Approach
    • Hyvarinen, A. (2001). “Blind Source Separation by Nonstationarity of Variance: A Cumulant-Based Approach,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1471-1474.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1471-1474
    • Hyvarinen, A.1
  • 132
    • 0346307721 scopus 로고    scopus 로고
    • A Fast Fixed-Point Algorithm for Independent Component Analysis
    • Hyvarinen, A. and Oja, E. (1997). “A Fast Fixed-Point Algorithm for Independent Component Analysis,” Neural Comput., Vol. 9, No. 7, pp. 1483-1492.
    • (1997) Neural Comput. , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvarinen, A.1    Oja, E.2
  • 133
    • 0034576069 scopus 로고    scopus 로고
    • Modeling Selective Attention Using a Neuromorphic Analog VLSI Device
    • Indiveri, G. (2000). “Modeling Selective Attention Using a Neuromorphic Analog VLSI Device,” Neural Comput., Vol. 12, No. 12, pp. 2857-2880.
    • (2000) Neural Comput. , vol.12 , Issue.12 , pp. 2857-2880
    • Indiveri, G.1
  • 134
    • 0035439018 scopus 로고    scopus 로고
    • A Current-Mode Analog Hysteretic Winner-Take-All Network, with Excitatory and Inhibitory Coupling
    • Indiveri, G. (2001a). “A Current-Mode Analog Hysteretic Winner-Take-All Network, with Excitatory and Inhibitory Coupling,” J. Analog Integrated Circuits Signal Process., Vol. 28, pp. 279-291.
    • (2001) J. Analog Integrated Circuits Signal Process. , vol.28 , pp. 279-291
    • Indiveri, G.1
  • 135
    • 0035505588 scopus 로고    scopus 로고
    • A Neuromorphic VLSI Device for Implementing 2-D Selective Attention Systems
    • Indiveri, G. (2001b). “A Neuromorphic VLSI Device for Implementing 2-D Selective Attention Systems,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1455-1463.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1455-1463
    • Indiveri, G.1
  • 136
    • 0035327748 scopus 로고    scopus 로고
    • Active Vision Using an Analog VLSI Model of Selective Attention
    • Indiveri, G., Murer, R., and Kramer, J. (2001). “Active Vision Using an Analog VLSI Model of Selective Attention,” IEEE Trans. Circuits Syst. II, Vol. 48, pp. 492-500.
    • (2001) IEEE Trans. Circuits Syst. II , vol.48 , pp. 492-500
    • Indiveri, G.1    Murer, R.2    Kramer, J.3
  • 137
    • 16244420559 scopus 로고
    • A Review on Detection and Diagnosis Illustrates that Process Faults Can Be Detected When Based on the Estimation of Unmeasurable Process Parameters and State Variables
    • Isermann, R. (1989). “A Review on Detection and Diagnosis Illustrates that Process Faults Can Be Detected When Based on the Estimation of Unmeasurable Process Parameters and State Variables,” Automatica: IFAC J., Vol. 20, No. 4, pp. 387-04.
    • (1989) Automatica: IFAC J. , vol.20 , Issue.4 , pp. 304-387
    • Isermann, R.1
  • 138
    • 0035286497 scopus 로고    scopus 로고
    • Computational Modeling of Visual Attention
    • Itti, L. and Koch, C. (2001). “Computational Modeling of Visual Attention,” Nature Neurosci. Rev., Vol. 2, pp. 194-204.
    • (2001) Nature Neurosci. Rev. , vol.2 , pp. 194-204
    • Itti, L.1    Koch, C.2
  • 139
    • 0035506833 scopus 로고    scopus 로고
    • Dynamic Reoptimization of a Fed-Batch Fermentor Using Adaptive Critic Designs
    • Iyer, M. S. and Wunsch, I. I. (2001). “Dynamic Reoptimization of a Fed-Batch Fermentor Using Adaptive Critic Designs,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1433-1444.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1433-1444
    • Iyer, M.S.1    Wunsch, I.I.2
  • 140
    • 0024137490 scopus 로고
    • Increased Rates of Convergence through Learning Rate Adaptation
    • Jacobs, R. A. (1988). “Increased Rates of Convergence through Learning Rate Adaptation,” Neural Networks, Vol. 1, No. 4, pp. 295-308.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-308
    • Jacobs, R.A.1
  • 141
    • 0026925677 scopus 로고
    • Self-Learning Fuzzy Controllers Based on Temporal Back-Propagation
    • Sept
    • Jang, J. S. R. (1992). “Self-Learning Fuzzy Controllers Based on Temporal Back-Propagation,” IEEE Trans. Neural Networks, Vol. 3 (Sept.), pp. 714-723.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 714-723
    • Jang, J.S.R.1
  • 142
    • 0029273384 scopus 로고
    • Neuro-Fuzzy Modeling and Control
    • March
    • Jang, J. S. R. and Sun, C. T. (1990). “Neuro-Fuzzy Modeling and Control,” Proc. IEEE, Vol. 83, No. 3 (March), pp. 378-406.
    • (1990) Proc. IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 143
    • 0027266182 scopus 로고
    • Functional Equivalence between Radial Basis Function Networks and Fuzzy Inference Systems
    • Jan
    • Jang, J. S. R. and Sun, C. T. (1993). “Functional Equivalence between Radial Basis Function Networks and Fuzzy Inference Systems,” IEEE Trans. Neural Networks, Vol. 4, No. 1 (Jan.), pp. 156-159.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.1 , pp. 156-159
    • Jang, J.S.R.1    Sun, C.T.2
  • 144
    • 0030149701 scopus 로고    scopus 로고
    • Equilibrium Capability of Analog Feedback Neural Networks
    • Jin, L. and Gupta, M. M. (1996a). “Equilibrium Capability of Analog Feedback Neural Networks,” IEEE Trans. Neural Networks, Vol. 7, pp. 782-787.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 782-787
    • Jin, L.1    Gupta, M.M.2
  • 145
    • 0030193060 scopus 로고    scopus 로고
    • Globally Asymptotical Stability of Discrete-Time Analog Neural Networks
    • Jin, L. and Gupta, M. M. (1996b). “Globally Asymptotical Stability of Discrete-Time Analog Neural Networks,” IEEE Trans. Neural Networks, Vol. 7, No. 4, pp. 1024-1031.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 1024-1031
    • Jin, L.1    Gupta, M.M.2
  • 146
    • 0033352722 scopus 로고    scopus 로고
    • Stable Dynamic Backpropagation Learning in Recurrent Neural Networks
    • Jin, L. and Gupta, M. M. (1999). “Stable Dynamic Backpropagation Learning in Recurrent Neural Networks,” IEEE Trans. Neural Networks, Vol. 10, pp. 1321- 1334.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 1321-1334
    • Jin, L.1    Gupta, M.M.2
  • 148
    • 85036563480 scopus 로고
    • Stable Fixed Point Learning Using Parallel Synaptic and Somatic Adaptation
    • Jin, L., Nikiforuk, P. N., and Gupta, M. M. (1993b). “Stable Fixed Point Learning Using Parallel Synaptic and Somatic Adaptation,” Proc. 1993 World Congress on Neural Networks, Vol. II, pp. 945-950.
    • (1993) Proc. 1993 World Congress on Neural Networks , vol.2 , pp. 945-950
    • Jin, L.1    Nikiforuk, P.N.2    Gupta, M.M.3
  • 149
    • 84889281393 scopus 로고
    • Approximation Capabilities of Feedforward and Recurrent Neural Networks
    • Gupta M. M. and Sinha, N. K. (eds.), IEEE Press, Chapter 10
    • Jin, L., Gupta, M. M., and Nikiforuk, P. N. (1994a). “Approximation Capabilities of Feedforward and Recurrent Neural Networks,” in Intelligent Control Systems, Gupta M. M. and Sinha, N. K. (eds.), IEEE Press, Chapter 10, pp. 234-264.
    • (1994) Intelligent Control Systems , pp. 234-264
    • Jin, L.1    Gupta, M.M.2    Nikiforuk, P.N.3
  • 150
    • 0028545025 scopus 로고
    • Absolute Stability Conditions for Discrete-time Recerrent Neural Networks
    • Jin, L., Nikiforuk, P. N., and Gupta, M. M. (1994b). “Absolute Stability Conditions for Discrete-time Recerrent Neural Networks,” IEEE Trans. Neural Networks, Vol. 5, pp. 954-964.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 954-964
    • Jin, L.1    Nikiforuk, P.N.2    Gupta, M.M.3
  • 151
    • 84890955388 scopus 로고
    • Neural Networks and Fuzzy Basis Functions for Functional Approximation
    • Li, H. and Gupta, M. M. (eds.), Kluwer Academic Publishers, Chapter 2
    • Jin, L., Gupta, M. M., and Nikiforuk, P. N. (1995). “Neural Networks and Fuzzy Basis Functions for Functional Approximation,” in Fuzzy Logic and Intelligent Control, Li, H. and Gupta, M. M. (eds.), Kluwer Academic Publishers, Chapter 2, pp. 17-68.
