메뉴 건너뛰기




Volumn 53, Issue 4, 2008, Pages 893-904

An explicit neural network formulation for evapotranspiration

Author keywords

Artificial neural networks; CIMIS database; Evapotranspiration; Penman Monteith equation

Indexed keywords

IMAGE CLASSIFICATION; NEURAL NETWORKS;

EID: 52649094242     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.53.4.893     Document Type: Article
Times cited : (36)

References (30)
  • 1
    • 34547728744 scopus 로고    scopus 로고
    • Discussion of "Generalized regression neural networks for evapotranspiration modelling" by O. Kişi (2006)
    • Aksoy, H., Guven, A., Aytek, A., Yuce, M. I. & Unal, N. E. (2007) Discussion of "Generalized regression neural networks for evapotranspiration modelling" by O. Kişi (2006). Hydrol. Sci. J. 52(4), 825-828.
    • (2007) Hydrol. Sci. J , vol.52 , Issue.4 , pp. 825-828
    • Aksoy, H.1    Guven, A.2    Aytek, A.3    Yuce, M.I.4    Unal, N.E.5
  • 2
    • 48649088956 scopus 로고    scopus 로고
    • Aksoy, H., Guven, A., Aytek, A., Yuce, M. I. & Unal, N. E. (2008) Comment on Kisi, O. (2007) Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol. Processes 21(14), 1925-1934. Hydrol. Processes 22(14), 2715-2717.
    • Aksoy, H., Guven, A., Aytek, A., Yuce, M. I. & Unal, N. E. (2008) Comment on "Kisi, O. (2007) Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol. Processes 21(14), 1925-1934". Hydrol. Processes 22(14), 2715-2717.
  • 3
    • 0000097885 scopus 로고    scopus 로고
    • Crop evapotranspiration: Guidelines for computing crop water requirements
    • Food and Agriculture Organization of the United Nations, Rome, Italy
    • Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrig. Drain. Paper 56, Food and Agriculture Organization of the United Nations, Rome, Italy.
    • (1998) FAO Irrig. Drain
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee (2000) Artificial neural networks in hydrology. II: Hydrologic applications, ASCE J. Hydrol. Engng 5(2), 124-137.
    • (2000) ASCE J. Hydrol. Engng , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 6
    • 32044443415 scopus 로고    scopus 로고
    • Flood estimation at ungauged sites using artificial neural networks
    • Dawson, C. W., Abrahart, R. J., Shamseldin, A. Y. & Wilby, R. L. (2006) Flood estimation at ungauged sites using artificial neural networks. J. Hydrol. 319, 391-409.
    • (2006) J. Hydrol , vol.319 , pp. 391-409
    • Dawson, C.W.1    Abrahart, R.J.2    Shamseldin, A.Y.3    Wilby, R.L.4
  • 7
    • 15544376915 scopus 로고
    • Guidelines for prediction of crop water requirements
    • revised, Food and Agriculture Organization, Rome, Italy
    • Doorenbos, J. & Pruitt, W. O. (1977) Guidelines for prediction of crop water requirements. FAO Irrig. Drain. Paper 24 (revised). Food and Agriculture Organization, Rome, Italy.
    • (1977) FAO Irrig. Drain
    • Doorenbos, J.1    Pruitt, W.O.2
  • 9
    • 34047131239 scopus 로고    scopus 로고
    • Prediction of pressure fluctuations on sloping stilling basins
    • Guven, A., Gunal, M. & Cevik, A. K. (2006) Prediction of pressure fluctuations on sloping stilling basins. Can. J. Civil Engng 33(11), 1379-1388.
    • (2006) Can. J. Civil Engng , vol.33 , Issue.11 , pp. 1379-1388
    • Guven, A.1    Gunal, M.2    Cevik, A.K.3
  • 10
    • 52649142425 scopus 로고    scopus 로고
    • Hall, M. J. & Minns, A. W. (1998) Regional flood frequency analysis using artificial neural networks. In: Hydroinformatics Conference (ed. by V. Babovic & C. L. Larsen) (Proc. Third Int. Conf. on Hydroinformatics, Copenhagen, Denmark), 2, 759-763. Balkema, Rotterdam, The Netherlands.
    • Hall, M. J. & Minns, A. W. (1998) Regional flood frequency analysis using artificial neural networks. In: Hydroinformatics Conference (ed. by V. Babovic & C. L. Larsen) (Proc. Third Int. Conf. on Hydroinformatics, Copenhagen, Denmark), vol. 2, 759-763. Balkema, Rotterdam, The Netherlands.
  • 11
    • 0002370669 scopus 로고
    • Reference crop evapotranspiration from temperature
    • Hargreaves, G. H. & Samani, Z. A. (1985) Reference crop evapotranspiration from temperature. Appl. Engng Agric. 1(2), 96-99.
    • (1985) Appl. Engng Agric , vol.1 , Issue.2 , pp. 96-99
    • Hargreaves, G.H.1    Samani, Z.A.2
  • 12
    • 0004199140 scopus 로고
    • Addison-Wesley, Reading, Massachusetts, USA
    • Hecht-Nielsen, R. (1990) Neurocomputing. Addison-Wesley, Reading, Massachusetts, USA.
    • (1990) Neurocomputing
    • Hecht-Nielsen, R.1
  • 13
    • 0002313904 scopus 로고
    • Estimating evapotranspiration from solar radiation
    • Jensen, M. E. & Haise, H. R. (1963) Estimating evapotranspiration from solar radiation. J. Irrig. Drain. Div. ASCE 89, 15-41.
    • (1963) J. Irrig. Drain. Div. ASCE , vol.89 , pp. 15-41
    • Jensen, M.E.1    Haise, H.R.2
  • 14
    • 0001948173 scopus 로고
    • Crop growth models
