메뉴 건너뛰기




Volumn 22, Issue 14, 2008, Pages 2449-2460

The potential of different ANN techniques in evapotranspiration modelling

Author keywords

Evapotranspiration; Hargreaves; Modelling; Neural network techniques; Penman; Ritchie

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; EVAPOTRANSPIRATION; FOOD PROCESSING; PATTERN RECOGNITION SYSTEMS; VEGETATION;

EID: 48649099727     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.6837     Document Type: Article
Times cited : (145)

References (45)
  • 1
    • 0002086548 scopus 로고
    • An update for the calculation of reference evapotranspiration
    • Allen RG, Smith M, Perrier A, Pereira LS. 1994. An update for the calculation of reference evapotranspiration. ICID Bulletin 43(2): 35-92.
    • (1994) ICID Bulletin , vol.43 , Issue.2 , pp. 35-92
    • Allen, R.G.1    Smith, M.2    Perrier, A.3    Pereira, L.S.4
  • 2
    • 0000097885 scopus 로고    scopus 로고
    • Crop evapotranspiration guidelines for computing crop water requirements
    • Paper No. 56. Food and Agriculture Organization of the United Nations: Rome
    • Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration guidelines for computing crop water requirements. In FAO Irrigation and Drainage, Paper No. 56. Food and Agriculture Organization of the United Nations: Rome.
    • (1998) FAO Irrigation and Drainage
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 3
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D, Lowe D. 1988. Multivariable functional interpolation and adaptive networks. Complex Systems 2: 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 6
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modelling
    • Chen J, Adams BJ. 2006. Integration of artificial neural networks with conceptual models in rainfall-runoff modelling. Journal of Hydrology 318: 232-249.
    • (2006) Journal of Hydrology , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 7
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu HK, Kisi O. 2005. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nordic Hydrolology 36(1): 49-64.
    • (2005) Nordic Hydrolology , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 8
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu HK, Kisi O. 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology 317: 221-238.
    • (2006) Journal of Hydrology , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 9
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenco G. 1989. Approximation by superposition of a sigmoidal function. Mathematics of Control. Signals and Systems 2: 303-314.
    • (1989) Mathematics of Control. Signals and Systems , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 11
    • 0037562812 scopus 로고    scopus 로고
    • Feed forward neural networks modelling for K-P interactions
    • El-Bakyr MY. 2003. Feed forward neural networks modelling for K-P interactions. Chaos, Solitons & Fractals 18(5): 995-1000.
    • (2003) Chaos, Solitons & Fractals , vol.18 , Issue.5 , pp. 995-1000
    • El-Bakyr, M.Y.1
  • 12
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan MT, Menhaj MB. 1994. Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Networks 6: 861-867.
    • (1994) IEEE Trans Neural Networks , vol.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 16
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. 1989. Multilayer feed forward networks are universal approximators. Neural Networks 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 0001948173 scopus 로고
    • Crop growth models
    • Management of Farm Irrigation System, Hoffman GJ, Howel TA, Solomon KH eds, ASAE: St Joseph, MI;
    • Jones JW, Ritchie JT. 1990. Crop growth models. In Management of Farm Irrigation System, Hoffman GJ, Howel TA, Solomon KH (eds), ASAE Monograph No. 9. ASAE: St Joseph, MI; 63-89.
    • (1990) ASAE Monograph , vol.9 , pp. 63-89
    • Jones, J.W.1    Ritchie, J.T.2
  • 20
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. 2004a. River flow modeling using artificial neural networks. ASCE Journal of Hydrologic Engineering 9(1): 60-63.
    • (2004) ASCE Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 21
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation
    • Kisi O. 2004b. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation. Hydrological Science Journal 49(6): 1025-1040.
    • (2004) Hydrological Science Journal , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 22
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi O. 2005a. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Science Journal 50(4): 683-696.
    • (2005) Hydrological Science Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 23
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • Kisi O. 2005b. Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish Journal of Engineering & Environmental Science 29: 9-20.
    • (2005) Turkish Journal of Engineering & Environmental Science , vol.29 , pp. 9-20
    • Kisi, O.1
  • 24
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modelling from climatic data using a neural computing technique
    • Kisi O. 2007. Evapotranspiration modelling from climatic data using a neural computing technique. Hydrological Processes 21: 1925-1934.