    • (1995) Fuzzy Logic and Intelligent Control , pp. 17-68
    • Jin, L.1    Gupta, M.M.2    Nikiforuk, P.N.3
  • 152
    • 0029342140 scopus 로고
    • Approximation of Discrete-time State-space Trajectories Using Dynamic Recurrent Neural Networks
    • Jin, L., Nikiforuk, P. N., and Gupta, M. M. (1995). “Approximation of Discrete-time State-space Trajectories Using Dynamic Recurrent Neural Networks,” IEEE Trans. Automatic Control, Vol. 40, pp. 1266-1270.
    • (1995) IEEE Trans. Automatic Control , vol.40 , pp. 1266-1270
    • Jin, L.1    Nikiforuk, P.N.2    Gupta, M.M.3
  • 154
    • 0039393134 scopus 로고
    • Sur le Theoreme de Superposition de Kolmogorov
    • Kahane, J. P. (1975). “Sur le Theoreme de Superposition de Kolmogorov,” J. Approx. Theory, Vol. 13, pp. 229-234.
    • (1975) J. Approx. Theory , vol.13 , pp. 229-234
    • Kahane, J.P.1
  • 155
    • 84987438982 scopus 로고
    • Control System Analysis and Design via the Second Method of Lyapunov: II Discrete-time systems
    • Kalman, R. E. and Bertram, J. E. (1960). “Control System Analysis and Design via the Second Method of Lyapunov: II Discrete-time systems,” Trans. ASME J. Basic Eng., Vol. 82, pp. 394-400.
    • (1960) Trans. ASME J. Basic Eng. , vol.82 , pp. 394-400
    • Kalman, R.E.1    Bertram, J.E.2
  • 157
    • 0025447562 scopus 로고
    • A Simple Procedure for Pruning Back-propagation Trained Neural Networks
    • Karnin, E. D. (1990). “A Simple Procedure for Pruning Back-propagation Trained Neural Networks,” IEEE Trans. Neural Networks, Vol. 1, No. 2, pp. 239-242.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.2 , pp. 239-242
    • Karnin, E.D.1
  • 158
    • 21144471916 scopus 로고
    • Robust Stability and Diagonal Lia-punov Functions
    • Kaszkurewicz, E. and Bhaya, A. (1993). “Robust Stability and Diagonal Lia-punov Functions,” SIAMJ. Matrix Analy. Appl, Vol. 14, No. 2, pp. 508-520.
    • (1993) SIAMJ. Matrix Analy. Appl , vol.14 , Issue.2 , pp. 508-520
    • Kaszkurewicz, E.1    Bhaya, A.2
  • 161
    • 0025405546 scopus 로고
    • Stability in Contractive Nonlinear Neural Networks
    • Kelly, D. G. (1990). “Stability in Contractive Nonlinear Neural Networks,” IEEE Trans. Biomed. Eng., Vol. 37, pp. 231-242.
    • (1990) IEEE Trans. Biomed. Eng. , vol.37 , pp. 231-242
    • Kelly, D.G.1
  • 162
    • 0027790691 scopus 로고
    • Wind-forced Variations in Sea Surface Height in The Northeast Pacific Ocean
    • Kelly, K. A., Caruso, M. J., and Austin, J. A. (1993). “Wind-forced Variations in Sea Surface Height in The Northeast Pacific Ocean,” J. Phys. Oceanogr., Vol. 23, pp. 2392-2411.
    • (1993) J. Phys. Oceanogr. , vol.23 , pp. 2392-2411
    • Kelly, K.A.1    Caruso, M.J.2    Austin, J.A.3
  • 163
    • 0034187691 scopus 로고    scopus 로고
    • Data Strip Mining for the Virtual Design of Pharmaceuticals with Neural Networks
    • Kewley, R., Embrechts, M., andBreneman, C. (2000). “Data Strip Mining for the Virtual Design of Pharmaceuticals with Neural Networks,” IEEE Trans. Neural Networks, Vol. 11, No. 3, pp. 668-679.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 668-679
    • Kewley, R.1    Embrechts, M.2    Breneman, C.3
  • 165
    • 0033716259 scopus 로고    scopus 로고
    • Performance of an MC-CDMA System with Frequency Offsets in Correlated Fading
    • Kim, T, Kim, Y, Park, J., Ko, K., Choi, S., Kang, C, and Hong, D. (2000). “Performance of an MC-CDMA System with Frequency Offsets in Correlated Fading,” Proc. IEEE ICC 2000, Vol. 2, pp. 1095-1099.
    • (2000) Proc. IEEE ICC 2000 , vol.2 , pp. 1095-1099
    • Kim, T.1    Kim, Y.2    Park, J.3    Ko, K.4    Choi, S.5    Kang, C.6    Hong, D.7
  • 166
    • 0022200571 scopus 로고
    • Energetistic Stability of Fuzzy Dynamic Systems
    • Kiszka, J., Gupta, M. M., and Nikiforuk, P. N. (1985). “Energetistic Stability of Fuzzy Dynamic Systems,” IEEE Trans. Syst. Man Cybernet., Vol. 15, No. 5, pp. 783-792.
    • (1985) IEEE Trans. Syst. Man Cybernet. , vol.15 , Issue.5 , pp. 783-792
    • Kiszka, J.1    Gupta, M.M.2    Nikiforuk, P.N.3
  • 167
    • 0033699178 scopus 로고    scopus 로고
    • Multiuser Detector with an Ability of Channel Estimation Using an RBF Network in an MC-CDMA System
    • Ko, K., Choi, S., and Hong, D. (2000a). “Multiuser Detector with an Ability of Channel Estimation Using an RBF Network in an MC-CDMA System,” Proc. IJCNN2000, Vol. 5, pp. 348-353.
    • (2000) Proc. IJCNN2000 , vol.5 , pp. 348-353
    • Ko, K.1    Choi, S.2    Hong, D.3
  • 168
    • 0035505554 scopus 로고    scopus 로고
    • RBF Multiuser Detector with Channel Estimation Capability in a Synchronous MC-CDMA System
    • Ko, K., Choi, S., Kang, C, and Hong, D. (2000b). “RBF Multiuser Detector with Channel Estimation Capability in a Synchronous MC-CDMA System,” IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1536-1538.
    • (2000) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1536-1538
    • Ko, K.1    Choi, S.2    Kang, C.3    Hong, D.4
  • 169
    • 0035937575 scopus 로고    scopus 로고
    • Activity-Dependent Transfer of Brain-Derived Neurotrophic Factor to Postsynaptic Neurons
    • March
    • Kohara, K., Kitamura, A., Morishima, M., and Tsumoto, T. (2001). “Activity-Dependent Transfer of Brain-Derived Neurotrophic Factor to Postsynaptic Neurons,” Science, Vol. 291 (March), pp. 2419-2423.
    • (2001) Science , vol.291 , pp. 2419-2423
    • Kohara, K.1    Kitamura, A.2    Morishima, M.3    Tsumoto, T.4
  • 170
    • 0023855839 scopus 로고
    • An Introduction to Neural Computing
    • Kohonen, T. (1988). “An Introduction to Neural Computing,” Neural Networks, Vol. 1, No. 1, pp. 3-16.
    • (1988) Neural Networks , vol.1 , Issue.1 , pp. 3-16
    • Kohonen, T.1
  • 172
    • 0001321136 scopus 로고
    • On the Representation of Continuous Functions of Several Variables by Superposition of Continuous Functions of One Variable and Addition
    • Kolmogorov, A. N. (1957). “On the Representation of Continuous Functions of Several Variables by Superposition of Continuous Functions of One Variable and Addition,” Dokl Akad. Nauk USSR, Vol. 114, pp. 953-956.