    • Management of Farm Irrigation Systems ed. by G. J. Hoffman, T. A. Howel & K. H. Solomon, ASAE, St Joseph, Michigan, USA
    • Jones, J. W. & Ritchie, J. T. (1990) Crop growth models. In: Management of Farm Irrigation Systems (ed. by G. J. Hoffman, T. A. Howel & K. H. Solomon), 63-89. ASAE Monograph no. 9, ASAE, St Joseph, Michigan, USA.
    • (1990) ASAE Monograph , vol.9 , pp. 63-89
    • Jones, J.W.1    Ritchie, J.T.2
  • 15
    • 56449086262 scopus 로고    scopus 로고
    • Khorchani, M. & Blanpain, O. (2005) Development of a discharge equation for side weirs using artificial neural networks. J. Hydroinf. 07.1, 31-39.
    • Khorchani, M. & Blanpain, O. (2005) Development of a discharge equation for side weirs using artificial neural networks. J. Hydroinf. 07.1, 31-39.
  • 16
    • 33845321370 scopus 로고    scopus 로고
    • Generalized regression neural networks for evapotranspiration modelling
    • Kişi, O. (2006) Generalized regression neural networks for evapotranspiration modelling. Hydrol. Sci. J. 51(6), 1092-1105.
    • (2006) Hydrol. Sci. J , vol.51 , Issue.6 , pp. 1092-1105
    • Kişi, O.1
  • 17
    • 34547756974 scopus 로고    scopus 로고
    • Discussion of "Generalized regression neural networks for evapotranspiration modelling" by O. Kişi (2006)
    • Koutsoyiannis, D. (2007). Discussion of "Generalized regression neural networks for evapotranspiration modelling" by O. Kişi (2006). Hydrol. Sci. J. 52(4), 832-835.
    • (2007) Hydrol. Sci. J , vol.52 , Issue.4 , pp. 832-835
    • Koutsoyiannis, D.1
  • 18
    • 40349116048 scopus 로고    scopus 로고
    • Medium-range flow prediction for the Nile: A comparison of stochastic and deterministic methods
    • Koutsoyiannis, D., Yao, H. & Georgakakos, A. (2008) Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods. Hydrol. Sci. J. 53(1), 142-164.
    • (2008) Hydrol. Sci. J , vol.53 , Issue.1 , pp. 142-164
    • Koutsoyiannis, D.1    Yao, H.2    Georgakakos, A.3
  • 20
    • 0027330999 scopus 로고
    • Forecasting of reference crop evapotranspiration
    • Marino, M. A., Tracy, J. C. & Taghavi, S. A. (1993) Forecasting of reference crop evapotranspiration, Agric. Water Manage. 24(3), 163-187.
    • (1993) Agric. Water Manage , vol.24 , Issue.3 , pp. 163-187
    • Marino, M.A.1    Tracy, J.C.2    Taghavi, S.A.3
  • 21
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W. & Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 41(3), 399-417.
    • (1996) Hydrol. Sci. J , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 22
    • 0027464578 scopus 로고
    • Neural network-based screening for groundwater reclamation under uncertainty
    • Ranjithan, S., Eheart, J. W. & Garrett, J. H. (1993) Neural network-based screening for groundwater reclamation under uncertainty. Water Resour. Res. 29(3), 563-574.
    • (1993) Water Resour. Res , vol.29 , Issue.3 , pp. 563-574
    • Ranjithan, S.1    Eheart, J.W.2    Garrett, J.H.3
  • 25
    • 0034174278 scopus 로고    scopus 로고
    • Regional drought analysis based on neural networks
    • Shin, H. S. & Salas, J. D. (2000) Regional drought analysis based on neural networks. J. Hydrol. Engng 5(2), 145-155.
    • (2000) J. Hydrol. Engng , vol.5 , Issue.2 , pp. 145-155
    • Shin, H.S.1    Salas, J.D.2
  • 26
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer, K. P., Gosain, A. K. & Ramasastri, K. S. (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J. Irrig. Drain. Engng ASCE 129(3), 214-218.
    • (2003) J. Irrig. Drain. Engng ASCE , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 27
    • 13244278433 scopus 로고    scopus 로고
    • Comparison of some reference evapotranspiration equations for California
    • Temesgen, B., Eching, S., Davidoff, B. & Frame, K. (2005) Comparison of some reference evapotranspiration equations for California. J. Irrig. Drain. Engng ASCE 131(1), 73-84.
    • (2005) J. Irrig. Drain. Engng ASCE , vol.131 , Issue.1 , pp. 73-84
    • Temesgen, B.1    Eching, S.2    Davidoff, B.3    Frame, K.4
  • 28
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S. & Johnson, P. A. (1999) Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Engng 4(3), 232-239.
    • (1999) J. Hydrol. Engng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 29
    • 23044444044 scopus 로고    scopus 로고
    • Temperature-based approaches for estimating reference evapotranspiration
    • Trajkovic, S. (2005) Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Engng ASCE 131(4), 316-323.
    • (2005) J. Irrig. Drain. Engng ASCE , vol.131 , Issue.4 , pp. 316-323
    • Trajkovic, S.1
  • 30
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting reference evapotranspiration by artificial neural networks
    • Trajkovic, S., Todorovic, B. & Stankovic, M. (2003) Forecasting reference evapotranspiration by artificial neural networks. J. Irrig. Drain. Engng ASCE 129(6), 454-457.
    • (2003) J. Irrig. Drain. Engng ASCE , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.