    • (2007) Hydrological Processes , vol.21 , pp. 1925-1934
    • Kisi, O.1
  • 25
    • 16344363303 scopus 로고    scopus 로고
    • Discussion of 'Estimating actual evapotranspiration from limited climatic data using neural computing technique' by KP Sudheer; AK Gosain, KS Ramasastri
    • Kisi O, Yildirim G. 2005a. Discussion of 'Estimating actual evapotranspiration from limited climatic data using neural computing technique' by KP Sudheer; AK Gosain, KS Ramasastri. ASCE Journal of Irrigation and Drainage Engineering 131(2): 219-220.
    • (2005) ASCE Journal of Irrigation and Drainage Engineering , vol.131 , Issue.2 , pp. 219-220
    • Kisi, O.1    Yildirim, G.2
  • 26
    • 23044453569 scopus 로고    scopus 로고
    • Discussion of 'Forecasting of reference evapotranspiration by artificial neural networks' by S Trajkovic, B Todorovic, M Stankovic
    • Kisi O, Yildirim G. 2005b. Discussion of 'Forecasting of reference evapotranspiration by artificial neural networks' by S Trajkovic, B Todorovic, M Stankovic. ASCE Journal of Irrigation and Drainage Engineering 131(4): 390-391.
    • (2005) ASCE Journal of Irrigation and Drainage Engineering , vol.131 , Issue.4 , pp. 390-391
    • Kisi, O.1    Yildirim, G.2
  • 28
  • 29
    • 0038009289 scopus 로고    scopus 로고
    • Radial basis function networks applied to DNBR calculation in digital core protection systems
    • Lee GC, Chang SH. 2003. Radial basis function networks applied to DNBR calculation in digital core protection systems. Annals of Nuclear Energy 30: 1561-1572.
    • (2003) Annals of Nuclear Energy , vol.30 , pp. 1561-1572
    • Lee, G.C.1    Chang, S.H.2
  • 31
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns AW, Hall MJ. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Science Journal 41(3): 399-416.
    • (1996) Hydrological Science Journal , vol.41 , Issue.3 , pp. 399-416
    • Minns, A.W.1    Hall, M.J.2
  • 33
    • 0003237372 scopus 로고
    • Empirical calibration, a requisite for evapotranspiration formulae based on daily or longer mean climatic data
    • International Commission on Irrigation and Drainage: Budapest; 20 pp
    • Pruitt WO, Doorenbos J. 1977. Empirical calibration, a requisite for evapotranspiration formulae based on daily or longer mean climatic data. In Proceedings of the International Round Table Conference on Evapotranspiration. International Commission on Irrigation and Drainage: Budapest; 20 pp.
    • (1977) Proceedings of the International Round Table Conference on Evapotranspiration
    • Pruitt, W.O.1    Doorenbos, J.2
  • 34
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • Raghuwanshi NS, Singh R, Reddy LS. 2006. Runoff and sediment yield modeling using artificial neural networks: upper Siwane River, India. Journal of Hydrological Engineering 11(1): 71-79.
    • (2006) Journal of Hydrological Engineering , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 35
    • 28844470729 scopus 로고    scopus 로고
    • Flow forecasting for a Hawaii stream using rating curves and neural networks
    • Sahoo GB, Ray C. 2006. Flow forecasting for a Hawaii stream using rating curves and neural networks. Journal of Hydrology 317: 63-80.
    • (2006) Journal of Hydrology , vol.317 , pp. 63-80
    • Sahoo, G.B.1    Ray, C.2
  • 37
    • 0004328787 scopus 로고
    • Estimating reference evapotranspiration with hourly data
    • eds, Land, Air and Water Resources Paper #10013. University of California-Davis: Davis, CA
    • Snyder R, Pruitt W. 1985. Estimating reference evapotranspiration with hourly data. In California Irrigation Management Information System Final Report, Chapter VII, Snyder R, et al. (eds), Land, Air and Water Resources Paper #10013. University of California-Davis: Davis, CA.
    • (1985) California Irrigation Management Information System Final Report
    • Snyder, R.1    Pruitt, W.2
  • 38
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht DF. 1991. A general regression neural network. IEEE Trans Neural Networks 2(6): 568-576.
    • (1991) IEEE Trans Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 41
    • 0242656262 scopus 로고    scopus 로고
    • Application of a neural network model in establishing a stage - discharge relationship for a tidal river
    • Supharatid S. 2003. Application of a neural network model in establishing a stage - discharge relationship for a tidal river. Hydrological Processes 17: 3085-3099.
    • (2003) Hydrological Processes , vol.17 , pp. 3085-3099
    • Supharatid, S.1
  • 42
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G. 2002. Artificial neural networks for sheet sediment transport. Hydrological Science Journal 47(6): 879-892.
    • (2002) Hydrological Science Journal , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 43
    • 23044444044 scopus 로고    scopus 로고
    • Temperature-based approaches for estimating reference evapotranspiration
    • Trajkovic S. 2005. Temperature-based approaches for estimating reference evapotranspiration. ASCE Journal of Irrigation and Drainage Engineering 131(4): 316-323.
    • (2005) ASCE Journal of Irrigation and Drainage Engineering , vol.131 , Issue.4 , pp. 316-323
    • Trajkovic, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.