    • (1957) Dokl Akad. Nauk USSR , vol.114 , pp. 953-956
    • Kolmogorov, A.N.1
  • 173
    • 0034186913 scopus 로고    scopus 로고
    • Interactive Visualization and Analysis of Hierarchical Neural Projections for Data Mining
    • May
    • Konig, A. (2000). “Interactive Visualization and Analysis of Hierarchical Neural Projections for Data Mining,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 615-624.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 615-624
    • Konig, A.1
  • 175
    • 0028532753 scopus 로고
    • Fuzzy Systems as Universal Approximators
    • Kosko, B. (1994). “Fuzzy Systems as Universal Approximators,” IEEE Trans. Comput, Vol. 43, No. 11, pp. 1329-1333.
    • (1994) IEEE Trans. Comput , vol.43 , Issue.11 , pp. 1329-1333
    • Kosko, B.1
  • 177
    • 0026627415 scopus 로고
    • Kolmogorov’s Theorem and Multilayer Neural Networks
    • Kurkova, V. (1992). “Kolmogorov’s Theorem and Multilayer Neural Networks,” Neural Networks, Vol. 5, No. 3, pp. 501-506.
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 501-506
    • Kurkova, V.1
  • 178
    • 0002049189 scopus 로고
    • Fuzzy Logic in Control Engineering
    • Van Nostrand, New York
    • Langari, R. and Berenji, H. R. (1992). “Fuzzy Logic in Control Engineering,” in Handbook of Intelligent Control., Van Nostrand, New York, pp. 93-140.
    • (1992) Handbook of Intelligent Control. , pp. 93-140
    • Langari, R.1    Berenji, H.R.2
  • 179
    • 0002748218 scopus 로고
    • How Neural Nets Work
    • Anderson, D. Z. (ed.), American Institute of Physics, New York
    • Lapedes, A. and Farber, R. (1987). “How Neural Nets Work,” in Neural Information Processing Systems, Anderson, D. Z. (ed.), American Institute of Physics, New York, pp. 442-456.
    • (1987) Neural Information Processing Systems , pp. 442-456
    • Lapedes, A.1    Farber, R.2
  • 181
    • 23944436740 scopus 로고
    • A Theoretical Framework for Back-Propagation
    • Touretzky, D., Hinton C, and Sejnowski T. (eds.), June 17-26, Morgan Kaufmann
    • LeCun, Y. (1988). “A Theoretical Framework for Back-Propagation,” in Proc. 1988, Connectionist Model Summer School, Touretzky, D., Hinton C, and Sejnowski T. (eds.), June 17-26, Morgan Kaufmann, pp. 21-28.
    • (1988) Proc. 1988, Connectionist Model Summer School , pp. 21-28
    • LeCun, Y.1
  • 182
    • 0000359337 scopus 로고
    • Backpropagation Applied to Handwritten Zip Code Recognition
    • LeCun, Y, Boser, B., and Denker, J. S. (1989). “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural Computation, Vol. 1, pp. 541-551.
    • (1989) Neural Computation , vol.1 , pp. 541-551
    • LeCun, Y.1    Boser, B.2    Denker, J.S.3
  • 184
    • 0025404409 scopus 로고
    • Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part I
    • Lee, C. C. (1990a). “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part I,” IEEE Trans. Syst. Man Cybernet, Vol. 20, No. 2, pp. 404-418.
    • (1990) IEEE Trans. Syst. Man Cybernet , vol.20 , Issue.2 , pp. 404-418
    • Lee, C.C.1
  • 185
    • 0025405010 scopus 로고
    • Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II
    • Lee, C. C. (1990b). “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part II,” IEEE Trans. Syst. Man Cybernet., Vol. 20, No. 2, pp. 419-435.
    • (1990) IEEE Trans. Syst. Man Cybernet. , vol.20 , Issue.2 , pp. 419-435
    • Lee, C.C.1
  • 186
    • 0034187893 scopus 로고    scopus 로고
    • Tropical Cyclone Identification and Tracking System Using Integrated Neural Oscillatory Elastic Graph Matching and Hybrid RBF Network Track Mining Techniques
    • May
    • Lee, R. S. T. and Liu, J. N. K. (2000). “Tropical Cyclone Identification and Tracking System Using Integrated Neural Oscillatory Elastic Graph Matching and Hybrid RBF Network Track Mining Techniques,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 680-689.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 680-689
    • Lee, R.S.T.1    Liu, J.N.K.2
  • 187
    • 0025839504 scopus 로고
    • A Gaussian Potential Function Network with Hierarchically Self-organizing Learning
    • Lee, S. and Kil, R. M. (1991). “A Gaussian Potential Function Network with Hierarchically Self-organizing Learning,” Neural Networks, Vol. 4, pp. 207-224.
    • (1991) Neural Networks , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 188
    • 58749086417 scopus 로고
    • Fuzzy Sets and Neural Networks
    • Lee, S.C. and Lee, E.T. (1974). “Fuzzy Sets and Neural Networks,” J. Cybernet., Vol. 4, pp. 83-101.
    • (1974) J. Cybernet. , vol.4 , pp. 83-101
    • Lee, S.C.1    Lee, E.T.2
  • 189
    • 0034187293 scopus 로고    scopus 로고
    • Cascade-Correlation Learning for Classification
    • May
    • Lehtokangas, M. (2000). “Cascade-Correlation Learning for Classification,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 784-794.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 784-794
    • Lehtokangas, M.1
  • 190
    • 0035505397 scopus 로고    scopus 로고
    • Initial State Training Procedure Improves Dynamic Recurrent Networks with Time-Dependent Weights
    • Nov
    • Leistritz, L., Galicki, M., Witte, H., and Kochs, E. (2001). “Initial State Training Procedure Improves Dynamic Recurrent Networks with Time-Dependent Weights,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1513-1518.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1513-1518
    • Leistritz, L.1    Galicki, M.2    Witte, H.3    Kochs, E.4
  • 191
    • 0035507079 scopus 로고    scopus 로고
    • Two Regularizes for Recursive Least Squared Algorithms in Feedforward Multilayered Neural Networks
    • Nov
    • Leung, C. S., Tsoi, A.-C, and Chan, L. W. (2001). “Two Regularizes for Recursive Least Squared Algorithms in Feedforward Multilayered Neural Networks,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1314-1332.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1314-1332
    • Leung, C.S.1    Tsoi, A.-C.2    Chan, L.W.3
  • 192
    • 0024765401 scopus 로고
    • Analysis and Synthesis of a Class of Neural Networks: Linear Systems Operating on a Closed Hypercube
    • Li, J. H., Michel, A. N., and Porod, W. (1989). “Analysis and Synthesis of a Class of Neural Networks: Linear Systems Operating on a Closed Hypercube,” IEEE Trans. Circuits Syst, Vol. 36, pp. 1405-1422.
    • (1989) IEEE Trans. Circuits Syst , vol.36 , pp. 1405-1422
    • Li, J.H.1    Michel, A.N.2    Porod, W.3
  • 193
    • 0035506864 scopus 로고    scopus 로고
    • A Remote Password Authentication Scheme for Multiserver Architecture Using Neural Networks
    • Nov
    • Li, L.-H., Lin, I.-C, and Hwang, M.-S. (2001). “A Remote Password Authentication Scheme for Multiserver Architecture Using Neural Networks,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1498-1504.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1498-1504
    • Li, L.-H.1    Lin, I.-C.2    Hwang, M.-S.3
  • 194
    • 84945712332 scopus 로고
    • Fixed Point Analysis for Discrete-Time Recurrent Neural Networks
    • June
    • Li, L. K. (1992). “Fixed Point Analysis for Discrete-Time Recurrent Neural Networks,” Proc. Int. Joint Conf. Neural Networks, June, Vol. IV, pp. 134-139.
    • (1992) Proc. Int. Joint Conf. Neural Networks , vol.4 , pp. 134-139
    • Li, L.K.1
  • 195
    • 0035505615 scopus 로고    scopus 로고
    • Hopfield Neural Networks for Affine Invariant Matching
    • Nov
    • Li, W.-J. and Lee, T. (2001). “Hopfield Neural Networks for Affine Invariant Matching,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1400-1410.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1400-1410
    • Li, W.-J.1    Lee, T.2
  • 196
    • 0035506769 scopus 로고    scopus 로고
    • A Recurrent Neural Networks for Nonlinear Continuously Differentiable Optimization Over a Compact Convex Set
    • Nov
    • Liang, X. B. (2001 a). “A Recurrent Neural Networks for Nonlinear Continuously Differentiable Optimization Over a Compact Convex Set,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1487-1490.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1487-1490
    • Liang, X.B.1
  • 197
    • 0035506173 scopus 로고    scopus 로고
    • Qualitative Analysis of a Recurrent Neural Network for Nonlinear Continuously Differentiable Convex Minimization over a Nonempty Closed Convex Subset Set
    • Nov
    • Liang, X. B. (2001b). “Qualitative Analysis of a Recurrent Neural Network for Nonlinear Continuously Differentiable Convex Minimization over a Nonempty Closed Convex Subset Set,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1521-1524.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1521-1524
    • Liang, X.B.1
  • 198
    • 0001284544 scopus 로고    scopus 로고
    • A Recurrent Neural Network for Nonlinear Optimization with a Continuously Differentiable Objective Function and Bound Constraints
    • Nov
    • Liang, X. B. and Wang, J. (2000). “A Recurrent Neural Network for Nonlinear Optimization with a Continuously Differentiable Objective Function and Bound Constraints,” IEEE Trans. Neural Networks, Vol. 11 (Nov.), pp. 1251-1262.
