메뉴 건너뛰기




Volumn 9, Issue 2, 2011, Pages 207-220

Application of artificial neural network in estimating monthly time series reference evapotranspiration with minimum and maximum temperatures

Author keywords

Evapotranspiration; Feed forward backpropagation; Rich and poor data

Indexed keywords

ACCURATE ESTIMATION; ACCURATE PERFORMANCE; ARTIFICIAL NEURAL NETWORK; BAYESIAN REGULATION; DAILY TEMPERATURES; DATA ANALYSIS; FEEDFORWARD BACKPROPAGATION; HARGREAVES; INPUT PATTERNS; MAXIMUM TEMPERATURE; MEAN ABSOLUTE ERROR; METEOROLOGICAL DATA; MODEL ACCURACY; PENMAN-MONTEITH; PREDICTION MODEL; REFERENCE EVAPOTRANSPIRATION; REGRESSION COEFFICIENT; RELATIVE ERRORS; RICH AND POOR DATA; STATISTICAL PERFORMANCE;

EID: 79955729635     PISSN: 16112490     EISSN: 16112504     Source Type: Journal    
DOI: 10.1007/s10333-010-0219-1     Document Type: Article
Times cited : (26)

References (25)
  • 2
    • 77956252626 scopus 로고    scopus 로고
    • Application of radial basis function neural networks for reference evapotranspiration prediction
    • Awchi TA (2007) Application of radial basis function neural networks for reference evapotranspiration prediction. J Al-Rafidain Eng 18(1): 117-129.
    • (2007) J Al-Rafidain Eng , vol.18 , Issue.1 , pp. 117-129
    • Awchi, T.A.1
  • 3
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan S, Shrivastava RK (2008) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manage 23: 825-837.
    • (2008) Water Resour Manage , vol.23 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 4
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair TA, Ehrman JM (1998) Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resour Res 34(3): 447-455.
    • (1998) Water Resour Res , vol.34 , Issue.3 , pp. 447-455
    • Clair, T.A.1    Ehrman, J.M.2
  • 5
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3-4): 244-257.
    • (2000) J Hydrol , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 6
    • 0034306554 scopus 로고    scopus 로고
    • Performance evaluation of artificial neural networks for runoff prediction
    • Elshorbagy A, Simonovic SP, Panu US (2000) Performance evaluation of artificial neural networks for runoff prediction. J Hydrol Eng 5(4): 424-427.
    • (2000) J Hydrol Eng , vol.5 , Issue.4 , pp. 424-427
    • Elshorbagy, A.1    Simonovic, S.P.2    Panu, U.S.3
  • 7
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando DA, Jayawardena AW (1998) Runoff forecasting using RBF networks with OLS algorithm. J Hydrol Eng 3(3): 203-209.
    • (1998) J Hydrol Eng , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.1    Jayawardena, A.W.2
  • 8
    • 0002370669 scopus 로고
    • Reference crop evapotranspiration from temperature
    • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2): 96-99.
    • (1985) Appl Eng Agric , vol.1 , Issue.2 , pp. 96-99
    • Hargreaves, G.H.1    Samani, Z.A.2
  • 9
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10): 2517-2530.
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 10
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plan Manag 125(5): 263-271.
    • (1999) J Water Resour Plan Manag , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 11
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • Jain SK, Nayak PC, Sudheer KP (2008) Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol Process 22(13): 2225-2234.
    • (2008) Hydrol Process , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 12
    • 39649125438 scopus 로고    scopus 로고
    • Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment
    • Khoob AR (2008a) Comparative study of Hargreaves's and artificial neural network's methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig Sci 26(3): 253-259.
    • (2008) Irrig Sci , vol.26 , Issue.3 , pp. 253-259
    • Khoob, A.R.1
  • 13
    • 54849427050 scopus 로고    scopus 로고
    • Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment
    • Khoob AR (2008b) Artificial neural network estimation of reference evapotranspiration from pan evaporation in a semi-arid environment. Irrig Sci 27(1): 35-39.
    • (2008) Irrig Sci , vol.27 , Issue.1 , pp. 35-39
    • Khoob, A.R.1
  • 14
    • 67849114055 scopus 로고    scopus 로고
    • Modeling monthly evaporation using two different neural computing techniques
    • Kisi O (2009) Modeling monthly evaporation using two different neural computing techniques. Irrig Sci 27: 417-430.
    • (2009) Irrig Sci , vol.27 , pp. 417-430
    • Kisi, O.1
  • 16
    • 0034746067 scopus 로고    scopus 로고
    • Derivation of Pareto front with genetic algorithm and neural network
    • Liong SY, Khu ST, Chan WT (2001) Derivation of Pareto front with genetic algorithm and neural network. J Hydrol Eng 6(1): 52-61.
    • (2001) J Hydrol Eng , vol.6 , Issue.1 , pp. 52-61
    • Liong, S.Y.1    Khu, S.T.2    Chan, W.T.3
  • 17
    • 0032855262 scopus 로고    scopus 로고
    • Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting
    • Maier HR, Dandy GC (1999) Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting. Water Resour Res 35(8): 2591-2596.
    • (1999) Water Resour Res , vol.35 , Issue.8 , pp. 2591-2596
    • Maier, H.R.1    Dandy, G.C.2
  • 19
    • 0035727321 scopus 로고    scopus 로고
    • Optimization of fuzzy evapotranspiration model through neural training with input-output examples
    • Odhiambo LO, Yoder RE, Hines JW (2001) Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans ASAE 44(6): 1625-1633.
    • (2001) Trans ASAE , vol.44 , Issue.6 , pp. 1625-1633
    • Odhiambo, L.O.1    Yoder, R.E.2    Hines, J.W.3
  • 20
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain Eng 129(3): 214-218.
    • (2003) J Irrig Drain Eng , vol.129 , Issue.3 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 21
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3): 232-239.
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 22
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting of reference evapotranspiration by artificial neural network
    • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting of reference evapotranspiration by artificial neural network. J Irrig Drain Eng 129(6): 454-457.
    • (2003) J Irrig Drain Eng , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 23
    • 76549126637 scopus 로고    scopus 로고
    • Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone
    • Traore S, Wang YM, Kerh T (2010) Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Agric Water Manag 97(5): 707-714.
    • (2010) Agric Water Manag , vol.97 , Issue.5 , pp. 707-714
    • Traore, S.1    Wang, Y.M.2    Kerh, T.3
  • 24
    • 48749093170 scopus 로고    scopus 로고
    • Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso
    • Wang YM, Traore S, Kerh T (2008) Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. WSEAS Trans Comput 7(6): 704-713.
    • (2008) WSEAS Trans Comput , vol.7 , Issue.6 , pp. 704-713
    • Wang, Y.M.1    Traore, S.2    Kerh, T.3
  • 25
    • 33947362356 scopus 로고    scopus 로고
    • Estimating evapotranspiration using artificial neural network and minimum climatological data
    • Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT, Bernardo S (2007) Estimating evapotranspiration using artificial neural network and minimum climatological data. J Irrig Drain Eng 133(2): 83-89.
    • (2007) J Irrig Drain Eng , vol.133 , Issue.2 , pp. 83-89
    • Zanetti, S.S.1    Sousa, E.F.2    Oliveira, V.P.S.3    Almeida, F.T.4    Bernardo, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.