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 1251-1262
    • Liang, X.B.1    Wang, J.2
  • 199
    • 0001991994 scopus 로고
    • Some Aspects of Radial Basis Function Approximation
    • Singh, S. P. (ed.), Kluwer Academic, Boston, NATO ASI Series
    • Light, W. A. (1992). “Some Aspects of Radial Basis Function Approximation,” in Approximation Theory, Spline Functions and Applications, Singh, S. P. (ed.), Kluwer Academic, Boston, NATO ASI Series Vol. 256, pp. 163-190.
    • (1992) Approximation Theory, Spline Functions and Applications , vol.256 , pp. 163-190
    • Light, W.A.1
  • 200
    • 0034274591 scopus 로고    scopus 로고
    • A Comparison of Prediction Accuracy, Complexity, and Training Time of 33 Old and New Classification Algorithms
    • Lim, T.-S., Loh, W-Y., and Shih, Y.-S. (2000). “A Comparison of Prediction Accuracy, Complexity, and Training Time of 33 Old and New Classification Algorithms,” Machine Learning, Vol. 40, pp. 203-228.
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 201
    • 0035506741 scopus 로고    scopus 로고
    • On the Convergence of the Decomposition Method for Support Vector Machines
    • Nov
    • Lin, C.-J. (2001). “On the Convergence of the Decomposition Method for Support Vector Machines,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1278-1287.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1278-1287
    • Lin, C.-J.1
  • 202
    • 0042507805 scopus 로고
    • Metric Entropy, Widths, and Superposition of Functions
    • Lorentz, G. G. (1962). “Metric Entropy, Widths, and Superposition of Functions,” Am. Math. Monthly, Vol. 69, pp. 469-185.
    • (1962) Am. Math. Monthly , vol.69 , pp. 185-469
    • Lorentz, G.G.1
  • 203
    • 84956083720 scopus 로고
    • Metric Entropy and Approximation
    • Nov
    • Lorentz, G. G. (1966). “Metric Entropy and Approximation,” Bull. Am. Math. Soc, Vol. 72 (Nov.), pp. 903-937.
    • (1966) Bull. Am. Math. Soc , vol.72 , pp. 903-937
    • Lorentz, G.G.1
  • 205
    • 0034548914 scopus 로고    scopus 로고
    • On Stability of Nonlinear Continuous-Time Neural Networks with Delays
    • Lu, H. (2000). “On Stability of Nonlinear Continuous-Time Neural Networks with Delays,” Neural Networks, Vol. 13, No. 10, pp. 1135-1144.
    • (2000) Neural Networks , vol.13 , Issue.10 , pp. 1135-1144
    • Lu, H.1
  • 206
    • 0017714604 scopus 로고
    • Oscillation and Chaos in Physiological Control Systems
    • Mackey, M. C. and Glass, L. (1977). “Oscillation and Chaos in Physiological Control Systems,” Science, Vol. 197, pp. 287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 207
    • 33747719454 scopus 로고
    • Dynamics of Iterated Map Neural Networks
    • Marcus, C. M. and Westervelt, R. M. (1989). “Dynamics of Iterated Map Neural Networks,” Phys. Rev. A, Vol. 40, No. 1, pp. 577-587.
    • (1989) Phys. Rev. A , vol.40 , Issue.1 , pp. 577-587
    • Marcus, C.M.1    Westervelt, R.M.2
  • 208
    • 0026679036 scopus 로고
    • Stability Conditions for Nonlinear Continuous Neural Networks with Asymmetric Connection Weights
    • Matsuoka, K. (1992). “Stability Conditions for Nonlinear Continuous Neural Networks with Asymmetric Connection Weights,” Neural Networks, Vol. 5, pp. 495-500.
    • (1992) Neural Networks , vol.5 , pp. 495-500
    • Matsuoka, K.1
  • 209
    • 0345365481 scopus 로고
    • Ph.D. thesis, Technical Report 1557-1, Stanford Electron. Labs., Stanford, CA
    • Mays, C. H. (1963). Adaptive Threshold Logic, Ph.D. thesis, Technical Report 1557-1, Stanford Electron. Labs., Stanford, CA.
    • (1963) Adaptive Threshold Logic
    • Mays, C.H.1
  • 211
    • 51249194645 scopus 로고
    • A Logical Calculus of the Ideas Imminent in Nervous Activity
    • McCulloch, W. S. and Pitts, W. H. (1943). “A Logical Calculus of the Ideas Imminent in Nervous Activity,” Bull. Math. Biophys., Vol. 5, pp. 115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.H.2
  • 213
    • 0004066260 scopus 로고    scopus 로고
    • Wiley series, Probability and Statistics, Wiley, New York
    • McLachlan, G. and Peel, D. (2000). Finite Mixture Models, Wiley series, Probability and Statistics, Wiley, New York.
    • (2000) Finite Mixture Models
    • McLachlan, G.1    Peel, D.2
  • 214
    • 0029270928 scopus 로고
    • Fuzzy Logic Systems for Engineering: A Tutorial
    • March
    • Mendel, J. M. (1995). “Fuzzy Logic Systems for Engineering: A Tutorial,” Proc. IEEE, Vol. 83, No. 3 (March), pp. 345-377.
    • (1995) Proc. IEEE , vol.83 , Issue.3 , pp. 345-377
    • Mendel, J.M.1
  • 215
    • 34250122797 scopus 로고
    • Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions
    • Micchelli, C. A. (1986). “Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions,” Construct. Approx., Vol. 2, pp. 11-22.
    • (1986) Construct. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 217
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework
    • May
    • Mitra, S. and Hayashi, Y. (2000). “Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 748-768.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 218
    • 0027205884 scopus 로고
    • A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning
    • Moller, M. (1993). “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning,” Neural Networks, Vol. 6, No. 4, pp. 525-534.
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-534
    • Moller, M.1
  • 219
    • 0000900876 scopus 로고
    • Skeletonization: A Technique for Trimming the Fat From a Network via Relevance Assessment
    • Touretzky, D. S. (ed.), Morgan Kaufmann
    • Mozer, M. C. and Smolensky, P. (1989). “Skeletonization: A Technique for Trimming the Fat From a Network via Relevance Assessment,” in Advances in Neural Information Processing Systems, Touretzky, D. S. (ed.), Vol. 1, Morgan Kaufmann, pp. 107-115.
    • (1989) Advances in Neural Information Processing Systems , vol.1 , pp. 107-115
    • Mozer, M.C.1    Smolensky, P.2
  • 220
    • 0034187076 scopus 로고    scopus 로고
    • Predicting Subscriber Dissatisfaction and Improving Retention in the Wireless Telecommunications Industry
    • May
    • Mozer, M. C, Wolniewicz, R., Grimes, D. B., Johnson, E., and Kaushanksy, H. (2000). “Predicting Subscriber Dissatisfaction and Improving Retention in the Wireless Telecommunications Industry,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 690-696.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 690-696
    • Mozer, M.C.1    Wolniewicz, R.2    Grimes, D.B.3    Johnson, E.4    Kaushanksy, H.5
  • 223
  • 224
    • 85036503149 scopus 로고    scopus 로고
    • Fuzzy Neural Models Based on Some New Fuzzy Arithmetic Operations
    • Musilek, P. and Gupta, M. M. (2000). “Fuzzy Neural Models Based on Some New Fuzzy Arithmetic Operations,” J. Adv. Comput. Intell, Vol. 3, No. 6, pp. 245-254.
    • (2000) J. Adv. Comput. Intell , vol.3 , Issue.6 , pp. 245-254
    • Musilek, P.1    Gupta, M.M.2
  • 225
    • 0033322387 scopus 로고    scopus 로고
    • Efficient Training of RBF Networks for Classification
    • Nabney, T. (1999). “Efficient Training of RBF Networks for Classification,” Proc. 9th ICANN, Vol. 1, pp. 210-215.
    • (1999) Proc. 9th ICANN , vol.1 , pp. 210-215
    • Nabney, T.1
  • 227
    • 0025399567 scopus 로고
    • Identification and Control of Dynamical Systems Using Neural Networks
    • Narendra, K. S. and Parthasarathy, K. (1990). “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Trans. Neural Networks, Vol. 1, No. 1, pp. 4-27.
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 229
    • 0035505540 scopus 로고    scopus 로고
    • H∞-Learning of Layered Neural Networks
    • Nov
    • Nishiyama, K. and Suzuki, K. (2001). “H∞-Learning of Layered Neural Networks,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1265-1277.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1265-1277
    • Nishiyama, K.1    Suzuki, K.2
  • 230
    • 0035506238 scopus 로고    scopus 로고
    • A Multilayer Self-Organizing Model for Convex-Hull
    • Nov
    • Pal, S. K., Datta, A., and Pal, N. R. (2001). “A Multilayer Self-Organizing Model for Convex-Hull,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1341-1347.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1341-1347
    • Pal, S.K.1    Datta, A.2    Pal, N.R.3
  • 232
    • 0035505634 scopus 로고    scopus 로고
    • Confidence Estimation Methods for Neural Networks: A Practical Comparison
    • Nov
    • Papadpopoulos, G., Edwards, P. J., and Murray, A. F. (2001). “Confidence Estimation Methods for Neural Networks: A Practical Comparison,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1278-1287.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1278-1287
    • Papadpopoulos, G.1    Edwards, P.J.2    Murray, A.F.3
  • 233
    • 0035505570 scopus 로고    scopus 로고
    • An Algorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks
    • Nov
    • Parlos, A. G., Menton, S. K., and Atiya, A. F. (2001). “An Algorithmic Approach to Adaptive State Filtering Using Recurrent Neural Networks,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1411-1432.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1411-1432
    • Parlos, A.G.1    Menton, S.K.2    Atiya, A.F.3
  • 234
    • 84935612188 scopus 로고
    • revised ed., Transaction Publishers, New Brunswick, Canada
    • Pavlov, I. P. (1993). Psychopathology and Psychiatry, revised ed., Transaction Publishers, New Brunswick, Canada.
    • (1993) Psychopathology and Psychiatry
    • Pavlov, I.P.1
  • 235
    • 0026119956 scopus 로고
    • Neurocomputations in Relational Systems
    • Pedrycz, W. (1991a). “Neurocomputations in Relational Systems,” IEEE Trans. Pattern Anal. Machine Intell, Vol. 13, pp. 289-297.
    • (1991) IEEE Trans. Pattern Anal. Machine Intell , vol.13 , pp. 289-297
    • Pedrycz, W.1
  • 236
    • 0026261481 scopus 로고
    • A Referential Scheme of Fuzzy Decision Making and Its Neural Network Structure
    • Pedrycz, W. (1991b). “A Referential Scheme of Fuzzy Decision Making and Its Neural Network Structure,” IEEE Trans. Syst. Man Cybernet., Vol. 21, pp. 1593-1604.
    • (1991) IEEE Trans. Syst. Man Cybernet. , vol.21 , pp. 1593-1604
    • Pedrycz, W.1
  • 237
    • 0027593387 scopus 로고
    • Fuzzy Neural Networks and Neurocomputations
    • Pedrycz, W. (1993). “Fuzzy Neural Networks and Neurocomputations,” Fuzzy Sets Syst., Vol. 56, No. 1, pp. 1-28.
    • (1993) Fuzzy Sets Syst. , vol.56 , Issue.1 , pp. 1-28
    • Pedrycz, W.1
  • 238
    • 0029230505 scopus 로고
    • Genetic Algorithms for Learning in Fuzzy Relational Structures
    • Pedrycz, W. (1995). “Genetic Algorithms for Learning in Fuzzy Relational Structures,” Fuzzy Sets Syst., Vol. 69, No. 1, pp. 37-52.
    • (1995) Fuzzy Sets Syst. , vol.69 , Issue.1 , pp. 37-52
    • Pedrycz, W.1
  • 239
    • 0001670416 scopus 로고
    • Problem of Absolute Stability
    • Persidskii, S. K. (1969). “Problem of Absolute Stability,” Automation Remote Control, Vol. 12, pp. 1889-1895.
    • (1969) Automation Remote Control , vol.12 , pp. 1889-1895
    • Persidskii, S.K.1
  • 240
    • 0001326868 scopus 로고
    • Collective Computational Properties of Neural Networks: New Learning Mechanisms
    • Personnaz, L., Guyon, I., and Dreyfus, G. (1986). “Collective Computational Properties of Neural Networks: New Learning Mechanisms,” Phys. Rev. A, Vol. 34, pp. 4217-4228.
    • (1986) Phys. Rev. A , vol.34 , pp. 4217-4228
    • Personnaz, L.1    Guyon, I.2    Dreyfus, G.3
  • 242
    • 0000442791 scopus 로고
    • Generalization of Back-propagation to Recurrent Neural Networks
    • Pineda, F. J. (1987). “Generalization of Back-propagation to Recurrent Neural Networks,” Physical Rev. Lett., Vol. 59, No. 19, pp. 2229-2232.
    • (1987) Physical Rev. Lett. , vol.59 , Issue.19 , pp. 2229-2232
    • Pineda, F.J.1
  • 243
    • 0000599735 scopus 로고
    • Dynamics and Architecture for Neural Computation
    • Pineda, F. J. (1988). “Dynamics and Architecture for Neural Computation,” J. Complexity, Vol. 4, pp. 216-245.
    • (1988) J. Complexity , vol.4 , pp. 216-245
    • Pineda, F.J.1
  • 244
    • 0003207159 scopus 로고
    • A Theory of Networks for Approximation and Learning
    • July, CBIP Paper 31
    • Poggio, T. andGirosi, F. (1989). “A Theory of Networks for Approximation and Learning,” AI Memo No. 1140, July, CBIP Paper 31.
    • (1989) AI Memo No. 1140
    • Poggio, T.1    Girosi, F.2
  • 245
    • 0025490985 scopus 로고
    • Networks for Approximation and Learning
    • Poggio, T. and Girosi, F. (1990). “Networks for Approximation and Learning,” Proc. IEEE, Vol. 78, pp. 1481-1497.
    • (1990) Proc. IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 246
    • 85028598666 scopus 로고
    • Dynamic Modelling Chaotic Time Series with Neural Networks
    • Tesauro, G., Touretzky, D., and Leen, T. (eds.), MIT Press, Cambridge, MA
    • Principe, J. C. and Kuo, J. (1995). “Dynamic Modelling Chaotic Time Series with Neural Networks,” in Advances in Neural Information Processing System, Tesauro, G., Touretzky, D., and Leen, T. (eds.), Vol. 7, MIT Press, Cambridge, MA, pp. 311-318.
    • (1995) Advances in Neural Information Processing System , vol.7 , pp. 311-318
    • Principe, J.C.1    Kuo, J.2
  • 249
    • 0003655416 scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • Ray, W. O. (1988). Real Analysis, Prentice-Hall, Englewood Cliffs, NJ.
    • (1988) Real Analysis
    • Ray, W.O.1
  • 250
    • 0027662338 scopus 로고
    • Pruning Algorithms-A Survey
    • Reed, R. (1993). “Pruning Algorithms-A Survey,” IEEE Trans. Neural Networks, Vol. 4, No. 5, pp. 740-747.
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-747
    • Reed, R.1
  • 251
    • 0035505574 scopus 로고    scopus 로고
    • Empirical Measure of Multiclass Generalization Performance: The K-Winner Machine Class
    • Nov
    • Ridella, S. and Zunnio, R. (2001). “Empirical Measure of Multiclass Generalization Performance: The K-Winner Machine Class,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1525-1528.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1525-1528
    • Ridella, S.1    Zunnio, R.2
  • 253
    • 0023538672 scopus 로고
    • Static and Dynamic Error Propagation Networks with Application to Speech Coding
    • Anderson, D. Z. (ed.), American Institute of Physics
    • Robinson, A. J. and Fallside, F. (1987). “Static and Dynamic Error Propagation Networks with Application to Speech Coding,” Proc. Neural Information Processing Systems, Anderson, D. Z. (ed.), American Institute of Physics.
    • (1987) Proc. Neural Information Processing Systems
    • Robinson, A.J.1    Fallside, F.2
  • 256
    • 11144273669 scopus 로고
    • The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
    • Rosenblatt, F. (1958). “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Psychological Review, Vol. 65, pp. 386-408.
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 259
    • 1542587837 scopus 로고
    • Oscillatory and Excitable Behaviours in a Population of Model Neuron
    • Sakaguchi, H. (1988). “Oscillatory and Excitable Behaviours in a Population of Model Neuron,” Progress Theor. Phys., Vol. 79, No. 5, pp. 1061-1068.
    • (1988) Progress Theor. Phys. , vol.79 , Issue.5 , pp. 1061-1068
    • Sakaguchi, H.1
  • 261
    • 0034323731 scopus 로고    scopus 로고
    • Support Vector Machine Techniques for Nonlinear Equalization
    • Nov
    • Sebald, D. J. and Bucklew, J. A. (2000). “Support Vector Machine Techniques for Nonlinear Equalization,” IEEE Trans. Signal Process., Vol. 48 (Nov.), pp. 3217-3226.
    • (2000) IEEE Trans. Signal Process. , vol.48 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 262
    • 0026624311 scopus 로고
    • Fault Tolerance of Pruned Multilayer Networks
    • Seattle
    • Segee, B. E. and Carter, M. J. (1991). “Fault Tolerance of Pruned Multilayer Networks,” Proc. Int. Joint Conf. Neural Networks, Vol. II, Seattle, pp. 447-452.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.2 , pp. 447-452
    • Segee, B.E.1    Carter, M.J.2
  • 263
    • 0034187374 scopus 로고    scopus 로고
    • A Hybrid Approach of Neural Network and Memory-Based Learning to Data Mining
    • May
    • Shin, C. K., Yu, S. J., Yun, U. T, and Kim H. K. (2000). “A Hybrid Approach of Neural Network and Memory-Based Learning to Data Mining,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 637-646.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 637-646
    • Shin, C.K.1    Yu, S.J.2    Yun, U.T.3    Kim, H.K.4
  • 264
    • 0026375443 scopus 로고
    • The Pi-sigma Network: An Efficient Higher-order Neural Network for Pattern Classification and Function Approximation
    • Seattle, WA, July
    • Shin, Y. and Ghosh, J. (1991). “The Pi-sigma Network: An Efficient Higher-order Neural Network for Pattern Classification and Function Approximation,” Proc. Int. Joint Conf. on Neural Networks, Vol. I, Seattle, WA, July, pp. 13-18.
    • (1991) Proc. Int. Joint Conf. on Neural Networks , vol.1 , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 265
    • 0026017007 scopus 로고
    • Creating Artificial Neural Networks that Generalize
    • Sietsma, J. and Dow, R. J. F. (1991). “Creating Artificial Neural Networks that Generalize,” Neural Networks, Vol. 4, pp. 67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 266
    • 0002824981 scopus 로고
    • Speeding up Backpropagation
    • Eckmiller, R. (ed.), Elsevier Science Publishers B.V., North-Holland
    • Silva, F. M. and Almeida, L. B. (1990). “Speeding up Backpropagation,” in Advances of Neural Computers, Eckmiller, R. (ed.), Elsevier Science Publishers B.V., North-Holland, pp. 151-158.
    • (1990) Advances of Neural Computers , pp. 151-158
    • Silva, F.M.1    Almeida, L.B.2
  • 267
    • 0035505587 scopus 로고    scopus 로고
    • Distributed Fault Tolerance in Optimal Interpolative Nets
    • Nov
    • Simmon, D. (2001). “Distributed Fault Tolerance in Optimal Interpolative Nets,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1348-1357.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1348-1357
    • Simmon, D.1
  • 268
    • 0035507006 scopus 로고    scopus 로고
    • RBFNN-Based Hole Identification System in Conducting Plates
    • Nov
    • Simone, G. and Morabito, F. C. (2001). “RBFNN-Based Hole Identification System in Conducting Plates,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1445-1454.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1445-1454
    • Simone, G.1    Morabito, F.C.2
  • 269
    • 0000221272 scopus 로고
    • Training Multilayer Perceptrons with the Extended Kalman Algorithm
    • Morgan Kaufmann, San Mateo, CA
    • Singhal, S. and Wu, L. (1989). “Training Multilayer Perceptrons with the Extended Kalman Algorithm,” in Advances in Neural Information Processing Systems I, Morgan Kaufmann, San Mateo, CA, pp. 133-140.
    • (1989) Advances in Neural Information Processing Systems I , pp. 133-140
    • Singhal, S.1    Wu, L.2
  • 272
    • 84973949757 scopus 로고
    • How Brains Make Chaos in Order to Make Sense of the World
    • Skarda, C. A. and Freeman, W. J. (1987). “How Brains Make Chaos in Order to Make Sense of the World,” Behav. Brain Sci., Vol. 10, pp. 161-195.
    • (1987) Behav. Brain Sci. , vol.10 , pp. 161-195
    • Skarda, C.A.1    Freeman, W.J.2
  • 273
    • 0028292832 scopus 로고
    • Minimisation Methods for Training Feedforward Neural Networks
    • Smagt, P. (1994). “Minimisation Methods for Training Feedforward Neural Networks,” Neural Networks, Vol. 7, No. 1, pp. 1-11.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 1-11
    • Smagt, P.1
  • 274
    • 0025795079 scopus 로고
    • Correlations in High Dimensional or Asymmetrical Data Sets: Hebbian Neuronal Processing
    • Soffky, R. W. and Kammen, D. M. (1991). “Correlations in High Dimensional or Asymmetrical Data Sets: Hebbian Neuronal Processing,” Neural Networks, Vol. 4, No. 3, pp. 337-347.
    • (1991) Neural Networks , vol.4 , Issue.3 , pp. 337-347
    • Soffky, R.W.1    Kammen, D.M.2
  • 276
    • 84968510856 scopus 로고
    • On the Structure of Continuous Functions of Several Variables
    • Sprecher, D. A. (1965). “On the Structure of Continuous Functions of Several Variables,” Trans. Amer. Math. Soc, Vol. 115, pp. 340-355.
    • (1965) Trans. Amer. Math. Soc , vol.115 , pp. 340-355
    • Sprecher, D.A.1
  • 277
    • 0027842059 scopus 로고
    • A Universal Mapping for Kolmogorov’s Superposition Theorem
    • Sprecher, D. A. (1993). “A Universal Mapping for Kolmogorov’s Superposition Theorem,” Neural Networks, Vol. 6, No. 8, pp. 1089-1094.
    • (1993) Neural Networks , vol.6 , Issue.8 , pp. 1089-1094
    • Sprecher, D.A.1
  • 278
    • 0034187077 scopus 로고    scopus 로고
    • Fast Self-Organizing Map Algorithm
    • May
    • Su, M. C. and Chang, H.-T. (2000). “Fast Self-Organizing Map Algorithm,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 721-733.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 721-733
    • Su, M.C.1    Chang, H.-T.2
  • 279
    • 0026218699 scopus 로고
    • Equilibrium Characterization of Dynamical Neural Networks and a Systematic Synthesis Procedure for Associative Memories
    • Sept
    • Sudharsanan, S. I. and Sundareshan, M. K. (1991a). “Equilibrium Characterization of Dynamical Neural Networks and a Systematic Synthesis Procedure for Associative Memories,” IEEE Trans. Neural Networks, Vol. 2, No. 5 (Sept.), pp. 509-521.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.5 , pp. 509-521
    • Sudharsanan, S.I.1    Sundareshan, M.K.2
  • 280
    • 85036555006 scopus 로고
    • Training of a Three-Layer Dynamical Recurrent Neural Network for Nonlinear Input-Output Mapping
    • Nov
    • Sudharsanan, S. I. and Sundareshan, M. K. (1991b). ‘Training of a Three-Layer Dynamical Recurrent Neural Network for Nonlinear Input-Output Mapping,” Proc. Int. Joint Conf. Neural Networks, Nov., pp. 447-115.
    • (1991) Proc. Int. Joint Conf. Neural Networks , pp. 115-447
    • Sudharsanan, S.I.1    Sundareshan, M.K.2
  • 281
    • 0027245247 scopus 로고
    • Learning Higher Order Correlations
    • Taylor, J. G. and Commbes, S. (1993). “Learning Higher Order Correlations,” Neural Networks, Vol. 6, No. 3, pp. 423-28.
    • (1993) Neural Networks , vol.6 , Issue.3 , pp. 423-428
    • Taylor, J.G.1    Commbes, S.2
  • 282
    • 84899032239 scopus 로고    scopus 로고
    • The Relevance Vector Machine
    • Solla, S. A., Leen, T. K., and Muller, K.-R. (eds.), MIT Press, Cambridge, MA
    • Tipping, M. E. (2000). “The Relevance Vector Machine,” in Advances in Neural Information Processing Systems 12, Solla, S. A., Leen, T. K., and Muller, K.-R. (eds.), MIT Press, Cambridge, MA.
    • (2000) Advances in Neural Information Processing Systems 12
    • Tipping, M.E.1
  • 283
    • 0024940401 scopus 로고
    • Consistent Inference on Probabilities in Layered Networks, Predictions and Generalization
    • Washington, DC, IEEE Press
    • Tishby, N., Levin, E., and Solla, S. (1989). “Consistent Inference on Probabilities in Layered Networks, Predictions and Generalization,” Proc. Int. Joint Conf. Neural Networks, Washington, DC, IEEE Press, pp. 403-410.
    • (1989) Proc. Int. Joint Conf. Neural Networks , pp. 403-410
    • Tishby, N.1    Levin, E.2    Solla, S.3
  • 284
    • 0034187784 scopus 로고    scopus 로고
    • Clustering of the Self-Organizing Map
    • May
    • Vesanto, J. and Alhoniemi, E. (2000). “Clustering of the Self-Organizing Map,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 586-600.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 586-600
    • Vesanto, J.1    Alhoniemi, E.2
  • 285
    • 34250094997 scopus 로고
    • Accelerating the Convergence of the Back-propagation Method
    • Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T, and Allcon, D. L. (1988). “Accelerating the Convergence of the Back-propagation Method,” Biol. Cybernet., 59, pp. 257-263.
    • (1988) Biol. Cybernet. , vol.59 , pp. 257-263
    • Vogl, T.P.1    Mangis, J.K.2    Rigler, A.K.3    Zink, W.T.4    Allcon, D.L.5
  • 286
    • 0027591320 scopus 로고
    • Stable Adaptive Fuzzy Control of Nonlinear Systems
    • Jan
    • Wang, L. X. (1993). “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Trans. Fuzzy Syst., Vol. 1 (Jan.), pp. 146-155.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 146-155
    • Wang, L.X.1
  • 287
    • 0026928374 scopus 로고
    • Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least Square Learning
    • Wang, L. X. and Mendel, J. M. (1992a). “Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least Square Learning,” IEEE Trans. Neural Networks, Vol. 3, No. 5, pp. 807-814.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 288
    • 0026943536 scopus 로고
    • Generating Fuzzy Rules from Numerical Data, with Applications
    • Wang, L. X. and Mendel, J. M. (1992b). “Generating Fuzzy Rules from Numerical Data, with Applications,” IEEE Trans. Syst. Man Cybernet., Vol. 32, pp. 1414-1472.
    • (1992) IEEE Trans. Syst. Man Cybernet. , vol.32 , pp. 1414-1472
    • Wang, L.X.1    Mendel, J.M.2
  • 289
    • 0027644838 scopus 로고
    • Fuzzy Adaptive Filters, with Application to Nonlinear Channel Equalization
    • March
    • Wang, L. X. and Mendel, J. M. (1993). “Fuzzy Adaptive Filters, with Application to Nonlinear Channel Equalization,” IEEE Trans. Fuzzy Syst., Vol. 1 (March), pp. 161-170.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 161-170
    • Wang, L.X.1    Mendel, J.M.2
  • 290
    • 0034187075 scopus 로고    scopus 로고
    • Probabilistic Principal Component Subspaces: A Hierarchical Finite Mixture Model for Data Visualizations
    • May
    • Wang, Y. F., Luo, L., Freedman, M. T., and Kung, S.-Y. (2000). “Probabilistic Principal Component Subspaces: A Hierarchical Finite Mixture Model for Data Visualizations,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 625-636.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 625-636
    • Wang, Y.F.1    Luo, L.2    Freedman, M.T.3    Kung, S.-Y.4
  • 291
    • 0035506030 scopus 로고    scopus 로고
    • Learning Efficiency of Redundant Neural Networks in Bayesian Estimation
    • Nov
    • Watanabe, S. (2001). “Learning Efficiency of Redundant Neural Networks in Bayesian Estimation,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1475-1486.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1475-1486
    • Watanabe, S.1
  • 293
    • 0025857964 scopus 로고
    • A Fast Robust Learning Algorithm for Feedforward Neural Networks
    • Weymaere, N. and Martens, J. P. (1991). “A Fast Robust Learning Algorithm for Feedforward Neural Networks,” Neural Networks, Vol. 4, pp. 361-369.
    • (1991) Neural Networks , vol.4 , pp. 361-369
    • Weymaere, N.1    Martens, J.P.2
  • 294
    • 0001795753 scopus 로고
    • Generalization and Information Storage in Networks of Adaline Neurons
    • Yovitz, M., Jocobi, G, and Goldstein, C. (eds.), Spartan Books, Washington, DC
    • Widrow, B. (1962). “Generalization and Information Storage in Networks of Adaline Neurons,” in Self-Organizing Systems, Yovitz, M., Jocobi, G, and Goldstein, C. (eds.), Spartan Books, Washington, DC, pp. 435-461.
    • (1962) Self-Organizing Systems , pp. 435-461
    • Widrow, B.1
  • 295
    • 0002278965 scopus 로고
    • Adaptive Switching Circuits
    • New York
    • Widrow, B. and Hoff, M. E. (1960). “Adaptive Switching Circuits,” in IRE WESCON Convention Record, Vol. 4, New York, pp. 96-104.
    • (1960) IRE WESCON Convention Record , vol.4 , pp. 96-104
    • Widrow, B.1    Hoff, M.E.2
  • 296
    • 0025488663 scopus 로고
    • 30 Years of Adaptive Neural Networks: Per-ceptron, Madaline, and Backpropagation
    • Widrow, B. and Lehr, M. A.(1990). "30 Years of Adaptive Neural Networks: Per-ceptron, Madaline, and Backpropagation,” Proc. IEEE, Vol. 78, No. 9, pp. 1415-1442.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2
  • 297
    • 0001202594 scopus 로고
    • A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
    • Williams, R. J. and Zipser, D. (1989). “A Learning Algorithm for Continually Running Fully Recurrent Neural Networks,” Neural Comput., Vol. 1, pp. 270-280.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 299
    • 0026745682 scopus 로고
    • Modified Hebbian Learning for Curve and Surface Fitting
    • Xu, L., Oja, E., and Suen, C. Y. (1992). “Modified Hebbian Learning for Curve and Surface Fitting,” Neural Networks, Vol. 5, No. 3, pp. 441-457.
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 300
    • 0041345290 scopus 로고    scopus 로고
    • Efficient Reinforcement Learning Using Recursive Least-Squares Methods
    • Xu, X., He, H. G., and Hu, D. (2002). “Efficient Reinforcement Learning Using Recursive Least-Squares Methods,” J. Artificial Intelligence Research, Vol. 16, pp. 259-292.
    • (2002) J. Artificial Intelligence Research , vol.16 , pp. 259-292
    • Xu, X.1    He, H.G.2    Hu, D.3
  • 301
    • 0034187697 scopus 로고    scopus 로고
    • General Statistical Inference for Discrete and Mixed Spaces by an Approximate Application of the Maximum Entropy Principle
    • May
    • Yan, L. and Miller, D. J. (2000). “General Statistical Inference for Discrete and Mixed Spaces by an Approximate Application of the Maximum Entropy Principle,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 558-573.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 558-573
    • Yan, L.1    Miller, D.J.2
  • 302
    • 0025448173 scopus 로고
    • Integrator Neurons for Analog Neural Networks
    • Yanai, H. and Sawada, Y. (1990). “Integrator Neurons for Analog Neural Networks,” IEEE Trans. Circuit Syst., Vol. 36, pp. 854-856.
    • (1990) IEEE Trans. Circuit Syst. , vol.36 , pp. 854-856
    • Yanai, H.1    Sawada, Y.2
  • 303
    • 0034187894 scopus 로고    scopus 로고
    • Fuzzy Auto-Associative Neural Networks for Principal Component Extraction of Noisy Data
    • May
    • Yang, T.-N. and Wang, S.-D. (2000). “Fuzzy Auto-Associative Neural Networks for Principal Component Extraction of Noisy Data,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 799-801.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 799-801
    • Yang, T.-N.1    Wang, S.-D.2
  • 304
    • 0035506175 scopus 로고    scopus 로고
    • Omnivariate Decision Trees
    • Nov
    • Yidliz, O. T. (2001). “Omnivariate Decision Trees,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1539-1546
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1539-1546
    • Yidliz, O.T.1
  • 305
    • 0006662344 scopus 로고    scopus 로고
    • Linear Discriminant Trees
    • Langely, P. (ed.), Morgan Kaufmann, San Mateo, CA
    • Yidliz, O. T. and Alpaydin, E. (2000). “Linear Discriminant Trees,” Proc. 17th Int. Conf. Machine Learning, Langely, P. (ed.), Morgan Kaufmann, San Mateo, CA, pp. 1175-1182.
    • (2000) Proc. 17th Int. Conf. Machine Learning , pp. 1175-1182
    • Yidliz, O.T.1    Alpaydin, E.2
  • 306
    • 0033875460 scopus 로고    scopus 로고
    • Underwater Target Detection Using Multichannel Subb and Adaptive Filtering and High Order Correlation Schemes
    • Jan
    • Yuan, C, Azimi-Sadjadi, M. R., Wilbur, J., and Dobeck, G. (2000). “Underwater Target Detection Using Multichannel Subb and Adaptive Filtering and High Order Correlation Schemes,” IEEE J. Ocean. Eng., Vol. 25 (Jan.), pp. 192-205.
    • (2000) IEEE J. Ocean. Eng. , vol.25 , pp. 192-205
    • Yuan, C.1    Azimi-Sadjadi, M.R.2    Wilbur, J.3    Dobeck, G.4
  • 307
    • 34248666540 scopus 로고
    • Fuzzy Sets
    • Zadeh, L. A. (1965). “Fuzzy Sets,” Inform. Control, Vol. 8, pp. 338-353.
    • (1965) Inform. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 308
    • 49949126152 scopus 로고
    • Probability Measures of Fuzzy Events
    • Zadeh, L. A. (1968). “Probability Measures of Fuzzy Events,” J. Math. Anal. Appl., Vol. 23, pp. 421-427.
    • (1968) J. Math. Anal. Appl. , vol.23 , pp. 421-427
    • Zadeh, L.A.1
  • 309
    • 0015374663 scopus 로고
    • A Fuzzy-Set - Theoretic Interpretation of Linguistic Hedges
    • Zadeh, L. A. (1972a). “A Fuzzy-Set - Theoretic Interpretation of Linguistic Hedges,” J. Cybernet., Vol. 2, pp. 4-34.
    • (1972) J. Cybernet. , vol.2 , pp. 4-34
    • Zadeh, L.A.1
  • 310
    • 85007031672 scopus 로고
    • A Rational for Fuzzy Control
    • Zadeh, L. A. (1972b). “A Rational for Fuzzy Control,” J. Dynamic Syst., Meas. Control, Vol. 34, pp. 3-4.
    • (1972) J. Dynamic Syst., Meas. Control , vol.34 , pp. 3-4
    • Zadeh, L.A.1
  • 311
    • 0015558134 scopus 로고
    • Outline of a New Approach to the Analysis of Complex Systems and Decision Processes
    • Zadeh, L. A. (1973). “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” IEEE Trans. Syst. Man Cybernet., Vol. 3, pp. 28-44.
    • (1973) IEEE Trans. Syst. Man Cybernet. , vol.3 , pp. 28-44
    • Zadeh, L.A.1
  • 312
    • 0021474230 scopus 로고
    • Making Computers Think Like People
    • Aug
    • Zadeh, L. A. (1984). “Making Computers Think Like People,” IEEE Spectrum, Vol. 21, No. 8 (Aug.), pp. 26-32.
    • (1984) IEEE Spectrum , vol.21 , Issue.8 , pp. 26-32
    • Zadeh, L.A.1
  • 313
    • 0022948591 scopus 로고
    • Outline of a Computational Approach to Meaning and Knowledge Representation Based on a Concept of a Generalized Assignment Statement
    • Thoma, M. and Wyner, A. (eds.), Springer-Verlag, Heidelberg, Germany
    • Zadeh, L. A. (1986). “Outline of a Computational Approach to Meaning and Knowledge Representation Based on a Concept of a Generalized Assignment Statement,” Proc. Int. Seminar on Artificial Intelligence and Man-Machine Systems, Thoma, M. and Wyner, A. (eds.), Springer-Verlag, Heidelberg, Germany, pp. 198-211.
    • (1986) Proc. Int. Seminar on Artificial Intelligence and Man-Machine Systems , pp. 198-211
    • Zadeh, L.A.1
  • 314
    • 0028385414 scopus 로고
    • Fuzzy Logic, Neural Networks, and Soft-computing
    • Zadeh, L. A. (1994). “Fuzzy Logic, Neural Networks, and Soft-computing,” Commun. ACM, Vol. 37, pp. 77-84.
    • (1994) Commun. ACM , vol.37 , pp. 77-84
    • Zadeh, L.A.1
  • 315
    • 0030142764 scopus 로고    scopus 로고
    • Fuzzy Logic = Computing with Words
    • Zadeh, L. A. (1996). “Fuzzy Logic = Computing with Words,” IEEE Trans. Fuzzy Systems, Vol. 4, pp. 103-111.
    • (1996) IEEE Trans. Fuzzy Systems , vol.4 , pp. 103-111
    • Zadeh, L.A.1
  • 316
    • 1642469977 scopus 로고    scopus 로고
    • Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic
    • Zadeh, L. A. (1997). “Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic,” Fuzzy Sets Syst., Vol. 90, pp. 111-127.
    • (1997) Fuzzy Sets Syst. , vol.90 , pp. 111-127
    • Zadeh, L.A.1
  • 317
    • 0032786058 scopus 로고    scopus 로고
    • From Computing with Numbers to Computing with Words-from Manipulation of Measurements to Manipulation of Perceptions
    • Zadeh, L. A. (1999). “From Computing with Numbers to Computing with Words-from Manipulation of Measurements to Manipulation of Perceptions,” IEEE Trans. Circuits Syst., Vol. 45, pp. 105-119.
    • (1999) IEEE Trans. Circuits Syst. , vol.45 , pp. 105-119
    • Zadeh, L.A.1
  • 318
    • 0035506957 scopus 로고    scopus 로고
    • Sensitivity Analysis of Multilayer Perceptron to Input and Weight Perturbations
    • Nov
    • Zeng, Z. and Yeung, D. S. (2001). “Sensitivity Analysis of Multilayer Perceptron to Input and Weight Perturbations,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1358-1366.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1358-1366
    • Zeng, Z.1    Yeung, D.S.2
  • 319
    • 0034266878 scopus 로고    scopus 로고
    • Global Stability Analysis in Delayed Hopfield Neural Models
    • Zhang, J. and Jin, X. (2000). “Global Stability Analysis in Delayed Hopfield Neural Models,” Neural Networks, Vol. 13, No. 7, pp. 745-753.
    • (2000) Neural Networks , vol.13 , Issue.7 , pp. 745-753
    • Zhang, J.1    Jin, X.2
  • 320
    • 0034186991 scopus 로고    scopus 로고
    • Granular Neural Networks for Numerical-Linguistic Data Fusion and Knowledge Discovery
    • May
    • Zhang, Y. Q., Fraser, M. D., Gagliano, R. A., and Kandel, A. (2000). “Granular Neural Networks for Numerical-Linguistic Data Fusion and Knowledge Discovery,” IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 658-667.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 658-667
    • Zhang, Y.Q.1    Fraser, M.D.2    Gagliano, R.A.3    Kandel, A.4
  • 321
    • 0035506267 scopus 로고    scopus 로고
    • A Network of Dynamically Coupled Chaotic Maps for Scene Segmentation
    • Nov
    • Zhao, L. and Macau, E. E. N. (2001). “A Network of Dynamically Coupled Chaotic Maps for Scene Segmentation,” IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1375-1385.
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.6 , pp. 1375-1385
    • Zhao, L.1    Macau, E.E.N.2
  • 322
    • 0034215384 scopus 로고    scopus 로고
    • Scene Segmentation of the Chaotic Oscillator Network
    • Zhao, L., Macau, E. E. N., and Omar, N. (2000). “Scene Segmentation of the Chaotic Oscillator Network,” Int. J. Bifurcation Chaos, Vol. 10, No. 7, pp. 1697-1708.
    • (2000) Int. J. Bifurcation Chaos , vol.10 , Issue.7 , pp. 1697-1708
    • Zhao, L.1    Macau, E.E.N.2    Omar, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.